首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tumor necrosis factor (TNF)-alpha is a potent inflammatory cytokine implicated in the exacerbation of asthma. Chronic exposure to TNF-alpha has been reported to induce G protein-coupled receptor desensitization, but adenylyl cyclase sensitization, in airway smooth muscle cells by an unknown mechanism. Cyclic AMP, which is synthesized by adenylyl cyclases in response to G protein-coupled receptor signals, is an important second messenger involved in the regulation of the airway muscle proliferation, migration, and tone. In other cell types, TNF-alpha receptors transactivate the EGF receptor, which activates raf-1 kinase. Further studies in transfected cells show that raf-1 kinase can phosphorylate and activate some isoforms of adenylyl cyclase. Cultured human airway smooth muscle cells were treated with TNF-alpha in the presence or absence of inhibitors of prostaglandin signaling, protein kinases, or G(i) proteins. TNF-alpha caused a significant dose- (1-10 ng/ml) and time-dependent (24 and 48 h) increase in forskolin-stimulated adenylyl cyclase activity, which was abrogated by pretreatment with GW5074 (a raf-1 kinase inhibitor), was partially inhibited by an EGF receptor inhibitor, but was unaffected by pertussis toxin. TNF-alpha also increased phosphorylation of Ser(338) on raf-1 kinase, indicative of activation. IL-1beta and EGF sensitization of adenylyl cyclase activity was also sensitive to raf-1 kinase inhibition by GW5074. Taken together, these studies link two signaling pathways not previously characterized in human airway smooth muscle cells: TNF-alpha transactivation of the EGF receptor, with subsequent raf-1 kinase-mediated activation of adenylyl cyclase.  相似文献   

2.
3.
4.
人气管平滑肌细胞培养   总被引:4,自引:0,他引:4  
支气管平滑肌细胞的收缩、舒张、增殖和凋亡与临床许多疾病的病理生理过程有关,如支气管哮喘、慢性阻塞性肺疾病等.目前国内研究这些疾病的细胞材料多采用豚鼠和大鼠等动物的支气管平滑肌细胞,这与人气管平滑肌细胞(airway smooth muscle cells,ASMCs)的生理病理特征有很大的差距.我们在多年的实验过程中建立了一套人ASMCs的培养方法,介绍如下.  相似文献   

5.
Vascular and airway remodeling, which are characterized by airway smooth muscle (ASM) and pulmonary arterial vascular smooth muscle (VSM) proliferation, contribute to the pathology of asthma, pulmonary hypertension, restenosis and atherosclerosis. To evaluate the proliferation of VSM and ASM cells in response to mitogens, we perform a [3H]thymidine incorporation assay. The proliferation protocol takes approximately 48 h and includes stimulating cells synchronized in G0/G1 phase of the cell cycle with agonists, labeling cells with [3H]thymidine and examining levels of [3H]thymidine incorporation by scintillation counting. Although using radiolabeled [3H]thymidine incorporation is a limitation, the greatest benefit of the assay is providing reliable and statistically significant data.  相似文献   

6.
Asthmatic airways are characterized by an increase in smooth muscle mass, due mainly to hyperplasia. Many studies suggest that extracellular signal-regulated kinases 1 and 2 (ERK1 and ERK2, respectively), one group of the mitogen-activated protein (MAP) kinase superfamily, play a key role in the signal transduction pathway leading to cell proliferation. PGE(2) and forskolin inhibited mitogen-induced ERK activation. Inhibition of MAP kinase kinases 1 and 2 (MEK1 and MEK2, respectively), which are upstream from ERK, with the specific MEK inhibitor U-0126 blocked both cell proliferation and ERK activation. In addition, U-0126 inhibited mitogen-induced activation of p90 ribosomal S6 kinase and expression of c-Fos and cyclin D1, all of which are downstream from ERK in the signaling cascade that leads to cell proliferation. Antisense oligodeoxynucleotides directed to ERK1 and -2 mRNAs reduced ERK protein and cell proliferation. These results indicate that ERK is required for human airway smooth muscle cell proliferation. Thus targeting the control of ERK activation may provide a new therapeutic approach for hyperplasia seen in asthma.  相似文献   

