首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Biophysical journal》2022,121(7):1156-1165
Changes in intracellular pH (pHi) reflect metabolic states of cancer cells during tumor growth and dissemination. Therefore, monitoring of pHi is essential for understanding the metabolic mechanisms that support cancer progression. Genetically encoded fluorescent pH sensors have become irreplaceable tools for real-time tracking pH in particular subcellular compartments of living cells. However, ratiometric readout of most of the pH probes is poorly suitable to measure pH in thick samples ex vivo or tissues in vivo including solid tumors. Fluorescence lifetime imaging (FLIM) is a promising alternative to the conventional fluorescent microscopy. Here, we present a quantitative approach to map pHi in cancer cells and tumors in vivo, relying on fluorescence lifetime of a genetically encoded pH sensor SypHerRed. We demonstrate the utility of SypHerRed in visualizing pHi in cancer cell culture and in mouse tumor xenografts using fluorescence lifetime imaging microscopy and macroscopy. For the first time to our knowledge, the absolute pHi value is obtained for tumors in vivo by an optical technique. In addition, we demonstrate the possibility of simultaneous detection of pHi and endogenous fluorescence of metabolic cofactor NADH, which provides a complementary insight into metabolic aspects of cancer. Fluorescence lifetime-based readout and red-shifted spectra make pH sensor SypHerRed a promising instrument for multiparameter in vivo imaging applications.  相似文献   

2.
Fluorescent peptides form a new generation of analytical tools for visualizing intracellular processes and molecular interactions at the level of single cells. The peptide-based reporters combine the sensitivity of fluorescence detection with the information specificity of amino acid sequences. Recently we have succeeded in targeting a fluorescent heptapeptide (acetyl-CKGGAKL) carrying a peroxisomal targeting signal (PTS1) to peroxisomes in intact cells. The fluorophores conjugated to the PTS1-peptide were fluorescein, BODIPY and the pH-sensitive SNAFL-2. When added to cells, these fluorescent peptides were internalized at 37°C and typically visible in the cell after 15min or less. Cells lacking an active peroxisomal protein import system, as in the case of Zellweger syndrome, were stained diffusely throughout the cell. Uptake of the peptide probes was not inhibited at 4°C or when the cells were depleted of ATP. Under these conditions translocation to peroxisomes was blocked. This indicates that the uptake by cells is diffusion-driven and not an active process. Using the SNAFL-2-PTS1 peptide, we established by ratio-imaging that peroxisomes of human fibroblasts have an internal pH of 8.2. The concurrent pH gradient over the peroxisomal membrane was dissipated when an ionophore (CCCP) was added. In fibroblasts of chondrodysplasia punctata patients with defects in the peroxisomal import of proteins carrying a PTS2 sequence, import of the PTS1-peptide probe into peroxisomes appeared normal, but these peroxisomes have a pH of 6.8 equal to that of the cytosol. Coupling different fluorophores to the PTS1-peptide offers the possibility of determining in time and space as to how peroxisomes function in living cells.  相似文献   

3.
A new setup for time-resolved fluorescence micro-spectroscopy of cells, based on multi-dimensional time-correlated single photon counting, was designed and tested. Here we demonstrate that the spectrometer allows fast and reproducible measurements of endogenous flavin fluorescence measured directly in living cardiac cells after excitation with visible picosecond laser diodes. Two complementary approaches for the analysis of spectrally- and time-resolved autofluorescence data are presented, comprising the fluorescence decay fitting by exponential series and the time-resolved emission spectroscopy analysis. In isolated cardiac myocytes, we observed three distinct lifetime pools with characteristic lifetime values spanning from picosecond to nanosecond range and the time-dependent red shift of the autofluorescence emission spectra. We compared obtained results to in vitro recordings of free flavin adenine dinucleotide (FAD) and FAD in lipoamide dehydrogenase (LipDH). The developed setup combines the strength of both spectral and fluorescence lifetime analysis and provides a solid base for the study of complex systems with intrinsic fluorescence, such as identification of the individual flavinoprotein components in living cardiac cells. This approach therefore constitutes an important instrumental advancement towards redox fluorimetry of living cardiomyocytes, with the perspective of its applications in the investigation of oxidative metabolic state under pathophysiological conditions, such as ischemia and/or metabolic disorders.  相似文献   

