共查询到20条相似文献,搜索用时 10 毫秒
1.
CFTR modulates programmed cell death by decreasing intracellular pH in Chinese hamster lung fibroblasts 总被引:4,自引:0,他引:4
Barrière H Poujeol C Tauc M Blasi JM Counillon L Poujeol P 《American journal of physiology. Cell physiology》2001,281(3):C810-C824
To study the potentialinfluence of cystic fibrosis conductance regulator (CFTR) onintracellular pH regulation during apoptosis induction, we usedPS120 Chinese hamster lung fibroblasts devoid of theNa+/H+ exchanger (NHE1 isoform) transfectedwith constructs, allowing the expression of CFTR and/or NHE1. Kineticsof lovastatin-induced apoptosis were measured by orceinstaining, double staining with Hoechst-33258, propidium iodide, DNAfragmentation, and annexin V labeling. In PS120 control cells, thepercentage of apoptotic cells after 40 h of lovastatintreatment was 23 ± 3%, whereas in PS120 CFTR-transfected cells,this percentage was 40 ± 4%. In PS120 NHE1 cells, thetransfection with CFTR did not modify the percentage of apoptoticcells after 40 h (control: 19 ± 3%, n = 8;CFTR: 17 ± 1%, n = 8), indicating that blockingintracellular acidification by overexpressing theNa+/H+ exchanger inhibited the enhancement ofapoptosis induced by CFTR. In all cell lines, the initial pHvalues were identical (pH = 7.46 ± 0.04, n = 9), and treatment with lovastatin led to intracellular acidification.However, the pH value after 40 h was lower in PS120 CFTR-transfected cells (pH = 6.85 ± 0.02, n = 10) than in PS120 cells (pH = 7.15 ± 0.03, n = 10). To further investigate the origin of thisincreased intracellular acidification observed in CFTR-transfected cells, the activity of the DIDS-inhibitableCl/HCO exchanger was studied.8-Bromoadenosine 3',5'-cyclic monophosphate incubation resulted inCl/HCO exchanger activation in PS120 CFTR-transfected cells but had no effect on PS120 cells. Together, ourresults suggest that CFTR can enhance apoptosis in Chinese hamster lung fibroblasts, probably due to the modulation of the Cl/HCO exchanger, resulting in a more efficient intracellular acidification. 相似文献
2.
Clara cell secretory protein modulates lung inflammatory and immune responses to respiratory syncytial virus infection 总被引:14,自引:0,他引:14
Wang SZ Rosenberger CL Bao YX Stark JM Harrod KS 《Journal of immunology (Baltimore, Md. : 1950)》2003,171(2):1051-1060
Clara cell secretory protein (CCSP) has been shown to have anti-inflammatory and immunomodulatory functions in the lung. Respiratory syncytial virus (RSV) is the most common cause of respiratory infection in infants and young children. RSV usually infects small airways and likely interacts with the Clara cells of bronchioles. To determine a possible role for CCSP during acute RSV infection, CCSP-deficient (CCSP(-/-)) and wild-type (WT) mice were intratracheally infected with RSV and the lung inflammatory and immune responses to RSV infection were assessed. RSV-F gene expression was increased in the lungs of CCSP(-/-) mice as compared with WT mice following RSV infection, consistent with increased viral persistence. Lung inflammation was significantly increased in CCSP(-/-) mice as compared with WT mice after infection. Moreover, although the levels of Th1 cytokines were similar, the levels of Th2 cytokines and neutrophil chemokines were increased in the lungs of CCSP(-/-) mice following infection. Physiologic endpoints of exacerbated lung disease, specifically airway reactivity and mucus production, were increased in CCSP(-/-) mice after RSV infection. Importantly, restoration of CCSP in the airways of CCSP(-/-) mice abrogated the increased viral persistence, lung inflammation, and airway reactivity. These findings suggest a role for CCSP and Clara cells in regulating lung inflammatory and immune responses to RSV infection. 相似文献
3.
