首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The incubation of the 50 S ribosomal subunit of Escherichia coli with 1.5 M LiCl yields 1.5c core particles inactive in the peptidyl-tRNA hydrolysis activity of in vitro termination. The omission of L16 alone from reconstitutions of the proteins into the core results in inactive ribosomes. The single omission of a number of other proteins, in particular L7/L12, L10, L25, L27, and L15, gives ribosomes with intermediate activity. L16 alone is unable to restore significant activity to 1.5c cores, but together L16 and the above "stimulating" proteins produce particles as active as those reconstituted with the full complement of proteins. The ribosomal proteins important for the expression of peptidyl-tRNA hydrolysis and peptidyl transferase activities are very similar. However, ribosomes lacking both L11 and L16, but not L16 alone, surprisingly can catalyze codon- and release factor 2-dependent peptidyl-tRNA hydrolysis. The addition of L16 dramatically increases the activity. L16 is, therefore, important but not essential for the expression of the release factor 2-dependent peptidyl-tRNA hydrolysis.  相似文献   

2.
The nature, and even the existence, of trypanosome mitochondrial ribosomes has been the subject of some debate. We investigated this further in the insect trypanosome, Crithidia fasciculata. In sucrose gradients of parasite lysates, mitochondrial ribosomal RNA co-sediments at approximately 35S with nascent peptides synthesized in the presence of the cytosolic translational inhibitor, cycloheximide. Co-sedimenting peptides in this peak are much reduced when the parasites are treated with the bacterial translational inhibitor, chloramphenicol. In CsCl gradients this peak resolves at a buoyant density of 1.42 g/cm(3), a value typical for mito-ribosomes. Electron microscopy of peak material shows particles smaller than cytosolic ribosomes, but with characteristic ribosomal shapes. We propose that these particles represent the parasite's mitochondrial ribosomes.  相似文献   

3.
Mild ribonuclease treatment of the membrane fraction of P3K cells released three types of membrane-bound ribosomal particles: (a) all the newly made native 40S subunits detected after 2 h of [3H]uridine pulse. Since after a 3-min pulse with [35S]methionine these membrane native subunits appear to contain at least sevenfold more Met-tRNA per particle than the free native subunits, they may all be initiation complexes with mRNA molecules which have just become associated with the membranes; (b) about 50% of the ribosomes present in polyribosomes. Evidence is presented that the released ribosomes carry nascent chains about two and a half to three times shorter than those present on the ribosomes remaining bound to the membranes. It is proposed that in the membrane-bound polyribosomes of P3K cells, only the ribosomes closer to the 3' end of the mRNA molecules are directly bound, while the latest ribosomes to enter the polyribosomal structures are indirectly bound through the mRNA molecules; (c) a small number of 40S subunits of polyribosomal origin, presumably initiation complexes attached at the 5' end of mRNA molecules of polyribosomes. When the P3K cells were incubated with inhibitors acting at different steps of protein synthesis, it was found that puromycin and pactamycin decreased by about 40% the proportion of ribosomes in the membrane fraction, while cycloheximide and anisomycin had no such effect. The ribosomes remaining on the membrane fraction of puromycin-treated cells consisted of a few polyribosomes, and of an accumulation of 80S and 60S particles, which were almost entirely released by high salt treatment of the membranes. The membrane-bound ribosomes found after pactamycin treatment consisted of a few polyribosomes, with a striking accumulation of native 60S subunits and an increased number of native 40S subunits. On the basis of the observations made in this and the preceding papers, a model for the binding of ribosomes to membranes and for the ribosomal cycle on the membranes is proposed. It is suggested that ribosomal subunits exchange between free and membrane-bound polyribosomes through the cytoplasmic pool of free native subunits, and that their entry into membrane-bound ribosomes is mediated by mRNA molecules associated with membranes.  相似文献   