4.
Cholylamidofluorescein (CamF) has been selected as a fluorescent bile acid scaffold to perform a full characterization of its photophysical properties. In aqueous medium, under nitrogen, the absorption spectrum of CamF was expectedly dependent on pH. Under air, the presence of CO(2) resulted in a partial protonation of the photoactive form, reducing the absorbance of CamF. The fluorescence spectrum of CamF in ethanol (lambda(exc) = 481 nm) showed a broad band with maximum at 518 nm; the fluorescence quantum yield was 0.67, and the fluorescence lifetime was 4.8 ns. Laser flash photolysis of CamF showed the triplet state transient with a broad maximum at ca. 540 nm and a lifetime of 19 mus. Flow cytometric kinetic assay of CamF uptake in real time was performed in suspensions of rat hepatocytes, showing that living hepatocytes accumulated slowly but constantly CamF along the 5-minute experimental period. Besides, intracellular fluorescence of live cells was found to be clearly dependent on the extracellular concentration of CamF. Thus, flow cytometry has allowed us to demonstrate that CamF is specifically taken up by living rat hepatocytes in a concentration-dependent fashion, suggesting the suitability of this molecule for further studies on bile-acid transport in liver cells.  相似文献   

5.
One of the most important factors in choosing a treatment strategy for cancer is characterization of biomarkers in cancer cells. Particularly, recent advances in Monoclonal Antibodies (MAB) as primary-specific drugs targeting tumor receptors show that their efficacy depends strongly on characterization of tumor biomarkers. Assessment of their status in individual patients would facilitate selection of an optimal treatment strategy, and the continuous monitoring of those biomarkers and their binding process to the therapy would provide a means for early evaluation of the efficacy of therapeutic intervention. In this study we have demonstrated for the first time in live animals that the fluorescence lifetime can be used to detect the binding of targeted optical probes to the extracellular receptors on tumor cells in vivo. The rationale was that fluorescence lifetime of a specific probe is sensitive to local environment and/or affinity to other molecules. We attached Near-InfraRed (NIR) fluorescent probes to Human Epidermal Growth Factor 2 (HER2/neu)-specific Affibody molecules and used our time-resolved optical system to compare the fluorescence lifetime of the optical probes that were bound and unbound to tumor cells in live mice. Our results show that the fluorescence lifetime changes in our model system delineate HER2 receptor bound from the unbound probe in vivo. Thus, this method is useful as a specific marker of the receptor binding process, which can open a new paradigm in the "image and treat" concept, especially for early evaluation of the efficacy of the therapy.  相似文献   

6.
We demonstrate that a two-photon excitation fluorescence lifetime imaging technology can rapidly and noninvasively assess the cadmium (Cd)-induced toxic effects in a marine diatom Thalassiosira weissflogii. The chlorophyll, an intrinsic fluorophore, was used as a contrast agent for imaging of cellular structures and for assessment of cell toxicity. The assessment is based on an imaging-guided statistical analysis of chlorophyll fluorescence decay. This novel label-free imaging method is physically based and free of tedious preparation and preprocessing of algal samples. We first studied the chlorophyll fluorescence quenching induced by the infrared two-photon excitation laser and found that the quenching effects on the assessment of Cd toxicity could be well controlled and calibrated. In the toxicity study, chlorophyll fluorescence lifetime images were collected from the diatom samples after exposure to different concentrations of Cd. The alteration of chloroplast structure at higher Cd concentration was clearly identified. The decay of chlorophyll fluorescence extracted from recorded pixels of high signal-to-noise ratio in the fluorescence lifetime image was analyzed. The increase of average chlorophyll fluorescence lifetime following Cd treatment was observed, indicating the Cd inhibition effect on the electron transport chain in photosynthesis system. The findings of this study show that the temporal characteristics of chlorophyll fluorescence can potentially be utilized as a biomarker for indicating Cd toxicity noninvasively in algal cells.  相似文献   