7.
Hypertrophy and hyperplasia lead to excess accumulation of smooth muscle in the airways of human asthmatic subjects. However, little is known about mechanisms that might counterbalance these processes, thereby limiting the quantity of smooth muscle in airways. Ligation of Fas on the surface of vascular smooth muscle cells and nonmuscle airway cells can lead to apoptotic cell death. We therefore tested the hypotheses that 1) human airway smooth muscle (HASM) expresses Fas, 2) Fas cross-linking induces apoptosis in these cells, and 3) tumor necrosis factor (TNF)-alpha potentiates Fas-mediated airway myocyte killing. Immunohistochemistry using CH-11 anti-Fas monoclonal IgM antibody revealed Fas expression in normal human bronchial smooth muscle in vivo. Flow cytometry using DX2 anti-Fas monoclonal IgG antibody revealed that passage 4 cultured HASM cells express surface Fas. Surface Fas decreased partially during prolonged serum deprivation of cultured HASM cells and was upregulated by TNF-alpha stimulation. Fas cross-linking with CH-11 antibody induced apoptosis in cultured HASM cells, and this effect was reduced by long-term serum deprivation and synergistically potentiated by concomitant TNF-alpha exposure. TNF-alpha did not induce substantial apoptosis in the absence of Fas cross-linking. These data represent the first demonstration that Fas is expressed on HASM and suggest a mechanism by which Fas-mediated apoptosis could act to oppose excess smooth muscle accumulation during airway remodeling in asthma.  相似文献   

8.
We investigated the chemotactic action of PDGF and urokinase on human airway smooth muscle (HASM) cells in culture. Cells were put in collagen-coated transwells with 8-micro m perforations, incubated for 4 h with test compounds, then fixed, stained, and counted as migrated nuclei by microscopy. Cells from all culture conditions showed some basal migration (migration in the absence of stimuli during the assay), but cells preincubated for 24 h in 10% FBS or 20 ng/ml PDGF showed higher basal migration than cells quiesced in 1% FBS. PDGF(BB), PDGF(AA), and PDGF(AB) were all chemotactic when added during the assay. PDGF chemotaxis was blocked by the phosphatidyl 3'-kinase inhibitor LY-294002, the MEK inhibitor U-0126, PGE(2), formoterol, pertussis toxin, and the Rho kinase inhibitor Y-27632. Urokinase alone had no stimulatory effect on migration of quiescent cells but caused a dose-dependent potentiation of chemotaxis toward PDGF. Urokinase also potentiated the elevated basal migration of cells pretreated in 10% FBS or PDGF. This potentiating effect of urokinase appears to be novel. We conclude that PDGF and similar cytokines may be important factors in airway remodeling by redistribution of smooth muscle cells during inflammation and that urokinase may be important in potentiating the response.  相似文献   

9.
In China, the ginseng root began to be used in medicine over 2000 years ago. Ginsenosides are the most important component isolated from ginseng. The aim of this study was to determine the effects of ginsenoside Rg1 on the proliferation and molecular mechanism in cultured human arterial vascular smooth muscle cell (HASMC) induced by tumor necrosis factor-alpha (TNF-alpha). It was shown that ginsenoside Rg1 significantly inhibited TNF-alpha-induced HASMC proliferation in a dose-dependent manner. Treatment with ginsenoside Rg1, which blocked the cell cycle in the G1-phase, induced a downregulation of cyclin D1 and an upregulation in the expression of p53, p21(WAF/CIP1), and p27(KIP1). MEK inhibitors PD98059, U0126, and phosphatidylinositol 3-kinase (PI3K) inhibitor wortmannin, but not p38-inhibitor SB203580 or JNK-inhibitor SP600125 significantly aggravated ginsenoside Rg1-inhibited HASMC proliferation. Ginsenoside Rg1 markedly inactivated the extracellular signal-regulated kinases (ERK1/2) and protein kinase B (PKB), indicating that the inhibition of ginsenoside Rg1 on HASMC proliferation was associated with ERK and PI3K/PKB pathways. The inactivation of ERK and PI3K/PKB pathways and modulation of cell-cycle proteins by ginsenoside Rg1 may be of importance in inhibition of HASMCs proliferation.  相似文献   

