首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reaction of ceramides containing nonhydroxy fatty acids with benzoyl chloride in pyridine at 70 degrees C for 1 hr resulted in N-benzoylation to form N,N-acyl,benzoyl derivatives; O-benzoylation also occurred. However with ceramides containing 2-hydroxy fatty acids and phytosphingosine only O-benzoylation occurred even on prolonged treatment. Only O-benzoylation occurred on reaction with benzoic an hydride. However, the benzoylation of ceramides with phytosphingosine could not be achieved with benzoic anhydride and this benzoylation was performed by reaction with benzoyl chloride at 70 degrees C for 4 hr. Because N,N-acyl,benzoyl derivatives of ceramides containing nonhydroxy fatty acids produced by treatment with benzoyl chloride overlap methyl benzoate on high-performance liquid chromatography, benzoic anhydride was preferable for benzoylation of ceramides with nonhydroxy and 2-hydroxy fatty acids. On the other hand, the reaction with benzoyl chloride at 70 degrees C for 4 hr was used for quantitation of benzoylated ceramides containing 2-hydroxy fatty acids and phytosphingosine. 3-(p-Phenylbenzoyl)estrone was used as an internal standard for both reactions and values for ceramides containing 2-hydroxy fatty acids obtained by the two reactions were in good agreement. This procedure was applied to measurement of the ceramide levels in the brain, liver, and kidney of rats during development. The levels of ceramides containing nonhydroxy and 2-hydroxy fatty acids in the brain, liver, and kidney increased to the adult levels and then remained unchanged. Ceramide with phytosphingosine was detected in the liver and kidney, where its concentration gradually increased with age, but it was not found in the brain. The composition of nonhydroxy fatty acids were also analyzed.  相似文献   

2.
By using shotgun lipidomics based on the separation of lipid classes in the electrospray ion source (intrasource separation) and two-dimensional (2D) MS techniques (Han, X., and R. W. Gross. 2004. Shotgun lipidomics: electrospray ionization mass spectrometric analysis and quantitation of the cellular lipidomes directly from crude extracts of biological samples. Mass Spectrom. Rev. First published on June 18, 2004; doi: 10.1002/mas.20023, In press), individual molecular species of most major and many minor lipid classes can be quantitated directly from biological lipid extracts. Herein, we extended shotgun lipidomics to the characterization and quantitation of cerebroside molecular species in biological samples. By exploiting the differential fragmentation patterns of chlorine adducts using electrospray ionization (ESI) tandem mass spectrometry, hydroxy and nonhydroxy cerebroside species are readily identified. The hexose (either galactose or glucose) moiety of a cerebroside species can be distinguished by examination of the peak intensity ratio of its product ions at m/z 179 and 89 (i.e., 0.74 +/- 0.10 and 4.8 +/- 0.7 for galactose- and glucose-containing cerebroside species, respectively). Quantitation of cerebroside molecular species (as little as 10 fmol) from chloroform extracts of brain tissue samples was directly conducted by 2D ESI/MS after correction for differences in (13)C-isotopomer intensities. This method was demonstrated to have a greater than 1,000-fold linear dynamic range in the low concentration region; therefore, it should have a wide range of applications in studies of the cellular sphingolipid lipidome.  相似文献   

3.
Herein we describe a rapid, simple, and reliable method for the quantitative analysis and molecular species fingerprinting of triacylglycerides (TAG) directly from chloroform extracts of biological samples. Previous attempts at direct TAG quantitation by positive-ion electrospray ionization mass spectrometry (ESI/MS) were confounded by the presence of overlapping peaks from choline glycerophospholipids requiring chromatographic separation of lipid extracts prior to ESI/MS analyses. By exploiting the rapid loss of phosphocholine from choline glycerophospholipids, in conjunction with neutral-loss scanning for individual fatty acids, overlapping peaks in the ESI mass spectrum were deconvoluted generating a detailed molecular species fingerprint of individual TAG molecular species directly from chloroform extracts of biological samples. This method readily detects as little as 0.1 pmol of each TAG molecular species from chloroform extracts and is linear over a 1000-fold dynamic range. The sensitivity of individual TAG molecular species to ESI/MS/MS analyses correlated with the unsaturation index and inversely correlated with total aliphatic chain length of TAG. An algorithm was developed which identifies sensitivity factors, thereby allowing the rapid quantitation and molecular species fingerprinting of TAG molecular species directly from chloroform extracts of biological samples.  相似文献   