4.
During the initial ten hours of growth in lymphocytes stimulated by phytohemagglutinin, the cells are converted from a state in which over 70% of all ribosomes are inactive free ribosomes, to one in which over 80% of ribosomes are in polysomes or in native ribosomal subunits. In this initial period, there was a neglible increase in total ribosomal RNA due to increased RNA synthesis, and abolition of ribosomal RNA synthesis with low concentrations of actinomycin D did not interfere with polysome formation. Therefore, the conversion is accomplished by the activation of existing free ribosomes rather than by accumulation of newly synthesized particles. The large free ribosome pool of resting lymphocytes is thus an essential source of components for accelerated protein synthesis early in lymphocyte activation, before increased synthesis can provide a sufficient number of new ribosomes. Free ribosomes accumulate once more after 24 to 48 hours of growth, when RNA and DNA synthetic activity are maximal. This reaccumulation of inactive ribosomes at the peak of growth activity may represent preparation for a return to the resting state where cells are again susceptible to stimulation. Activation of free ribosomes to form polysomes appears to involve modification of at least two steps: (a) dissociation of free ribosomes with stabilization as native subunits, and (b) adjustment of a rate-limiting step at initiation.  相似文献   

5.
Thre different techniques— light scattering, radiowave dielectric spectroscopy, and fluorescence— were employed to investigate conformational variations in Escherichia coli ribosomes induced by removal of specific proteins. To this end, particles were treated with lithium chloride at different ion strength values to produce ribosomal cores. It was previously observed that treatment of ribosomes to subdenaturing temperatures promotes a structural rearrangement that implies a higher exposure of ribosomal RNA to the solvent. Results presented here strongly suggest that protein elimination from the ribosomal particle produces an overall response recalling the same variation of physical parameters previously observed after thermal treatment. We therefore suggest that high salt treatment produces the same structural modification caused by exposure to subdenaturing temperatures.  相似文献   

6.
Escherichia coli dnaK-ts mutants are defective in the late stages of ribosome biogenesis at high temperature. Here, we show that the 21S, 32S and 45S ribosomal particles that accumulate in the dnaK756-ts mutant at 44 degrees C contain unprocessed forms of their 16S and 23S rRNAs (partially processed in the case of 45S particles). Their 5S rRNA stoichiometry and ribosomal protein composition are typical of the genuine ribosomal precursors found in a wild-type (dnaK+) strain. Despite the lack of a functional DnaK, a very slow maturation of these 21S, 32S and 45S particles to structurally and functionally normal 30S and 50S ribosomal subunits still occurs at high temperature. This conversion is accompanied by the processing of p16S and p23S rRNAs to their mature forms. We conclude that: (i) 21S, 32S and 45S particles are not dead-end particles, but true precursors to active ribosomes (21S particles are converted to 30S subunits, and 32S and 45S to 50S subunits); (ii) DnaK is not absolutely necessary for ribosome biogenesis, but accelerates the late steps of this process considerably at high temperature; and (iii) 23S rRNA processing depends on the stage reached in the stepwise assembly of the 50S subunit, not directly on DnaK.  相似文献   

7.
We have demonstrated the presence of hydrophobic sites on the surface of Escherichia coli ribosomes by means of hydrophobic chromatography on Octyl-Sepharose. Both 30-S and 50-S ribosomal subunits adsorb to Octyl-Sepharose at a low salt concentration, and can be eluted from it with a nonionic detergent without substantial changes in structure or activity. By testing a series of LiCl-derived ribosomal cores for their ability to adsorb to Octyl-Sepharose we have shown that the interaction of ribosomal particles with Octyl-Sepharose is dependent on the presence of certain ribosomal proteins; the core particles which lack these proteins do not bind to Octyl-Sepharose. The binding of a series of different ribosomal cores to nitrocellulose filters (Millipore) yielded the same pattern as was observed with Octyl-Sepharose, i.e. the more protein-depleted the particles, the less they were adsorbed. Thus, the adsorption of ribosomes to Millipore filters and to Octyl-Sepharose is presumably of the same hydrophobic nature.  相似文献   