7.
We present results of time resolved fluorescence measurements performed in Tryptophan (Trp) derivatives and Trp-containing peptides in the pH range 3.0-11.0. For each compound a set of decay profiles measured in a given range of pH values was examined as a whole, using the global analysis technique. The data were fitted to two or three lifetime components and the analysis allowed the monitoring of the changes in the concentration of the different species contributing to the total fluorescence in that pH interval. The decay components were sensitive to the ionization state of groups neighboring the indol ring, and pK values for the equilibrium between protonated and deprotonated species were obtained from the preexponential factor of the lifetime components. In Trp, protonation of the amino terminal of the rotamer having electron transfer rate comparable to fluorescence decay rates was responsible for the interconvertion of a long lifetime component, to the 2.9 ns component usually observed in neutral pH. Trpbond;X peptides also have a single rotamer dominating the decay that is quenched by NH(3) (+). X-Trp peptides seem to be conformationally less restricted, and it is possible that rotamers interconvertion occur in high pH, increasing the population of nonquenched rotamers. Interconvertion between rotameric conformations of Trp are also present in the titration of ionizable groups in the side chain of peptides like His-Trp and Glu-Trp and control of pH is essential to the correct interpretation of fluorescence data in the study of peptides having such groups near to the Trp residue.  相似文献   

8.
In this study, the feasibility of fluorescence lifetime imaging (FLIM) for measurement of RNA:DNA ratios in microorganisms was assessed. The fluorescence lifetime of a nucleic acid-specific probe (SYTO 13) was used to directly measure the RNA:DNA ratio inside living bacterial cells. In vitro, SYTO 13 showed shorter fluorescence lifetimes in DNA solutions than in RNA solutions. Growth experiments with bacterial monocultures were performed in liquid media. The results demonstrated the suitability of SYTO 13 for measuring the growth-phase-dependent RNA:DNA ratio in Escherichia coli cells. The fluorescence lifetime of SYTO 13 reflected the known changes of the RNA:DNA ratio in microbial cells during different growth phases. As a result, the growth rate of E. coli cells strongly correlated with the fluorescence lifetime. Finally, the fluorescence lifetimes of SYTO 13 in slow- and fast-growing biofilms were compared. For this purpose, biofilms developed from activated sludge were grown as autotrophic and heterotrophic communities. The FLIM data clearly showed a longer fluorescence lifetime for the fast-growing heterotrophic biofilms and a shorter fluorescence lifetime for the slow-growing autotrophic biofilms. Furthermore, starved biofilms showed shorter lifetimes than biofilms supplied with glucose, indicating a lower RNA:DNA ratio in starved biofilms. It is suggested that FLIM in combination with SYTO 13 represents a useful tool for the in situ differentiation of active and inactive bacteria. The technique does not require radioactive chemicals and may be applied to a broad range of sample types, including suspended and immobilized microorganisms.  相似文献   

9.
A principal objective in life sciences is the visualization of biochemical processes. Fluorescence-based techniques are widely used to demonstrate transport of relevant substances across cellular membranes. In this paper we report a novel noninvasive, real-time fluorescence lifetime imaging microscopy method for visualizing uptake and release of divalent copper ions (Cu(2+) ) in vivo. For this purpose, we employed a green fluorescent protein (GFP) form able to change its fluorescence lifetime upon Cu(2+) binding. We demonstrate that this technique is selective for Cu(2+) . We show the reversible decrease of the fluorescence lifetime of GFP from 2.2 to 1.6 ns in Escherichia coli and from 1.8 to 1.3 ns in root cells of Arabidopsis after the addition of Cu(2+) . Cu(2+) uptake of epidermal tobacco cells leads to a drop of the GFP lifetime from 2.5 to 2.2 ns. In summary, the spatially resolved visualization of Cu(2+) distribution in vivo is demonstrated in prokaryote and eukaryote cells.  相似文献   