4.
Highly microheterogeneous polyglycosylceramides (PGCs) of human erythrocytes with an average composition of about 25 monosaccharides linked to ceramide were analyzed by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF MS). The human gastric pathogen Helicobacter pylori was earlier shown to bind this glycosphingolipid mixture by thin-layer chromatogram binding assay. The receptor activity was present along the whole nonresolved chromatographic interval. Mass spectra of intact PGCs were compared with corresponding spectra of oligosaccharides enzymatically released from the ceramides. Two subfractions of PGCs containing less than one and more than one sialic acid residue per molecule were used. MALDI-MS spectra were recorded in both linear and reflectron mode with the accuracies of 相似文献   

5.
Free ceramides and glycosphingolipids (GSLs) are important components of the membrane microdomain and play significant roles in cell survival. Recent studies have revealed that both fatty acids and long-chain bases (LCBs) are more diverse than expected, in terms of i) alkyl chain length, ii) hydroxylation and iii) the presence or absence of double bonds. Electrospray ionization mass spectrometry and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) have been well utilized to characterize sphingolipids with high throughput, but reports to date have not fully characterized various types of ceramide species such as hydroxyl fatty acids and/or trihydroxy-LCBs of both free ceramides and the constituent ceramides in neutral GSLs. We performed a systematic analysis of both ceramide species, including LCBs with nona-octadeca lengths using MALDI-TOF MS with high-energy collision-induced dissociation (CID) at 20 keV. Using both protonated and sodiated ions, this technique enabled us to propose general rules to discriminate between isomeric and isobaric ceramide species, unrelated to the presence or absence of sugar chains. In addition, this high-energy CID generated 3,5A ions, indicating Hex1-4Hex linkage in the sugar chains. Using this method, we demonstrated distinct differences among ceramide species, including free ceramides, sphingomyelins, and neutral GSLs of glucosylceramides, galactosylceramides, lactosylceramides, globotriaosylceramides and Forssman glycolipids in the equine kidneys.  相似文献   

6.
Sphingolipids are an important class of lipids due to their role as biologically active molecules and as intracellular second messengers. Sphingolipid metabolites are involved in a wide variety of important biological processes including signal transduction and growth regulation. Simple, quantitative analytical methods are needed to assay these complex lipids, in order to study their biological functions. The current methods used to quantify ceramides and long-chain sphingoid bases are primarily based on derivatization with uv or fluorescent tags and with radioactive-based enzymatic assays. A method was developed to separate ceramides and sphingoid bases by normal-phase high-performance liquid chromatography and detect them directly with evaporative light-scattering detection. Ceramides and the sphingoid bases phytosphingosine, dihydrosphingosine, sphingosine, and sphingosine 1-phosphate were resolved with a rapid and quantitative assay in the nanomole range. Yeast extracts grown to various time points were assayed for ceramide and sphingoid bases using a simple, isocratic HPLC system. Both ceramide and phytosphingosine, the primary sphingoid base present in yeast cell extracts, were detected in yeast cell extracts. Phytosphingosine was resolved as a sharp peak with the addition of triethylamine and formic acid modifiers to a chloroform/ethanol mobile phase. This method demonstrates the first direct assay of both ceramides and sphingoid bases.  相似文献   

7.
A convenient procedure for the synthesis of ceramides   总被引:1,自引:0,他引:1  
A procedure for the preparation of ceramides by direct coupling of long-chain bases and fatty acids in the presence of a mixed carbodiimide is described. This method has been used to prepare ceramides containing sphing-4-enine or sphinganine and various saturated and unsaturated fatty acids as well as saturated 2-hydroxy acids. Ceramides containing 4-hydroxy sphinganine and saturated nonhydroxy acids have also been prepared. The yields were 60-75%. The characterization of these compounds by gas-liquid chromatography-mass spectrometry as trimethylsilyl derivatives has been previously reported. Some of the ceramides are further characterized in this report by infrared spectroscopy and one compound, in addition, by elementary analysis. Use of racemic constituents for 2-hydroxy acid ceramide syntheses leads to the formation of diastereoisomers which separate by thin-layer chromatography. These were characterized by gas-liquid chromatography-mass spectrometry as the trimethylsilyl derivatives and by infrared spectroscopy. Their configurations were established by syntheses with optically active constituents.  相似文献   