8.
R E Muller  J T Knowler 《FEBS letters》1984,174(2):253-257
The effect of oestrogen on the synthesis of ribosomal proteins in the uterus of the immature rat has been investigated. Stimulated synthesis peaks, at 6-7-times control levels, 12 h after a single administration of the hormone. The stimulated synthesis and incorporation of newly made proteins into ribosomal particles exhibit very similar kinetics. The incorporation of newly made rRNA into ribosomes mirrors that of ribosomal protein but lags several hours behind the peak of oestrogen-stimulated rRNA synthesis.  相似文献   

9.
Ribosomal protein methylation has been well documented but its function remains unclear. We have examined this phenomenon using an Escherichia coli mutant (prmB2), which fails to methylate glutamine residue number 150 of ribosomal protein L3. This mutant exhibits a cold-sensitive phenotype: its growth rate at 22 degrees C is abnormally low in complete medium. In addition, strains with this mutation accumulate abnormal and unstable ribosomal particles; 50-S and 30-S subunits are formed, but at a lower rate. Once assembled, ribosomes with unmethylated L3 are fully active by several criteria. (a) Protein synthesis in vitro with purified 70-S prmB2 ribosomes is as active as wild-type using either a natural (R17) or an artificial [poly(U)] messenger. (b) The induction of beta-galactosidase in vivo exhibits normal kinetics and the enzyme has a normal rate of thermal denaturation. (c) These ribosomes are standard when exposed in vitro to a low magnesium concentration or increasing molarities of LiCl. Efficient methylation of L3 in vitro requires either unfolded ribosomes or a mixture of ribosomal protein and RNA. We suggest that the L3-specific methyltransferase may qualify as one of the postulated 'assembly factors' of the E. coli ribosome.  相似文献   

10.
Previous studies from our laboratory demonstrated the existence of at least two levels of structural complexity in E. coli 70S ribosomes. Ribosomal RNA seems to be principally involved in the overall stability of these structures. In this paper we present an investigation of ribosomes subjected to treatment with RNase. The study is based on both differential scanning microcalorimetry and dielectric spectroscopy. In the thermograms obtained on treated ribosomes only the low temperature peak of the two typical denaturation events observed in native ribosomes, is promptly eliminated by the enzyme treatment. Dielectric spectroscopy measurements carried out on the same samples indicate an alteration of the dielectric behavior previously shown to consist of two subsequent relaxation processes. In fact, only the low frequency relaxation is affected by the treatment. The second one, observed at higher frequency, remains unaltered. The same effect on the dielectric parameters is observed if the ribosome particles are heated and then cooled prior to measurement. These results are consistent with the idea that two different structures are present within the ribosome. One is very stable and withstands both temperature and RNase treatment while the second is promptly abolished by both treatments. Data presented here strongly suggest that the RNA domains exposed to the solvent play a fundamental role in the stability of the 3-D structure of the ribosome particle.  相似文献   

11.
The incubation of the 50 S ribosomal subunits of Escherichia coli with 1.5 M LiCl yields 1.5c core particles depleted in 14 proteins and inactive in peptide chain termination. In codon-dependent peptidyl-tRNA hydrolysis the release factor 1 (RF-1)-induced reaction essentially depends on both L11 and L16 whereas the release factor 2 (RF-2)-induced reaction is depressed by L11 and stimulated by L16. Omission of L11 results in a several-fold increase in the specific activity of the RF-2. Functional complexes are formed with RF-2 at an apparent Km (dissociation constant) for the termination codon 5-fold lower than with reconstituted ribosomes containing L11; the Vmax for the hydrolysis is unchanged. L11 suppresses this effect when added to the core at close to molar equivalence. In contrast, RF-1 has a very low activity if ribosomes lack L11 and this can be restored by titration of L11 back to the core. This is the first example of a differential or an opposite effect of a ribosomal component on the activities of the two release factors, and the studies suggest that L11 has a critical role in the binding domain for the two factors.  相似文献   

