首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanism governing cell quiescence remains to be elucidated, albeit some tumor suppressor genes are known to be involved in this process. If more genes belonging to this regulatory circuit are identified, we will have a better understanding on cell quiescence. For this purpose, the present study was designed to clone genes preferentially expressed in cell quiescence. Using the method of differential display, we cloned ras-recision gene (rrg), also known as lysyl oxidase gene (lox), from BALB/c 3T3T cells, which were rendered quiescent by serum deprivation. Northern blot analysis showed that the induction of rrg/lox gene could be detected as early as 12 h following serum deprivation and it was dramatically elevated from 24 hours on after serum starvation. Induction of rrg/lox was also observed in cells rendered quiescent by contact inhibition, indicating that rrg/lox is induced by cell quiescence in general rather than specific to serum deprivation. Because rrg/lox gene products are known to be involved in extracellular matrix maturation, and function as tumor suppressors against ras oncogene, our finding suggests that quiescence-associated cell physiology is partly mediated by induction of rrg/lox.  相似文献   

2.
LOX, the principal enzyme involved in crosslinking of collagen, was the first of several lysyl oxidase isotypes to be characterized. Its active form was believed to be exclusively extracellular. Active LOX was later reported to be present in cell nuclei; its function there is unknown. LOX expression opposes the effect of mutationally activated Ras, which is present in about 30% of human cancers. The mechanism of LOX in countering the action of Ras is also unknown. In the present work, assessment of nuclear protein for possible effects of lysyl oxidase activity led to the discovery that proliferating cells dramatically increase their nuclear protein content when exposed to BAPN (β-aminopropionitrile), a highly specific lysyl oxidase inhibitor that reportedly blocks LOX inhibition of Ras-induced oocyte maturation. In three cell types (PC12 cells, A7r5 smooth muscle cells, and NIH 3T3 fibroblasts), BAPN caused a 1.8-, 1.7-, and 2.1-fold increase in total nuclear protein per cell, respectively, affecting all major components in both nuclear matrix and chromatin fractions. Since nuclear size is correlated with proliferative status, enzyme activity restricting nuclear growth may be involved in the lysyl oxidase tumor suppressive effect. Evidence is also presented for the presence of apparent lysyl oxidase isotype(s) containing a highly conserved LOX active site sequence in the nuclei of PC12 cells, which do not manufacture extracellular lysyl oxidase substrates. Results reported here support the hypothesis that nuclear lysyl oxidase regulates nuclear growth, and thereby modulates cell proliferation.  相似文献   

3.
We have reported in this paper the complete cDNA sequence, gene structure, and tissue-specific expression of LOXL2, a new amine oxidase and a member of an emerging family of human lysyl oxidases. The predicted amino acid sequence, from several overlapping cDNA clones isolated from placenta and spleen cDNA libraries, shared extensive sequence homology with the conserved copper-binding and catalytic domains of both lysyl oxidase (LOX) and the lysyl oxidase-like (LOXL) protein. These conserved domains are encoded by five consecutive exons within the LOX, LOXL, and LOXL2 genes that also maintained exon-intron structure conservation. In contrast, six exons encoding the amino-terminal domains diverged both in sequence and structure. Exon 1 of the LOXL2 gene does not encode a signal sequence that is present in LOX and LOXL, suggesting a different processing and intracellular localization for this new protein. Expression of the LOXL2 gene was detected in almost all tissues with the highest steady state mRNA levels in the reproductive tissues, placenta, uterus and prostate. In situ hybridization identified placental syncytial and cytotrophoblasts responsible for the synthesis of LOXL2 mRNA and demonstrated a spatial and temporal expression pattern unique to the LOXL2 gene.  相似文献   

4.
A BLASTN search using the mouse lor-2 cDNA identified three overlapping ESTs (AI752772, AA852888, and R55706) in the GenBank database. These expressed sequence tags were assembled into a contig of 3121 nucleotides with an open reading frame of 2262 bp. The encoded putative polypeptide of 754 amino acids presented all structural characteristics of the lysyl oxidase (LOX) enzyme family, a copper-binding site with four histidyl residues, the lysyl and tyrosyl residues known to be involved in LOX enzyme in the formation of the quinone cofactor and surrounding sequences, and the cytokine receptor-like domain. In addition, four scavenger receptor cysteine-rich (SRCR) domains were found in the N-terminal region of the protein. The gene encoding this new cDNA, which we have referred to as human lysyl oxidase-like 3 (humanLOXL3), has been mapped to chromosome 2p13.3, overlapping at its 3' end the HtrA2 serine protease gene. The structure of the humanLOXL3 gene was deduced from the BAC clone bac91a19 sequence and contained 14 exons. The expression pattern of this new member of the LOX gene family appears to be different from that of the LOX and LOX-like genes, as the central nervous system, neurons, and also leukocytes expressed humanLOXL3. A BLASTN search of the human EST database indicated the presence of ESTs, corresponding to alternative splice variants of LOXL3, that lacked exon 5 and exon 8. The putative resulting protein retained the region encoding the structural and functional elements of the amine oxidase but the second and fourth SRCR domains were truncated and the potential BMP-1 cleavage site was not present. The presence of domains unrelated to the traditional amine oxidase activity is a strong indication that humanLOXL3 might fulfill other functions in addition to intrinsic enzyme activity.  相似文献   