10.
This study analyzed the regulation of alpha2-adrenoceptors (alpha2-ARs) in human vascular smooth muscle cells (VSMs). Saphenous veins and dermal arterioles or VSMs cultured from them expressed high levels of alpha2-ARs (alpha2C > alpha2A, via RNase protection assay) and responded to alpha2-AR stimulation [5-bromo-N-(4,5-dihydro-1H-imidazol-2-yl)-6-quinoxalinamine (UK-14,304, 1 microM)] with constriction or calcium mobilization. In contrast, VSMs cultured from aorta did not express alpha2-ARs and neither cultured cells nor intact aorta responded to UK-14,304. Although alpha2-ARs (alpha2C > alpha2A) were detected in aortas, alpha2C-ARs were localized by immunohistochemistry to VSMs of adventitial arterioles and not aortic media. In contrast with aortas, aortic arterioles constricted in response to alpha2-AR stimulation. Reporter constructs demonstrated higher activities for alpha2A- and alpha2C-AR gene promoters in arteriolar compared with aortic VSMs. In arteriolar VSMs, serum increased expression of alpha2C-AR mRNA and protein but decreased expression of alpha2A-ARs. Serum induction of alpha2C-ARs was reduced by inhibition of p38 mitogen-activated protein kinase (MAPK) with 2 microM SB-202190 or dominant-negative p38 MAPK. UK-14,304 (1 microM) caused calcium mobilization in control and serum-stimulated cells: in control VSMs, the response was inhibited by the alpha2A-AR antagonist BRL-44408 (100 nM) but not by the alpha2C-AR antagonist MK-912 (1 nM), whereas after serum stimulation, MK-912 (1 nM) but not BRL-44408 (100 nM) inhibited the response. These results demonstrate site-specific expression of alpha2-ARs in human VSMs that reflects differential activity of alpha2-AR gene promoters; namely, high expression and function in venous and arteriolar VSMs but no detectable expression or function in aortic VSMs. We found that alpha2C-ARs can be dramatically and selectively induced via a p38 MAPK-dependent pathway. Therefore, altered expression of alpha2C-ARs may contribute to pathological changes in vascular function.  相似文献   

11.
Spatial and temporal traction response in human airway smooth muscle cells   总被引:4,自引:0,他引:4  
Tractions that cells exert on theirsubstrates are essential in cell spreading, migration, and contraction.These tractions can be determined by plating the cells on a flexiblegel and measuring the deformation of the gel by using fluorescent beadsembedded just below the surface of the gel. In this article we describe the image correlation method (ICM) optimized for determining the displacement field of the gel under a contracting cell. For the calculation of the traction field from the displacement field we usethe recently developed method of Fourier transform traction cytometry(FTTC). The ICM and FTTC methods are applied to human airway smoothmuscle cells during stimulation with the contractile agonist histamineor the relaxing agonist isoproterenol. The overall intensity of thecell contraction (the median traction magnitude, the energy transferredfrom the cell to the gel, and the net contractile moment) increasedafter activation with histamine, and decreased after treatment withisoproterenol. Cells exhibited regional differences in the time courseof traction during the treatment. Both temporal evolution and magnitudeof traction increase induced by histamine varied markedly amongdifferent cell protrusions, whereas the nuclear region showed thesmallest response. These results suggest that intracellular mediatorsof cell adhesion and contraction respond to contractile stimuli withdifferent rates and intensities in different regions of the cell.

  相似文献   

12.
Migration of human pulmonary vascular smooth muscle (VSM) cells contributes to vascular remodeling in pulmonary arterial hypertension and atherosclerosis. Evidence also indicates that, in part, migration of airway smooth muscle (ASM) cells may contribute to airway remodeling associated with asthma. Here we describe migration of VSM and ASM cells in vitro using Transwell or Boyden chamber assays. Because dissecting signaling mechanisms regulating cell migration requires molecular approaches, our protocol also describes how to assess migration of transfected VSM and ASM cells. Transwell or Boyden chamber assays can be completed in approximately 8 h and include plating of serum-deprived VSM or ASM cell suspension on membrane precoated with collagen, migration of cells toward chemotactic gradient and visual (Transwell) or digital (Boyden chamber) analysis of membrane. Although the Transwell assay is easy, the Boyden chamber assay requires hands-on experience; however, both assays are reliable cell-based approaches providing valuable information on how chemotactic and inflammatory factors modulate VSM and ASM migration.  相似文献   