8.
In yeast, the long-chain sphingoid base phosphate phosphohydrolase Lcb3p is required for efficient ceramide synthesis from exogenous sphingoid bases. Similarly, in this study, we found that incorporation of exogenous sphingosine into ceramide in mammalian cells was regulated by the homologue of Lcb3p, sphingosine-1-phosphate phosphohydrolase 1 (SPP-1), an endoplasmic reticulum resident protein. Sphingosine incorporation into endogenous long-chain ceramides was increased by SPP-1 overexpression, whereas recycling of C(6)-ceramide into long-chain ceramides was not altered. The increase in ceramide was inhibited by fumonisin B(1), an inhibitor of ceramide synthase, but not by ISP-1, an inhibitor of serine palmitoyltransferase, the rate-limiting step in the de novo biosynthesis of ceramide. Mass spectrometry analysis revealed that SPP-1 expression increased the incorporation of sphingosine into all ceramide acyl chain species, particularly enhancing C16:0, C18:0, and C20:0 long-chain ceramides. The increased recycling of sphingosine into ceramide was accompanied by increased hexosylceramides and, to a lesser extent, sphingomyelins. Sphingosine kinase 2, but not sphingosine kinase 1, acted in concert with SPP-1 to regulate recycling of sphingosine into ceramide. Collectively, our results suggest that an evolutionarily conserved cycle of phosphorylation-dephosphorylation regulates recycling and salvage of sphingosine to ceramide and more complex sphingolipids.  相似文献   

9.
Unique species of ceramide (Cer) with very-long-chain polyunsaturated fatty acid (VLCPUFA), mainly 28–32 carbon atoms, 4–5 double bonds, in nonhydroxy and 2-hydroxy forms (n-V Cer and h-V Cer, respectively), are generated in rat spermatozoa from the corresponding sphingomyelins during the acrosomal reaction. The aim of this study was to determine the properties of these sperm-distinctive ceramides in Langmuir monolayers. Individual Cer species were isolated by HPLC and subjected to analysis of surface pressure, surface potential, and Brewster angle microscopy (BAM) as a function of molecular packing. In comparison with known species of Cer, n-V Cer and h-V Cer species showed much larger mean molecular areas and increased molecular dipole moments in liquid expanded phases, which suggest bending and partial hydration of the double bonded portion of the VLCPUFA. The presence of the 2-hydoxyl group induced a closer molecular packing in h-V Cer than in their chain-matched n-V Cer. In addition, all these Cer species showed liquid-expanded to liquid-condensed transitions at room temperature. Existence of domain segregation was confirmed by BAM. Additionally, thermodynamic analysis suggests a phase transition close to the physiological temperature for VLCPUFA-Cers if organized as bulk dispersions.  相似文献   

10.
Free ceramides were isolated from human platelets. Their structures were unequivocally determined by gas-liquid chromatography-mass spectrometry of the trimethylsilyl ether derivatives. The major components were N-(palmitoyl) sphingosine, N-(stearoyl) sphingosine, N-(eicosanoyl) sphingosine, N-(docosanoyl) sphingosine, N-(tetracosanoyl) sphingosine, and N-(tetracosenoyl) sphingosine. Sphinganine-and sphingadienine-containing ceramides as well as ceramides containing other unsaturated acids were also present. The amount of ceramides was determined by quantitative gas-liquid chromatography, using radioactive ceramide as internal standard and synthetic crystalline ceramides for comparison of peak areas. The concentration of ceramides was found to be 1.31 micro g/10(9) platelets or 0.47 micro g/mg of platelet protein.  相似文献   