Coordinating cell proliferation and differentiation 总被引:15,自引:0,他引:15
Cell proliferation and differentiation are highly coordinated processes during development. Recent studies have revealed that this coordination may result from dual functions residing in the central regulators of proliferation, allowing them to also regulate differentiation. Studies have also shown that some terminally differentiated cells can be made to divide beyond their normal capacity. 相似文献
4.
5.
Xiao Zhong Hong-qi Chen Xiu-ling Yang Qing Wang Wenliang Chen Chunfu Li 《Biochemical and biophysical research communications》2019,508(4):1279-1285
The aim of this study was to investigate the function of Cystic fibrosis transmembrane conductance regulator (CFTR) in human glioblastoma (GBM) cells. Data dining results of the Human Protein Atlas showed that low CFTR expression was associated with poor prognosis for GBM patients. We found that CFTR protein expression was lower in U87 and U251 GBM cells than that in normal humane astrocyte cells. CFTR activation significantly reduced GBM cell proliferation. In addition, CFTR activation significantly abrogated migration and invasion of GBM cells. Besides, CFTR activator Forskolin treatment markedly reduced MMP-2 protein expression. These effects of CFTR activation were significantly inhibited by CFTR inhibitor CFTRinh-172 pretreatment. Our findings suggested that JAK2/STAT3 signaling was involved in the anti-glioblastoma effects of CFTR activation. Moreover, CFTR overexpression in combination with Forskolin induced a synergistic anti-proliferative response in U87?cells. Overall, our findings demonstrated that CFTR activation suppressed GBM cell proliferation, migration and invasion likely through the inhibition of JAK2/STAT3 signaling. 相似文献
6.
AimsEthyl pyruvate (EtP) may prolong survival and ameliorate organ dysfunction in a variety of models of critical illness, e.g. severe sepsis and acute respiratory syndrome, by modulation of the expression of inflammatory mediators. Here, we studied the effects of EtP on the reactions in and between human neutrophils and lung epithelial (A549) cells in vitro.Main methodsNeutrophil adhesion to, surface expression of ICAM-1 and VCAM-1 on, and release of IL-8 and G-CSF from A549 cells were measured by ELISA after stimulation with IL-1β or TNFα.Key findingsAfter treatment of A549 cells with EtP, a substantial reduction in the cytokine-induced adhesion of neutrophils to monolayers was noted, whereas sodium pyruvate (NaP) conferred no reduction. Likewise, treatment with 2.5–10 mM EtP (but not NaP) reduced ICAM-1 and VCAM-1 expression in a dose-dependent fashion. The generation of cytokines of significance for adhesive and proliferative events in host defense, IL-8 and G-CSF, was also potently impaired by EtP.SignificanceExposure of lung epithelial cells to 2.5–10 mM EtP inhibited the generation of inflammatory-regulating cytokines IL-8 and G-CSF, reduced ICAM-1 and VCAM-1 expression and impeded the adhesiveness of neutrophils to lung epithelial cells. These are reactions of significance for early inflammatory responses in the lung, suggesting a role for EtP as a treatment for acute pulmonary conditions. 相似文献
7.
8.
Ngan ES Lee KY Sit FY Poon HC Chan JK Sham MH Lui VC Tam PK 《Biochimica et biophysica acta》2007,1773(4):536-545
Prokineticins (Prok-1 and Prok-2) belong to a newly identified AVIT protein family. They are involved in variety of activities in various tissues, including smooth muscle contraction of the gastrointestinal tract and promoting proliferation of endothelial cells derived from adrenal gland. Importantly, they also act as the survival factors to modulate growth and survival of neurons and hematopoietic stem cells. In this study we demonstrated that Prok-1 (but not Prok-2) protein is expressed in the mucosa and mesenchyme of the mouse embryonic gut during enteric nervous system development. Its receptor, PK-R1 is expressed in the enteric neural crest cells (NCCs). To elucidate the physiological role(s) of Prok-1 in NCCs, we isolated the NCCs from the mouse embryonic gut (E11.5) and cultured them in the form of neurospheres. In an in vitro NCC culture, Prok-1 was able to activate both Akt and MAPK pathways and induce the proliferation and differentiation (but not migration) of NCCs via PK-R1. Knock-down of PK-R1 using siRNA resulted in a complete abolishment of Prok-1 induced proliferation. Taken together, it is the first report demonstrating that Prok-1 acts as a gut mucosa/mesenchyme-derived factor and maintains proliferation and differentiation of enteric NCCs. 相似文献
9.