13.
Tryptase, the major mast cell product, is considered to play an important role in airway inflammation and hyperresponsiveness. Tryptase produces different, sometimes opposite, effects on airway responsiveness (bronchoprotection and/or airway contraction). This study was designed to examine the effect of human lung tryptase and activation of protease-activated receptor (PAR)-2 by synthetic activated peptide (AP) SLIGKV-NH(2) on Ca(2+) signaling in human airway smooth muscle (HASM) cells. Immunocytochemistry revealed that PAR-2 was expressed by HASM cells. Tryptase (7.5--30 mU/ml) induced a concentration-dependent transient relative rise in cytoplasmic Ca(2+) concentration ([Ca(2+)](i)) that reached 207 +/- 32 nM (n = 10) measured by indo 1 spectrofluorometry. The protease inhibitors leupeptin or benzamidine (100 microM) abolished tryptase-induced [Ca(2+)](i) increase. Activation of PAR-2 by AP (1-100 microM) also induced a concentration-dependent transient rise in [Ca(2+)](i), whereas the reverse peptide produced no effect. There was a homologous desensitization of the [Ca(2+)](i) response on repeated stimulation with tryptase or AP. U-73122, a specific phospholipase C (PLC) antagonist, xestospongin, an inositol trisphosphate (IP(3))-receptor antagonist, or thapsigargin, a sarcoplamic Ca(2+)-ATPase inhibitor, abolished tryptase-induced [Ca(2+)](i) response, whereas Ca(2+) removal, in the additional presence of EGTA, had no effect. Calphostin C, a protein kinase C inhibitor, increased PAR-2 [Ca(2+)](i) response. Our results indicate that tryptase activates a [Ca(2+)](i) response, which appears as PAR-2 mediated in HASM cells. Signal transduction implicates the intracellular Ca(2+) store via PLC activation and thus via the IP(3) pathway. This study provides evidence that tryptase, which is increasingly recognized as an important mediator in airway inflammation and hyperresponsiveness, is also a potent direct agonist at the site of airway smooth muscle.  相似文献   

14.
The interleukin-17B receptor (IL-17BR) is expressed in a variety of tissues and is upregulated under inflammatory conditions. This receptor binds both its cognate ligand IL-17B and IL-17E/IL-25, a novel cytokine known to promote Th2 responses. The present study shows that airway smooth muscle cells express IL-17BR in vitro and that its expression is upregulated by TNF-alpha and downregulated by IFN-gamma. Our data indicate that TNF-alpha upregulates IL-17BR mainly through nuclear factor-kappaB as assessed with the IkappaB kinase 2 inhibitor AS-602868. In addition, both IFN-gamma and dexamethasone are able to antagonize a TNF-alpha-induced IL-17BR increase in mRNA expression. The mitogen-activated protein kinase kinase inhibitor U0126 totally reversed the inhibition observed with IFN-gamma, suggesting the involvement of the extracellular signal-regulated kinase pathway in this effect. In addition, on stimulation with IL-17E, airway smooth muscle cells increase their expression of ECM components, namely procollagen-alphaI and lumican mRNA. Furthermore, immunohistochemical analysis of biopsies from asthmatic subjects reveals that this receptor is abundant in smooth muscle layers. This is the first report showing IL-17BR receptor in structural cells of the airways. Our results suggest a potential proremodeling effect of IL-17E on airway smooth muscle cells through the induction of ECM and that its receptor is upregulated by proinflammatory conditions.  相似文献   