11.
Ceramides are essential lipids for skin permeability barrier function, and a wide variety of ceramide species exist in the stratum corneum (SC). Although ceramides with long-chain bases (LCBs) of various lengths have been identified in the human SC, a quantitative analysis that distinguishes ceramide species with different LCB chain lengths has not been yet published. Therefore, the whole picture of human SC ceramides remains unclear. Here, we conducted LC/MS/MS analyses to detect individual ceramide species differing in both the LCB and FA chain lengths and quantified 1,327 unbound ceramides and 254 protein-bound ceramides: the largest number of ceramide species reported to date. Ceramides containing an LCB whose chain length was C16–26 were present in the human SC. Of these, C18 (28.6%) was the most abundant, followed by C20 (24.8%) and C22 (12.8%). Each ceramide class had a characteristic distribution of LCB chain lengths and was divided into five groups according to this distribution. There was almost no difference in FA composition between the ceramide species containing LCBs of different chain lengths. Furthermore, we demonstrated that one of the serine palmitoyltransferase (SPT) complexes, SPTLC1/SPTLC3/SPTSSB, was able to produce C16–24 LCBs. The expression levels of all subunits constituting the SPT complexes increased during keratinocyte differentiation, resulting in the observed chain-length diversity of LCBs in the human SC. This study provides a molecular basis for elucidating human SC ceramide diversity and the pathogenesis of skin disorders.  相似文献   

12.
Coordinated lipid metabolism contributes to maintaining skin homeostasis by regulating skin barrier formation, immune reactions, thermogenesis, and perception. Several reports have documented the changes in lipid composition in dermatitis, including in atopic dermatitis (AD); however, the specific mechanism by which these lipid profiles are altered during AD pathogenesis remains unknown. Here, we performed untargeted and targeted lipidomic analyses of an AD-like dermatitis model resulting from constitutive activation of Janus kinase 1 (Spade mice) to capture the comprehensive lipidome profile during dermatitis onset and progression. We successfully annotated over 700 skin lipids, including glycerophospholipids, ceramides, neutral lipids, and fatty acids, many of which were found to be present at significantly changed levels after dermatitis onset, as determined by the pruritus and erythema. Among them, we found the levels of ceramides composed of nonhydroxy fatty acid and dihydrosphingosine containing very long-chain (C22 or more) fatty acids were significantly downregulated before AD onset. Furthermore, in vitro enzyme assays using the skin of Spade mice demonstrated the enhancement of ceramide desaturation. Finally, we revealed topical application of ceramides composed of nonhydroxy fatty acid and dihydrosphingosine before AD onset effectively ameliorated the progression of AD symptoms in Spade mice. Our results suggest that the disruption in epidermal ceramide composition is caused by boosting ceramide desaturation in the initiation phase of AD, which regulates AD pathogenesis.  相似文献   

13.
Abstract: Experimental rat neural tumors in offspring were induced transplacentally by a single injection of a chemical carcinogen, ethylnitrosourea, 20 mg/kg body weight, in the tail vein of the mother. The neutral glycosphingolipid, sulfatide, and ceramide composition of the tumors and the normal tissues from which the tumors originated is described. The content of nonhydroxy fatty acid (NFA) and hydroxy fatty acid (HFA) containing ceramide in all the neural tumors so far examined was significantly increased compared with the corresponding normal neural tissue. Some 8 to 18 mol% of total neutral glycolipids was as ceramide in neurinomas, oligodendrogliomas, and menin-giomas. Lactosylceramide in normal neural tissues was about 1 mol% of the total neutral glycosphingolipids. In various neural tumors lactosylceramide increased up to 8 mol%. NFA- and HFA-containing cerebrosides constitute 94–100% of the neutral glycosphingolipids in normal neural tissues. In various neural tumors the mol percent of cerebrosides was significantly reduced. A high performance liquid chromatographic method was modified to analyze simultaneously ceramides, cerebrosides, and higher neutral glycosphingolipids.  相似文献   

14.
A decreased clearance of apoptotic cells (efferocytosis) by alveolar macrophages (AM) may contribute to inflammation in emphysema. The up-regulation of ceramides in response to cigarette smoking (CS) has been linked to AM accumulation and increased detection of apoptotic alveolar epithelial and endothelial cells in lung parenchyma. We hypothesized that ceramides inhibit the AM phagocytosis of apoptotic cells. Release of endogenous ceramides via sphingomyelinase or exogenous ceramide treatments dose-dependently impaired apoptotic Jurkat cell phagocytosis by primary rat or human AM, irrespective of the molecular species of ceramide. Similarly, in vivo augmentation of lung ceramides via intratracheal instillation in rats significantly decreased the engulfment of instilled target apoptotic thymocytes by resident AM. The mechanism of ceramide-induced efferocytosis impairment was dependent on generation of sphingosine via ceramidase. Sphingosine treatment recapitulated the effects of ceramide, dose-dependently inhibiting apoptotic cell clearance. The effect of ceramide on efferocytosis was associated with decreased membrane ruffle formation and attenuated Rac1 plasma membrane recruitment. Constitutively active Rac1 overexpression rescued AM efferocytosis against the effects of ceramide. CS exposure significantly increased AM ceramides and recapitulated the effect of ceramides on Rac1 membrane recruitment in a sphingosine-dependent manner. Importantly, CS profoundly inhibited AM efferocytosis via ceramide-dependent sphingosine production. These results suggest that excessive lung ceramides may amplify lung injury in emphysema by causing both apoptosis of structural cells and inhibition of their clearance by AM.  相似文献   