5.
6.
In patients with chronic obstructive pulmonary disease (COPD), histone deacetylase (HDAC) expression and activity are reduced in the lung tissue. However, whether HDAC activity controls the maintenance of the lung alveolar septal structures has not been investigated. To explore the consequences of HDAC inhibition and address the question of whether HDAC inhibition causes lung cell apoptosis and emphysema, male Sprague-Dawley rats and human pulmonary microvascular endothelial cells (HPMVEC) were treated with trichostatin A (TSA), a specific inhibitor of HDACs. Chronic TSA treatment increased the alveolar air space area, mean linear intercept, and the number of caspase-3-positive cells in rat lungs. TSA suppressed hypoxia-inducible factor-1α (HIF-1α), VEGF, and lysyl oxidase (LOX) and increased microtubule-associated protein-1 light chain 3 (LC3), p53, and miR34a microRNA expression in both rat lungs and cultured HPMVEC. Gene silencing of HDAC2 using small interfering RNA (siRNA) in cultured HPMVEC resulted in the suppression of HIF-1α, VEGF, and LOX and an increase of p53 expression. These data indicate that HDAC inhibition causes emphysema and that HDAC-dependent mechanisms contribute to the maintenance of the adult lung structure. Our results also suggest that the increase in apoptosis, as a consequence of HDAC inhibition, is associated with decreased VEGF and HIF-1α expression.  相似文献   

7.
8.
These studies were undertaken to determine how lysyl oxidase (LOX) and lysyl oxidase like-1 (LOXL) enzymes are targeted to their substrates in the extracellular matrix. Full-length LOX/LOXL and constructs containing just the pro-regions of each enzyme localized to elastic fibers when expressed in cultured cells. However, the LOXL catalytic domain without the pro-region was secreted into the medium but did not associate with matrix. Ligand blot and mammalian two-hybrid assays confirmed an interaction between tropoelastin and the pro-regions of both LOX and LOXL. Immunofluorescence studies localized both enzymes to elastin at the earliest stages of elastic fiber assembly. Our results showed that the pro-regions of LOX and LOXL play a significant role in directing the deposition of both enzymes onto elastic fibers by mediating interactions with tropoelastin. These findings confirmed that an important element of substrate recognition lies in the pro-domain region of the molecule and that the pro-form of the enzyme is what initially interacts with the matrix substrate. These results have raised the interesting possibility that sequence differences between the pro-domain of LOX and LOXL account for some of the functional differences observed for the two enzymes.  相似文献   

9.
Lysyl oxidase (LOX) is an enzyme responsible for the cross-linking of collagen and elastin both in vitro and in vivo. The unique functions of the individual members of this multigene family have been difficult to ascertain because of highly conserved catalytic domains and overlapping tissue expression patterns. To address this problem of functional and structural redundancy and to determine the role of LOX in the development of tissue integrity, Lox gene expression was deleted by targeted mutagenesis in mice. Lox-targeted mice (LOX(-/-)) died soon after parturition, exhibiting cardiovascular instability with ruptured arterial aneurysms and diaphragmatic rupture. Microscopic analysis of the aorta demonstrated fragmented elastic fiber architecture in homozygous mutant null mice. LOX activity, as assessed by desmosine (elastin cross-link) analysis, was reduced by approximately 60% in the aorta and lungs of homozygous mutant animals compared with wild type mice. Immature collagen cross-links were decreased but to a lesser degree than elastin cross-links in LOX(-/-) mice. Thus, lysyl oxidase appears critical during embryogenesis for structural stability of the aorta and diaphragm and connective tissue development.  相似文献   

10.
Recently several cDNAs have been described encoding lysyl oxidase-like proteins. Their deduced amino acid sequences are characterized by a strong similarity in the C-terminal region, corresponding to the lysyl oxidase family catalytic domain, and by marked differences in the N-terminal regions. Different biological functions have been described for lysyl oxidases in addition to their traditionally assumed cross-linking role. To answer the question of whether these different functions are carried out by different lysyl oxidases, purified and active forms of these enzymes are required. At present only the classical form of lysyl oxidase has been purified and characterized. The purpose of this study was to isolate and characterize the lysyl oxidase-like protein. In view of the strong sequence homology with the C-terminal domain of other lysyl oxidases, we chose to purify the protein from bovine aorta using antibodies specific to the N-terminal domain of the proenzyme. We have isolated a 56-kDa protein identified by amino acid sequencing as the bovine lysyl oxidase-like precursor, which is cleaved at the Arg-Arg-Arg sequence at positions 89-91 by a furin-like activity, as revealed after deblocking of the N-terminal residue. The immunopurified protein was largely inactive, but further processing in vitro by bone morphogenetic protein-1 led to an enzyme that was active on elastin and collagen substrates.  相似文献   