10.
Anthocyanins are flavonoid pigments that accumulate in most seed plants. They are synthesized in the cytoplasm but accumulate inside the vacuoles. Anthocyanins are pigmented at the lower vacuolar pH, but in the cytoplasm they can be visualized based on their fluorescence properties. Thus, anthocyanins provide an ideal system for the development of new methods to investigate cytoplasmic pools and association with other molecular components. We have analyzed the fluorescence decay of anthocyanins by fluorescence lifetime imaging microscopy (FLIM), in both in vitro and in vivo conditions, using wild‐type and mutant Arabidopsis thaliana seedlings. Within plant cells, the amplitude‐weighted mean fluorescence lifetime (τm) correlated with distinct subcellular localizations of anthocyanins. The vacuolar pool of anthocyanins exhibited shorter τm than the cytoplasmic pool. Consistently, lowering the pH of anthocyanins in solution shortened their fluorescence decay. We propose that FLIM is a useful tool for understanding the trafficking of anthocyanins and, potentially, for estimating vacuolar pH inside intact plant cells.  相似文献   

11.
The determination of pH in the cell cytoplasm or in intracellular organelles is of high relevance in cell biology. Also in plant cells, organelle-specific pH monitoring with high spatial precision is an important issue, since e.g. ΔpH across thylakoid membranes is the driving force for ATP synthesis critically regulating photoprotective mechanisms like non-photochemical quenching (NPQ) of chlorophyll (Chl) fluorescence or the xanthophyll cycle. In animal cells, pH determination can serve to monitor proton permeation across membranes and, therefore, to assay the efficiency of drugs against proton-selective transporters or ion channels. In this work, we demonstrate the applicability of the pH-sensitive GFP derivative (eGFP-pHsens, originally termed deGFP4 by Hanson et al. [1]) for pH measurements using fluorescence lifetime imaging microscopy (FLIM) with excellent precision. eGFP-pHsens was either expressed in the cytoplasm or targeted to the mitochondria of Chinese hamster ovary (CHO-K1) cells and applied here for monitoring activity of the M2 proton channel from influenza A virus. It is shown that the M2 protein confers high proton permeability of the plasma membrane upon expression in CHO-K1 cells resulting in rapid and strong changes of the intracellular pH upon pH changes of the extracellular medium. These pH changes are abolished in the presence of amantadine, a specific blocker of the M2 proton channel. These results were obtained using a novel multi-parameter FLIM setup that permits the simultaneous imaging of the fluorescence amplitude ratios and lifetimes of eGFP-pHsens enabling the quick and accurate pH determination with spatial resolution of 500 nm in two color channels with time resolution of below 100 ps. With FLIM, we also demonstrate the simultaneous determination of pH in the cytoplasm and mitochondria showing that the pH in the mitochondrial matrix is slightly higher (around 7.8) than that in the cytoplasm (about 7.0). The results obtained for CHO-K1 cells without M2 channels in comparison to M2-expressing cells show that the pH dynamics is determined by the specific H+ permeability of the membrane, the buffering of protons in the internal cell lumen and/or an outwardly directed proton pump activity that stabilizes the interior pH at a higher level than the external acidic pH. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: Keys to Produce Clean Energy.  相似文献   

12.
Functional imaging can provide a level of quantification that is not possible in what might be termed traditional high-content screening. This is due to the fact that the current state-of-the-art high-content screening systems take the approach of scaling-up single cell assays, and are therefore based on essentially pictorial measures as assay indicators. Such phenotypic analyses have become extremely sophisticated, advancing screening enormously, but this approach can still be somewhat subjective. We describe the development, and validation, of a prototype high-content screening platform that combines steady-state fluorescence anisotropy imaging with fluorescence lifetime imaging (FLIM). This functional approach allows objective, quantitative screening of small molecule libraries in protein-protein interaction assays. We discuss the development of the instrumentation, the process by which information on fluorescence resonance energy transfer (FRET) can be extracted from wide-field, acceptor fluorescence anisotropy imaging and cross-checking of this modality using lifetime imaging by time-correlated single-photon counting. Imaging of cells expressing protein constructs where eGFP and mRFP1 are linked with amino-acid chains of various lengths (7, 19 and 32 amino acids) shows the two methodologies to be highly correlated. We validate our approach using a small-scale inhibitor screen of a Cdc42 FRET biosensor probe expressed in epidermoid cancer cells (A431) in a 96 microwell-plate format. We also show that acceptor fluorescence anisotropy can be used to measure variations in hetero-FRET in protein-protein interactions. We demonstrate this using a screen of inhibitors of internalization of the transmembrane receptor, CXCR4. These assays enable us to demonstrate all the capabilities of the instrument, image processing and analytical techniques that have been developed. Direct correlation between acceptor anisotropy and donor FLIM is observed for FRET assays, providing an opportunity to rapidly screen proteins, interacting on the nano-meter scale, using wide-field imaging.  相似文献   