15.
The treatment of HL-60 myelocytic leukemia cells with 1 alpha,25-dihydroxyvitamin D3 (1,25-(OH)2D3) resulted in the activation of a neutral sphingomyelinase and in sphingomyelin turnover (Okazaki, T., Bell, R., and Hannun, Y. (1989) J. Biol. Chem. 264, 19076-19080). In this paper, the effects of 1,25-(OH)2D3 on the product of sphingomyelin hydrolysis, ceramide, and the possible function of ceramide as a lipid mediator of the effects of 1,25-(OH)2D3 on HL-60 cell differentiation were investigated. Treatment of HL-60 cells with 1,25-(OH)2D3 resulted in a time- and dose-dependent increase in ceramide mass levels. Ceramide levels peaked at 2 h following treatment of HL-60 cells with 100 nM 1,25-(OH)2D3 with an increase of 41% over base line. The mass of generated ceramide (13 +/- 2 pmol/nmol of phospholipid) agreed with the mass of hydrolyzed sphingomyelin (17 +/- 4 pmol/nmol of phospholipid). Cell-permeable ceramides with shorter N-acyl chains induced HL-60 cell differentiation at subthreshold concentrations of 1,25-(OH)2D3. Higher concentrations of cell-permeable ceramides potently induced HL-60 cell differentiation independent of 1,25-(OH)2D3. A 2-h exposure of HL-60 cells to N-acetyl-sphingosine was sufficient to cause differentiation. Morphologically, N-acetylsphingosine caused a similar monocytic differentiation of HL-60 cells as did 1,25-(OH)2D3. Exogenous ceramide was further metabolized to sphingomyelin and other sphingolipids, but no conversion to sphingosine was detected. Moreover, sphingosine and its analogs failed to affect monocytic differentiation of HL-60 cells in response to subthreshold 1,25-(OH)2D3, indicating that the effect of ceramide was independent of sphingosine generation. These studies demonstrate that ceramide is a lipid mediator that may transduce the action of 1,25-(OH)2D3 on HL-60 cell differentiation.  相似文献   

16.
Xylo-oligosaccharides with degrees of polymerisation 5-13, formed by partial acid hydrolysis from an extract representative of olive pulp glucuronoxylans (GX), were analysed by electrospray ionisation mass spectrometry (ESI-MS), both in positive and negative modes. The positive spectrum showed the presence of xylo-oligosaccharides in the mass range between m/z 500 and 1500 corresponding to singly [M+Na](+) charged ions of neutral (Xyl(7-9)) and acidic xylo-oligosaccharides (Xyl(5-9)MeGlcA), and doubly [M+2Na](2+) charged ions of Xyl(9-13) and Xyl(7-11)MeGlcA. Ammonium adducts [M+NH(4)](+) were also observed for Xyl(5-9)MeGlcA. The negative spectra showed the contribution of ions in the mass range between m/z 600 and 1400, ascribed to the deprotonated molecules [M-H](-) of Xyl(3-9)MeGlcA. Tandem mass spectrometry (MS/MS) of the major ions observed in the MS spectra was performed. The MS/MS spectra of the [M+Na](+) adducts showed the loss of MeGlcA residues as the major fragmentation pathway and glycosidic fragment ions of Xyl(n) and Xyl(n)MeGlcA structures. The MS/MS spectra of the [M+NH(4)](+) adducts suggests the occurrence of isomers of Xyl(5-9)MeGlcA oligosaccharides with the MeGlcA residue at the reducing end and at the non-reducing end of the molecules, although other structural isomers can also occur. Both glycosidic bond and cross-ring cleavages in the MS/MS spectra of the [M-H](-) ion suggest the occurrence of Xyl(3-9)MeGlcA with the substituting group at the reducing end position of the xylose backbone, as the main fragmentation ions. The results obtained by ESI-MS/MS, both in positive and negative modes, of Xyl(7-13)- and Xyl(5-11)MeGlcA, allow to identify fragmentation patterns of the structural isomers with MeGlcA linked to the terminal xylosyl residues of the oligosaccharides. The occurrence of these higher molecular weight oligosaccharides with a low substitution pattern allows to infer a scatter and random distribution of MeGlcA along the xylan backbone of olive pulp.  相似文献   