12.
Stimulation of peptidyltransferase reactions by a soluble protein   总被引:1,自引:0,他引:1  
The requirements for peptide-bond synthesis and transesterification reactions of Escherichia coli 70S ribosomes, 50S native or reconstructed 50S subunits were examined using fMet-tRNA as donor substrate and puromycin or alpha-hydroxypuromycin as acceptors. We report that the soluble protein EF-P, purified to apparent homogeneity, stimulates the synthesis of N-formylmethionylpuromycin or N-formylmethionylhydroxypuromycin by 70S ribosomes or reassociated 30S and 50S subunits. In the presence of EF-P, 70S ribosomes are significantly more efficient than 50S particles in catalysing either peptide-bond synthesis or transesterification. The involvement of 50S subunit proteins in EF-P-stimulated peptide-bond formation and transesterification was studied. 50S subunits were dissociated by 2.0 M LiCl into core particles and 'split' proteins, several of which were purified to homogeneity. When added to 30S X A-U-G X f[35S]Met-tRNA, 50S cores or 50S cores reconstituted with L6 or L11 promoted peptide-bond synthesis or transesterification poorly. EF-P stimulated peptide-bond synthesis by both these types of core particles to approximately the same extent. On the other hand, EF-P stimulated a low level of transesterification by cores reconstituted with L6 and L11. In contrast, core particles reconstituted with L16 exhibited both peptide-bond-forming and transesterification activities and EF-P stimulated both reactions twentyfold and fortyfold respectively. Thus different proteins differentially stimulate the intrinsic or EF-P-stimulated peptide-bond and transesterification reactions of the peptidyl transferase. Ethoxyformylation of either 50S subunits or purified L16 used to reconstitute core particles, resulted in loss of peptide-bond formation and transesterification. Similarly ethoxyformylation of EF-P resulted in a 25-50% loss of its ability to stimulate both reactions. 30S subunits were resistant to treatment by this reagent. These results suggest the involvement of histidine residues in peptidyltransferase activities. The role of EF-P in the catalytic mechanism of peptidyltransferase is discussed.  相似文献   

13.
Ribosomal functions are vital for all organisms. Bacterial ribosomes are stable 2.4 MDa particles composed of three RNAs and over 50 different proteins. Accumulating damage to ribosomal RNA or proteins can disturb ribosome functioning. Organisms could benefit from degrading or possibly repairing inactive or partially active ribosomes. Reactivation of chemically damaged ribosomes by a process of protein replacement was studied in vitro. Ribosomes were inactivated by chemical modification of Cys residues. Incubation of modified ribosomes with total ribosomal proteins led to reactivation of translational activity. Intriguingly, ribosomal proteins extracted by LiCl are equally active in the restoration of ribosome function. Incubation of 70S ribosomes with isotopically labelled r‐proteins followed by separation of ribosomes was used to identify exchangeable proteins. A similar set of proteins was found to be exchanged in vivo under stress conditions in the stationary phase. We propose that repair of damaged ribosomes might be an important mechanism for maintaining protein synthesis activity following chemical damage.  相似文献   

14.
The ribosomal L12 protein gene of Sulfolobus solfataricus (SsoL12) has been subcloned and overexpressed in Escherichia coli. Five protein L12 mutants were designed: two NH2-terminal and two COOH-terminal truncated mutants and one mutant lacking the highly charged part of the COOH-terminal region. The mutant protein genes were overexpressed in E. coli and the products purified. The amino acid composition was verified and the NH2 terminally truncated mutants were subjected to Edman degradation. The SsoL12 protein was selectively removed from entire S. solfataricus ribosomes by an ethanol wash. The remaining ribosomal core particles showed a substantial decrease in the in vitro translational activity. S. solfataricus L12 protein overexpressed in E. coli (SsoL12e) was incorporated into these ribosomal cores and restored their translational activity. Mutants lacking any part of the COOH-terminal region could be incorporated into these cores, as proven by two-dimensional polyacrylamide gels of the reconstituted particles. Mutant SsoL12 MC2 (residue 1-70) was sufficient for dimerization and incorporation into ribosomes. In contrast to the COOH terminally truncated mutants, L12 proteins lacking the 12 highly conserved NH2-terminal residues or the entire NH2-terminal region (44 amino acids) are unable to bind to ribosomes, suggesting that the SsoL12 protein binds with its NH2-terminal portion to the ribosome. None of the mutants could significantly increase the translational activity of the core particles suggesting that every deleted part of the protein was needed directly or indirectly for translational activity. Our results suggest that the COOH terminally truncated mutants were bound to ribosomes but not functional for translation. Cores preincubated with these COOH terminally truncated mutants regained activity when a second incubation with the entire overexpressed SsoL12e protein followed. This finding suggests that archaebacterial L12 proteins are freely exchanged on the ribosome.  相似文献   