Leukemia inhibitory factor (LIF) concentration modulates embryonic stem cell self-renewal and differentiation independently of proliferation 总被引:14,自引:0,他引:14
Zandstra PW Le HV Daley GQ Griffith LG Lauffenburger DA 《Biotechnology and bioengineering》2000,69(6):607-617
A major limitation of the widespread use of stem cells in a variety of biotechnological applications is the relatively low level of knowledge about how to maintain these cells in vitro without losing the long-term multilineage growth properties required for their clinical utility. An experimental and theoretical framework for predicting and controlling the outcome of stem cell stimulation by exogenous cytokines would thus be useful. An emerging theme from recent hematopoietic stem cell (HSC)-expansion studies is that a net gain in HSC numbers requires the maintenance of critical signaling ligand(s) above a threshold level. These ligand-receptor complex thresholds can be maintained, for example, by high concentrations of soluble cytokines or by cytokine presentation on cell surfaces. According to such a model, when the relevant ligand-receptor interaction falls below this threshold level, the probability of a differentiation response is increased; otherwise, self-renewal is favored. Taking advantage of the ability of the cytokine leukemia inhibitory factor (LIF) to maintain embryonic stem (ES) cell pluripotentiality at high concentrations, we are testing this model by investigating critical parameters in the control of ES cell responses. We have developed quantitative assays of ES cell differentiation by measuring cell-surface alkaline phosphatase activity, cell-surface stage specific embryonic antigen (SSEA)-1 expression, and the ability of ES cells to form embryoid bodies. Examination of ES cell responses over a range of LIF concentrations shows that LIF supplementation has little effect on ES cell-growth rate but significantly alters the probability of a cell undergoing a self-renewal vs. a differentiation division. In vitro culture parameters such as inoculum cell density, medium exchange, as well as cell-intrinsic processes such as autocrine secretion are shown to affect this decision. In addition to yielding new information on stem cell regulation by exogenous factors, these studies provide important clues about culture of these cells and should stimulate further investigations into the mechanistic basis of stem cell differentiation control. 相似文献
10.
During chick embryogenesis, massive alterations occur in the migrating cell's substratum, or extracellular matrix. The possibility that some of the components of this milieu play a regulatory role in cell differentiation was explored in a cell-culture system derived from embryonic chick skeletal muscle tissue. In particular, the effects of collagen and the glycosaminoglycans were studied. Collagen is required for muscle cell attachment and spreading onto plastic and glass tissue-culture dishes. A major constituent of the early embryonic extracellular space, hyaluronate (HA), while having no significant effect on collagen-stimulated cell attachment and spreading, was found to inhibit myogenesis. The muscle-specific M subunit of creatine kinase was preferentially inhibited. Control experiments indicated that the inhibition was specifically caused by HA and not by other glycosaminoglycans. A general metabolic inhibition of the cultures was not observed. Muscle cells could bind to HA-coated beads at all stages of differentiation but were inhibited only when HA was added within the first 24 h of culture. Endogenous GAG in the culture is normally degraded during the first 24 h after plating as well; this may parallel the massive degradation of HA that occurs in the early embryo in vivo. These findings suggest a regulatory role for HA in modulating skeletal muscle differentiation, with degradation of an inhibitory component of the cell substratum a requirement for myogenesis. 相似文献
11.
12.
MicroRNAs have been reported to be closely related to the development of human lung cancers. However, the functions of microRNAs in non-small cell lung cancer (NSCLC) remain largely undefined. Here, we investigated the role of microRNA-193b (miR-193b) in NSCLC. Our data showed that miR-193b was markedly down-regulated in NSCLC cancer tissues compared with adjacent normal tissues. The NSCLC cell line (A549) transfected with the miR-193b exhibited significantly decreased proliferation, migration, and invasion capacities when compared with the control cells. In contrast, inhibition of miR-193b increased the proliferation, migration, and invasion of A549 cells. Moreover, miR-193b repressed the expressions of cyclin D1 and urokinase-type plasminogen activator in A549 cells. These data suggest that miR-193b is a tumor suppressor in NSCLC. 相似文献
13.