15.
16.
17.
Increased airway smooth muscle (ASM) content is characteristic of infants with chronic lung disease of prematurity/bronchopulmonary dysplasia. Oxygen therapy, reactive oxygen species (ROS), and immature antioxidant defenses are major risk factors in chronic lung disease of prematurity/bronchopulmonary dysplasia, but their interrelationship is unclear. The direct effects of raised Po2 and modulation of ROS were examined on proliferation of cultured fetal human ASM cells. A bell-shaped relationship was found between Po2 and DNA synthesis induced by fetal bovine serum, platelet-derived growth factor, and basic fibroblastic growth factor, with peak responses occurring at 10-kPa Po2. Changes in DNA synthesis by Po2 did not occur in the absence of mitogen. ROS generation, estimated by dichlorodihydrofluorescein oxidation, was increased by mitogens but was unaffected by nonmitogens (bradykinin, histamine). There was an inverse relationship between ROS generation and Po2, and mitogen-induced ROS generation was substantially potentiated as the Po2 fell. H2O2 mimicked the effect of Po2 on fetal bovine serum-stimulated proliferation, whereas treatment with antioxidants (GSH, N-acetylcysteine) reduced it. These data demonstrate that increases in Po2 above levels found in utero modulate proliferation of fetal ASM cells but only in the presence of growth factors. They also strongly suggest that, under these conditions, proliferation is mediated in part by generation of ROS.  相似文献   

18.
19.
Hypotonic stimulation induces airway constriction in normal and asthmatic airways. However, the osmolarity sensor in the airway has not been characterized. TRPV4 (also known as VR-OAC, VRL-2, TRP12, OTRPC4), an osmotic-sensitive cation channel in the transient receptor potential (TRP) channel family, was recently cloned. In the present study, we show that TRPV4 mRNA was expressed in cultured human airway smooth muscle cells as analyzed by RT-PCR. Hypotonic stimulation induced Ca(2+) influx in human airway smooth muscle cells in an osmolarity-dependent manner, consistent with the reported biological activity of TRPV4 in transfected cells. In cultured muscle cells, 4alpha-phorbol 12,13-didecanoate (4-alphaPDD), a TRPV4 ligand, increased intracellular Ca(2+) level only when Ca(2+) was present in the extracellular solution. The 4-alphaPDD-induced Ca(2+) response was inhibited by ruthenium red (1 microM), a known TRPV4 inhibitor, but not by capsazepine (1 microM), a TRPV1 antagonist, indicating that 4-alphaPDD-induced Ca(2+) response is mediated by TRPV4. Verapamil (10 microM), an L-type voltage-gated Ca(2+) channel inhibitor, had no effect on the 4-alphaPDD-induced Ca(2+) response, excluding the involvement of L-type Ca(2+) channels. Furthermore, hypotonic stimulation elicited smooth muscle contraction through a mechanism dependent on membrane Ca(2+) channels in both isolated human and guinea pig airways. Hypotonicity-induced airway contraction was not inhibited by the L-type Ca(2+) channel inhibitor nifedipine (1 microM) or by the TRPV1 inhibitor capsazepine (1 microM). We conclude that functional TRPV4 is expressed in human airway smooth muscle cells and may act as an osmolarity sensor in the airway.  相似文献   

20.
Bradykinin (BK) is an inflammatory mediator that can cause bronchoconstriction. In this study, we investigated the membrane currents induced by BK in cultured human airway smooth muscle (ASM) cells. Depolarization of the cells induced outward currents, which were inhibited by tetraethylammonium (TEA) in a concentration-dependent manner with an IC50 of 0.33 microM. The currents were increased by elevating intracellular free Ca2+ concentration, suggesting they are calcium-activated potassium channels [I(K(Ca))]. Preexposure to inhibitor of I(K(Ca)) of large conductance (BKCa), iberiotoxin, and small conductance (SKCa), apamin, inhibited the increase of outward current induced by BK. The relative contribution of BKCa was greatest in early passage cells. Both nickel and SKF-96365 (10 microM) inhibited the increase of the I(K(Ca)) induced by BK; however, the l-type Ca2+ channel blocker, nifedipine, had no effect. Activation of the BK-induced current was inhibited by heparin, indicating dependence on intact inositol 1,4,5-triphosphate (IP3)-sensitive intracellular Ca2+ stores. BK also increased inositol phosphate accumulation and induced a transient Ca2+-activated chloride current (CACC) and a sustained nonselective cation current (I(CAT)). In summary, BK activates BKCa, SKCa, CACC, and I(CAT) via IP3-sensitive stores in human ASM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号