17.
We present an optimized and validated liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) method for the simultaneous measurement of concentrations of different ceramide species in biological samples. The method of analysis of tissue samples is based on Bligh and Dyer extraction, reverse-phase high-performance liquid chromatography separation, and multiple reaction monitoring of ceramides. Preparation of plasma samples also requires isolation of sphingolipids by silica gel column chromatography prior to LC-ESI-MS/MS analysis. The limits of quantification were in a range of 0.01-0.50 ng/ml for distinct ceramides. The method was reliable for inter- and intraassay precision, accuracy, and linearity. Recoveries of ceramide subspecies from human plasma, rat liver, and muscle tissue were 78 to 91%, 70 to 99%, and 71 to 95%, respectively. The separation and quantification of several endogenous long-chain and very-long-chain ceramides using two nonphysiological odd chain ceramide (C17 and C25) internal standards was achieved within a single 21-min chromatographic run. The technique was applied to quantify distinct ceramide species in different rat tissues (muscle, liver, and heart) and in human plasma. Using this analytical technique, we demonstrated that a clinical exercise training intervention reduces the levels of ceramides in plasma of obese adults. This technique could be extended for quantification of other ceramides and sphingolipids with no significant modification.  相似文献   

18.
Ceramidases are key regulators of cell fate. The biochemistry of different ceramidases and of their substrate ceramide appears to be complex, mainly due to specific biophysical characteristics at the water-membrane interface. In the present study, we describe the design and synthesis of a set of fluorescently labeled ceramides as substrates for acid and neutral ceramidases. For the first time we have replaced the commonly used polar NBD-dye with the lipophilic Nile Red (NR) dye. Analysis of kinetic data reveal that although both the dyes do not have any noticeable preference for the substitution at acyl or sphingosine (Sph) part in ceramide towards hydrolysis by acid ceramidase, the ceramides with acyl-substituted NBD and Sph-substituted NR dyes have been found to be a better substrate for neutral ceramidase.  相似文献   

19.
The free ceramide content of rat liver mitochondria was found to be 1.7 nmol/mg protein and outer membranes contained a three-fold higher concentration than inner membranes. The mitochondrial content in neutral glycolipids was 0.6 nmol/mg protein. The long-chain bases found in free ceramides were d18:1 sphingosine, d18:0 3-ketosphinganine and t21:1 phytosphingosine in increasing order. In contrast, 3-ketosphinganine was the only base of glucosylceramide and lactosylceramide of inner membranes, whereas d18:1 sphingosine was the major long-chain base of glucosylceramide of outer membranes.  相似文献   

20.
The biological activities of ceramides show a large variation with small changes in molecular structure. To help understand how the structure regulates the activity of this important lipid second messenger, we investigated the interfacial features of a series of synthetic ceramide analogs in monomolecular films at the argon-buffer interface. To minimize differences arising from the N-acyl moiety, each analog had either a N-hexadecanoyl or a N-cis-4-hexadecenoyl moiety amide linked to the nitrogen of the sphingosine backbone. We found that the trans 4,5-unsaturation in the sphingosine backbone promoted closer packing and lower compressibilities of ceramide analogs in interfaces relative to comparable saturated species. Moreover, structures with this feature exhibited dipole potentials as much as 150-250 mV higher than comparable compounds lacking 4,5-unsaturation. The results support the hypothesis by M.C. Yappert and co-workers that trans unsaturation in the vicinity of C4 of the sphingoid backbone augments intramolecular hydration/hydrogen bonding in the polar region. This intramolecular hydration may allow the close packing of the ceramide molecules and engender their high dipole potentials. These properties of ceramides and their analogs may be important determinants of biological function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号