Tumor development, MOPC-315 stem cells, and M315-secretory cells were quantitated in carrier-primed BALB/c mice that had been challenged subcutaneously or i.v. with mixtures of TNP-carrier and TNP-binding MOPC-315 cells. We observed that tumor incidence, myeloma stem cells, and secretory myeloma cells were: i) suppressed in mice in whom carrier-specific suppressor T cells had previously been induced and ii) initially ehnahced in mice with carrier-specific helper T cells. The early enhancement in mice with carrier-specific helper T cells was followed by progressively declining myeloma stem cell frequencies and regression of established tumors. These studies demonstrate that T cell-derived immunoregulators of host origin can be focused onto localized and disseminated malignant B cells and specifically regulate the expansion and differentiation of the neoplastic clone. 相似文献
14.
15.
Antony W. Burgess Donald Metcalf Suzanne M. Watt 《Journal of cellular biochemistry》1978,8(4):489-500
Differentiation and proliferation of almost all hemopoietic cell lines can now be studied in vitro. Cloning techniques and suspension cultures allow the study of proliferation of the multipotential hemopoietic progenitor cell and the committed progenitors for granulocytes, macrophages, eosinophils, megakryocytes, and erythrocytes. The proliferation of each of the committed progenitor cells is controlled by specific glycoproteins and two of these have recently been purified: granulocyte-macrophage colony-stimulating factor (GM-CSF) and erythropoietin. The rate of proliferation of the GM-progenitor cells and their pattern of differentiation depends on the concentration of the hormone. At low concentrations of GM-CSF (10?11 M) fewer progenitor cells are stimulated and macrophage colonies rather than granulocyte colonies develop. The change in the direction of granulocyte-macrophage differentiation appears to be related to (a) the concentration of GM- CSF and (b) the different sensitivity of a subpopulation of monocyte colony-forming cells which are responsive to GM-CSF even at low concentrations of the regulator. Analysis of the rate of RNA synthesis by bone marrow cells has shown that GM-CSF stimulates the mature nondividing end cells of differentiation (ie, polymorphs) as well as the progenitor cells. Although GM-CSF and erythropoietin have been radiolabeled, binding studies have been hampered by the loss of biologic activity during the labeling procedure and the heterogeneity of the target cells to which the regulators bind. Surface proteins and receptors for erythrocytes have been well characterized but the relationships between these proteins and the cell surface proteins of nucleated blood cells is not well understood. It appears that some proteins are lost from the cell surface during the development of granulocytes, which are retained on the surface of the B lymphocyte. Other proteins such as chemotactic receptors and complement receptors only appear on the mature cells. External radiolabeling of the granulocyte surface using iodogen yielded a simple profile of 125I-labeled proteins when analyzed by sodium dodecyl sulphate polyacrylamide gel electrophoresis. 相似文献
16.
Pagani F Stuani C Zuccato E Kornblihtt AR Baralle FE 《The Journal of biological chemistry》2003,278(3):1511-1517
Using hybrid minigene experiments, we have investigated the role of the promoter architecture on the regulation of two alternative spliced exons, cystic fibrosis transmembrane regulator (CFTR) exon 9 and fibronectin extra domain-A (EDB). A specific alternative splicing pattern corresponded to each analyzed promoter. Promoter-dependent sensitivity to cotransfected regulatory splicing factor SF2/ASF was observed only for the CFTR exon 9, whereas that of the EDB was refractory to promoter-mediated regulation. Deletion in the CFTR minigene of the downstream intronic splicing silencer element binding SF2/ASF abolished the specific promoter-mediated response to this splicing factor. A systematic analysis of the regulatory cis-acting elements showed that in the presence of suboptimal splice sites or by deletion of exonic enhancer elements the promoter-dependent sensitivity to splicing factor-mediated inhibition was lost. However, the basal regulatory effect of each promoter was preserved. The complex relationships between the promoter-dependent sensitivity to SF2 modulated by the exon 9 definition suggest a kinetic model of promoter-dependent alternative splicing regulation that possibly involves differential RNA polymerase II elongation. 相似文献
17.