13.
A frequency-domain fluorescence study of calcium-binding metalloproteinase from Staphylococcus aureus has shown that this two-tryptophan-containing protein exhibits a double-exponential fluorescence decay. At 10 degrees C in 0.05 M Tris-HCl buffer (pH 9.0) containing 10 mM CaCl2, fluorescence lifetimes of 1.2 and 5.1 ns are observed. Steady-state and frequency-domain solute-quenching studies are consistent with the assignment of the two lifetimes to the two tryptophan residues. The tryptophan residue characterized by a shorter lifetime has a maximum of fluorescence emission at about 317 nm and the second one exhibits a maximum of its emission at 350 nm. These two residues contribute almost equally to the protein's fluorescence. These results, as well as fluorescence-quenching studies using KI and acrylamide as a quencher, indicate that in calcium-loaded metalloproteinase, the tryptophan residue characterized by the shorter lifetime is extensively buried within the protein. The second residue is exposed on the surface of the protein. The tryptophan residues of metalloproteinase have acrylamide dynamic-quenching rate constants, kq values, of 2.3 and 0.26 X 10(9) M-1 X s-1 for the exposed and buried residue, respectively. A study of the temperature dependence of the fluorescence lifetime for the two tryptophan components gives activation energies, Ea values, for thermal quenching of 1.8 and 2.2 kcal/mol for the buried and the exposed residue, respectively. Dissociation of Ca2+ from the protein causes a change in the protein's structure, as can be judged from dramatic changes which occur in the fluorescence properties of the buried tryptophan residue. These changes include an approx. 13 nm red-shift in the maximum of the fluorescence emission and an increase in the acrylamide-quenching rate constant, and they indicate that the removal of Ca2+ results in an increase in the exposure and the polarity of the microenvironment of this 'blue' residue.  相似文献   

14.
Spectral diversity of fluorescent proteins, crucial for multiparameter imaging, is based mainly on chemical diversity of their chromophores. Recently we have reported, to our knowledge, a new green fluorescent protein WasCFP—the first fluorescent protein with a tryptophan-based chromophore in the anionic state. However, only a small portion of WasCFP molecules exists in the anionic state at physiological conditions. In this study we report on an improved variant of WasCFP, named NowGFP, with the anionic form dominating at 37°C and neutral pH. It is 30% brighter than enhanced green fluorescent protein (EGFP) and exhibits a fluorescence lifetime of 5.1 ns. We demonstrated that signals of NowGFP and EGFP can be clearly distinguished by fluorescence lifetime in various models, including mammalian cells, mouse tumor xenograft, and Drosophila larvae. NowGFP thus provides an additional channel for multiparameter fluorescence lifetime imaging microscopy of green fluorescent proteins.  相似文献   

15.
We have studied tryptophan fluorescence from a 20-residue synthetic peptide corresponding to the amino terminal of the HA2 subunit of the influenza virus hemagglutinin protein, a putative "fusion" peptide. Decay-associated spectra have been obtained at pH 7.4 and at pH 5 (the optimal pH for influenza virus fusion) in the presence and absence of liposomes. We demonstrate that a blue shift in the total steady-state fluorescence spectrum upon binding to liposomes is due to a movement in characteristic emission wavelength and increased lifetime of one of the resolved spectral components. In contrast, a further shift after lowering the pH is the product of a redistribution in the relative amplitudes of spectral components. Also, each decay component is quenched by spin-labels or anthroxyl groups normally located within the hydrocarbon interior of the membranes. Calculations are presented leading to an estimate of the distance of the tryptophan residue from the bilayer center, suggesting that the tryptophan residues are at or near the hydrocarbon-polar interface. No gross positional change was detected between pH values. Rotational depolarization is shown to be retarded by liposome binding, more so at low pH.  相似文献   