11.
12.
13.
Lysyl oxidase activity was measured in the lungs and from cultured fibroblasts of Blotchy mice. A marked decrease in lysyl oxidase activity was observed in lungs of affected mice as compared to normal litter mates. Fibroblasts cultured from Blotchy mice were also deficient in lysyl oxidase, producing less than half of normal enzyme levels. Normal and Blotchy fibroblasts which had been maintained in culture for several months and had undergone spontaneous transformation, continued to show the same magnitude of difference in lysyl oxidase levels. The data suggest that the deficiency of lysyl oxidase is inherent in Blotchy fibroblasts and support the idea that the deficiency of this enzyme is the metabolic lesion that leads to the connective tissue defects observed in these animals.  相似文献   

14.
15.
Lysyl oxidase (LOX) and lysyl oxidase-like (LOXL) are extracellular enzymes that deaminate peptidyl lysyl residues involved in the cross-linking of fibrillar collagens and elastin. While LOX is required for the survival of newborn mice, the role of LOXL during development remains unclear. Studies have shown that the same cell types express LOX and LOXL in the same tissues, but no functional differences have been established. We have compared the immunohistochemical localization of LOX and LOXL in various tissues from normal, young adult mice. LOX and LOXL were co-localized in the skin, aorta, heart, lung, liver and cartilage, but were localized to different areas in the kidney, stomach, small intestine, colon, retina, ovary, testis and brain. LOXL expression was further examined in tissues from different developmental stages. In embryonic mice (10.5–14.5 dpc), LOXL immunostaining was abundant in the heart, liver, intestine, and neural tube. LOXL was present in most major organs in late fetal (16.5 dpc) and newborn mice, but generally diminished as animals aged. Immunoreactivity was significantly reduced in the heart, lung, kidney and liver of 2 year-old mice, but remained prevalent in the skin and tongue. LOX and LOXL were also found in the nuclei of cells in a number of tissues. These results indicate that LOXL has a role during mouse development and in the maintenance of adult tissues.  相似文献   

16.
Altered expression of miR-29b is implicated in the pathogenesis and progression of liver fibrosis. We and others previously demonstrated that miR-29b down-regulates the expression of several extracellular-matrix (ECM) genes including Col 1A1, Col 3A1 and Elastin via directly targeting their 3′-UTRs. However, whether or not miR-29b plays a role in the post-translational regulation of ECM biosynthesis has not been reported. Heat shock protein 47 (HSP47) and lysyl oxidase (LOX) are known to be essential for ECM maturation. In this study we have demonstrated that expression of HSP47 and LOX was significantly up-regulated in culture-activated primary rat hepatic stellate cells (HSCs), TGF-β stimulated LX-2 cells and liver tissue of CCl4-treated mice, which was accompanied by a decrease of miR-29b level. In addition, over-expression of miR-29b in LX-2 cells resulted in significant inhibition on HSP47 and LOX expression. Mechanistically, miR-29b inhibited the expression of a reporter gene that contains the respective full-length 3′-UTR from HSP47 and LOX gene, and this inhibitory effect was abolished by the deletion of a putative miR-29b targeting sequence from the 3′-UTRs. Transfection of LX-2 cells with miR-29b led to abnormal collagen structure as shown by electron-microscopy, presumably through down-regulation of the expression of molecules involved in ECM maturation including HSP47 and LOX. These results demonstrated that miR-29b is involved in regulating the post-translational processing of ECM and fibril formation.  相似文献   

17.
18.
19.
The pattern of collagen cross-linking is tissue specific primarily determined by the extent of hydroxylation and oxidation of specific lysine residues in the molecule. In this study, murine pre-myoblast cell line, C2C12 cells, were transdifferentiated into osteoblastic cells by bone morphogenetic protein (BMP)-2 treatment, and the gene expression of lysyl hydroxylases (LH1, 2a/b, and 3) and lysyl oxidase (LOX)/lysyl oxidase-like proteins (LOXL1-4), and the extent of hydroxylysine were analyzed. After 24 h of treatment, the expression of most isoforms were upregulated up to 96 h whereas LH2a and LOXL2 decreased with time. In the treated cells, both hydroxyproline and hydroxylysine were detected at day 7 and increased at day 14. The ratio of hydroxylysine to hydroxyproline was significantly increased at day 14. The results indicate that LHs and LOX/LOXLs are differentially responsive to BMP-induced osteoblast differentiation that may eventually lead to the specific collagen cross-linking pattern seen in bone.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号