Wen XZ Miyake S Akiyama Y Yuasa Y 《Biochemical and biophysical research communications》2004,315(1):100-106
Fibroblast growth factor (FGF) is established as an initiator of signaling events critical for neurogenesis and mesoderm formation during early Xenopus embryogenesis. However, less is known about the role FGF signaling plays in endoderm specification. Here, we show for the first time that endoderm-specific genes are induced when FGF signaling is blocked in animal cap explants. This block of FGF signaling is also responsible for a significant enhancement of endodermal gene expression in animal cap explants that are injected with a dominant-negative BMP-4 receptor (DNBR) RNA or treated with activin, however, neural and mesoderm gene expression is diminished. Consistent with these results, the injection of dominant-negative FGF receptor (DNFR) RNA expands endodermal cell fate boundaries while FGF treatment dramatically reduces endoderm in whole embryos. Taken together, these results indicate that inhibition of FGF signaling promotes endoderm formation, whereas the presence of active FGF signaling is necessary for neurogenesis/mesoderm formation. 相似文献
18.
Most somatic cells do not express sufficient amounts of telomerase to maintain a constant telomere length during cycles of chromosome replication. Consequently, there is a limit to the number of doublings somatic cells can undergo before telomere shortening triggers an irreversible state of cellular senescence. Ectopic expression of telomerase overcomes this limitation, and in conjunction with specific oncogenes can transform cells to a tumorigenic phenotype. However, recent studies have questioned whether the stabilization of chromosome ends entirely explains the ability of telomerase to promote tumorigenesis and have resulted in the hypothesis that telomerase has a second function that also supports cell division. Here we show that ectopic expression of telomerase in human mammary epithelial cells (HMECs) results in a diminished requirement for exogenous mitogens and that this correlates with telomerase-dependent induction of genes that promote cell growth. Furthermore, we show that inhibiting expression of one of these genes, the epidermal growth factor receptor (EGFR), reverses the enhanced proliferation caused by telomerase. We conclude that telomerase may affect proliferation of epithelial cells not only by stabilizing telomeres, but also by affecting the expression of growth-promoting genes. 相似文献
19.
Lamkanfi M Festjens N Declercq W Vanden Berghe T Vandenabeele P 《Cell death and differentiation》2007,14(1):44-55
Caspases, a family of evolutionarily, conserved cysteinyl proteases, mediate both apoptosis and inflammation through aspartate-specific cleavage of a wide number of cellular substrates. Most substrates of apoptotic caspases have been conotated with cellular dismantling, while inflammatory caspases mediate the proteolytic activation of inflammatory cytokines. Through detailed functional analysis of conditional caspase-deficient mice or derived cells, caspase biology has been extended to cellular responses such as cell differentiation, proliferation and NF-kappaB activation. Here, we discuss recent data indicating that non-apoptotic functions of caspases involve proteolysis exerted by their catalytic domains as well as non-proteolytic functions exerted by their prodomains. Homotypic oligomerization motifs in the latter mediate the recruitment of adaptors and effectors that modulate NF-kappaB activation. The non-apoptotic functions of caspases suggest that they may become activated independently of--or without--inducing an apoptotic cascade. Moreover, the existence of non-catalytic caspase-like molecules such as human caspase-12, c-FLIP and CARD-only proteins further supports the non-proteolytic functions of caspases in the regulation of cell survival, proliferation, differentiation and inflammation. 相似文献
20.
Notch signaling modulates proliferation and differentiation of intestinal crypt base columnar stem cells 总被引:1,自引:0,他引:1
VanDussen KL Carulli AJ Keeley TM Patel SR Puthoff BJ Magness ST Tran IT Maillard I Siebel C Kolterud Å Grosse AS Gumucio DL Ernst SA Tsai YH Dempsey PJ Samuelson LC 《Development (Cambridge, England)》2012,139(3):488-497