16.
The green fluorescent protein (GFP) has proven to be an excellent fluorescent marker for protein expression and localisation in living cells [1] [2] [3] [4] [5]. Several mutant GFPs with distinct fluorescence excitation and emission spectra have been engineered for intended use in multi-labelling experiments [6] [7] [8] [9]. Discrimination of these co-expressed GFP variants by wavelength is hampered, however, by a high degree of spectral overlap, low quantum efficiencies and extinction coefficients [10], or rapid photobleaching [6]. Using fluorescence lifetime imaging microscopy (FLIM) [11] [12] [13] [14] [15] [16], four GFP variants were shown to have distinguishable fluorescence lifetimes. Among these was a new variant (YFP5) with spectral characteristics reminiscent of yellow fluorescent protein [8] and a comparatively long fluorescence lifetime. The fluorescence intensities of co-expressed spectrally similar GFP variants (either alone or as fusion proteins) were separated using lifetime images obtained with FLIM at a single excitation wavelength and using a single broad band emission filter. Fluorescence lifetime imaging opens up an additional spectroscopic dimension to wavelength through which novel GFP variants can be selected to extend the number of protein processes that can be imaged simultaneously in cells.  相似文献   

17.
Summary Fluorescence microscopy offers some distinct advantages over other techniques for studying ion transport processes in situ with plant cells. However, the use of this technology in plant cells has been limited by our lack of understanding the mechanisms that influence the subcellular distribution of dyes after loading with the lipophilic precursors. In this study, the subcellular distribution of 5-(and 6-)carboxydichlorofluorescein (CDCF), carboxy-SNAFL-1, and carboxy-SNARF-1 was compared to that of 2,7-bis-(2-carboxyethyl)-5-(and 6-)carboxyfluorescein (BCECF) after incubation of maize roots with their respective lipophilic precursors. Previously, we reported that incubation of roots with BCECF-acetomethyl ester (BCECF-AM) led to vacuolar accumulation of this dye. Similar results were found when roots were incubated with CDCF-diacetate. In contrast, carboxy-SNAFL-1 appeared to be confined to the cytoplasm based on the distribution of fluorescence and the excitation spectra of the dye in situ. On the other hand, incubation of roots with carboxy-SNARF-1-acetoxymethyl acetate yielded fluorescence throughout the cell. When the cytoplasm of epidermal cells was loaded with the BCECF acid by incubation at pH 4 in the absence of external Ca, the dye was retained in the cytoplasm at least 3 h after the loading period. This result indicated that vacuolar accumulation of BCECF during loading of BCECF-AM was not due to transport of BCECF from cytoplasm to vacuole. The esterase activities responsible for the production of either carboxy-SNAFL-1 or BCECF from their respective lipophilic precursor by extracts of roots were compared. The characterization of esterase activities was consistent with the subcellular distribution of these dyes in root cells. The results of these experiments suggest that in maize root epidermal cells the subcellular distribution of these fluorescein dyes may be determined by the characteristics of the esterase activities responsible for hydrolysis of the lipophilic precursor.Abbreviations BCECF (BCECF-AM) 2,7-bis-(2-carboxyethyl)-5-(and 6-)carboxyfluorescein (its acetoxymethyl ester) - BTB bis-trispropane - CDCF (CDCF-DA) 5-(and 6-)carboxy-2,7-dichlorofluorescein (its diacetate derivative) - DAPI 4,6-diamidino-2 phenylindole dihydrochloride - DMSO dimethylsulfoxide - HEPES N-[2-hydroxyethyl] piperazine-N-[2-ethanesulfonic acid] - MES 2-[N-morpholino]ethane-sulfonic acid - SNAFL-1 (SNAFL-1-DA) carboxyl SNAFL-1 (its diacetate) - SNARF-1 (SNARF-1-AM) carboxyl SNARF-1 (its acetoxymethyl acetate)  相似文献   

18.
Using multifrequency phase/modulation fluorometry, we have studied the fluorescence decay of the single tryptophan residue of ribonuclease T1 (RNase T1). At neutral pH (7.4) we find that the decay is a double exponential (tau 1 = 3.74 ns, tau 2 = 1.06 ns, f1 = 0.945), in agreement with results from pulsed fluorometry. At pH 5.5 the decay is well described by a single decay time (tau = 3.8 ns). Alternatively, we have fitted the frequency domain data by a distribution of lifetimes. Temperature dependence studies were performed. If analyzed via a double exponential model, the activation energy for the inverse of the short lifetime component (at pH 7.4) is found to be 3.6 kcal/mol, as compared with a value of 1.0 kcal/mol for the activation energy of the inverse of the long lifetime component. If analyzed via the distribution model, the width of the distribution is found to increase at higher temperature. We have also repeated, using lifetime measurements, the temperature dependence of the acrylamide quenching of the fluorescence of RNase T1 at pH 5.5. We find an activation energy of 8 kcal/mol for acrylamide quenching, in agreement with our earlier report.  相似文献   

19.
Light-Harvesting Complex II (LHCII) is a chlorophyll-protein antenna complex that efficiently absorbs solar energy and transfers electronic excited states to photosystems I and II. Under excess light intensity LHCII can adopt a photoprotective state in which excitation energy is safely dissipated as heat, a process known as Non-Photochemical Quenching (NPQ). In vivo NPQ is triggered by combinatorial factors including transmembrane ΔpH, PsbS protein and LHCII-bound zeaxanthin, leading to dramatically shortened LHCII fluorescence lifetimes. In vitro, LHCII in detergent solution or in proteoliposomes can reversibly adopt an NPQ-like state, via manipulation of detergent/protein ratio, lipid/protein ratio, pH or pressure. Previous spectroscopic investigations revealed changes in exciton dynamics and protein conformation that accompany quenching, however, LHCII-LHCII interactions have not been extensively studied. Here, we correlated fluorescence lifetime imaging microscopy (FLIM) and atomic force microscopy (AFM) of trimeric LHCII adsorbed to mica substrates and manipulated the environment to cause varying degrees of quenching. AFM showed that LHCII self-assembled onto mica forming 2D-aggregates (25–150?nm width). FLIM determined that LHCII in these aggregates were in a quenched state, with much lower fluorescence lifetimes (~0.25?ns) compared to free LHCII in solution (2.2–3.9?ns). LHCII-LHCII interactions were disrupted by thylakoid lipids or phospholipids, leading to intermediate fluorescent lifetimes (0.6–0.9?ns). To our knowledge, this is the first in vitro correlation of nanoscale membrane imaging with LHCII quenching. Our findings suggest that lipids could play a key role in modulating the extent of LHCII-LHCII interactions within the thylakoid membrane and so the propensity for NPQ activation.  相似文献   

20.
A multifrequency phase fluorometric study is described for wild-type barnase and engineered mutant proteins in which tryptophan residues have been replaced by less fluorescent residues which do not interfere with the determination of the tryptophan emission spectra and lifetimes. The lifetimes of the three tryptophans in the wild-type protein have been resolved. Trp-35 has a single fluorescence lifetime, which varies in the different proteins between 4.3 and 4.8 ns and is pH-independent between pH 5.8 and 8.9. Trp-71 and Trp-94 behave as an energy-transfer couple with both forward and reverse energy transfer. The couple shows two fluorescence lifetimes: 2.42 (+/-0.2) and 0.74 (+/-0.1) ns at pH 8.9, and 0.89 (+/-0.05) and 0.65 (+/-0.05) ns at pH 5.8. In the mutant Trp-94----Phe the lifetime of Trp-71 is 4.73 (+/-0.008) ns at high pH and 4.70 (+/-0.004) ns at low pH. In the mutant Trp-71----Tyr, the lifetime of Trp-94 is 1.57 (+/-0.01) ns at high pH and 0.82 (+/-0.025) ns at low pH. From these lifetimes, one-way energy-transfer efficiencies can be calculated according to Porter [Porter, G.B. (1972) Theor. Chim. Acta 24, 265-270]. At pH 8.9, a 71% efficiency was found for forward transfer (from Trp-71 to Trp-94) and 36% for reverse transfer. At pH 5.8 the transfer efficiency was 86% for forward and 4% for reverse transfer (all +/-2%). These transfer efficiencies correspond fairly well with the ones calculated according to the theory of F?rster [F?rster, T. (1948) Ann. Phys. (Leipzig) 2, 55-75].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号