15.
Mouse brain ribosomes were radioactively labelled by a cell-free reductive alkylation reaction with NaBH4 and [14C]formaldehyde. The radioactivity was largely associated with ribosomal proteins, but little, if any, of the rRNA was radioactive after the alkylation procedure. Both ribosomal structural proteins and loosely associated components were successfully labelled by this procedure. The sedimentation properties of the ribosomes were unaltered and their ability to carry out poly(U)-directed protein synthesis, although decreased, was largely retained. Incubation of 14C-labelled ribosomes with brain cytosol resulted in a 17% loss of radioactivity, although treatment of the ribosomes with 1.0 m-KCl to remove the loosely associated factors rendered the ribonucleoprotein particles resistant to cytosol effects. The ribosome-cytosol interactions did not appear to be related to an exchange process, since the released radioactivity was largely degraded to acid-soluble material. In addition, the incubation of native ribosomes with brain cytosol resulted in an almost complete loss in the ability of the ribosomes to participate in cell-free protein synthesis.  相似文献   

16.
The lateral mobility of ribosomes bound to rough endoplasmic reticulum (RER) membranes was demonstrated under experimental conditions. High- salt-washed rough microsomes were treated with pancreatic ribonuclease (RNase) to cleave the mRNA of bound polyribosomes and allow the movement of individual bound ribosomesmfreeze-etch and thin-section electron microscopy demonstrated that, when rough microsomes were treated with RNase at 4 degrees C and then maintained at this temperature until fixation, the bound ribosomes retained their homogeneous distribution on the microsomal surface. However, when RNase- treated rough microsomes were brought to 24 degrees C, a temperature above the thermotropic phase transition of the microsomal phospholipids, bound ribosomes were no longer distributed homogeneously but, instead, formed large, tightly packed aggregates on the microsomal surface. Bound polyribosomes could also be aggregated by treating rough microsomes with antibodies raised against large ribosomal subunit proteins. In these experiments, extensive cross-linking of ribosomes from adjacent microsomes also occurred, and large ribosome-free membrane areas were produced. Sedimentation analysis in sucrose density gradients demonstrated that the RNase treatment did not release bound ribosomes from the membranes; however, the aggregated ribosomes remain capable of peptide bond synthesis and were released by puromycin. It is proposed that the formation of ribosomal aggregates on the microsomal surface results from the lateral displacement of ribosomes along with their attached binding sites, nascent polypeptide chains, and other associated membrane proteins; The inhibition of ribosome mobility after maintaining rough microsomes at 4 degrees C after RNase, or antibody, treatment suggests that the ribosome binding sites are integral membrane proteins and that their mobility is controlled by the fluidity of the RER membrane. Examination of the hydrophobic interior of microsomal membranes by the freeze-fracture technique revealed the presence of homogeneously distributed 105-A intramembrane particles in control rough microsomes. However, aggregation of ribosomes by RNase, or their removal by treatment with puromycin, led to a redistribution of the particles into large aggregates on the cytoplasmic fracture face, leaving large particle-free regions.  相似文献   

17.
In Escherichia coli cultures limited for phosphate, the number of ribosomal particles was reduced to a small percentage of its earlier peak value by the time the viable cell count began to drop; the 30S subunits decreased more than the 50S subunits. Moreover, the ribosomal activity was reduced even more: these cells no longer synthesized protein, and their extracts could not translate phage RNA unless ribosomes were added. The translation initiation factors also disappeared, suggesting that they become less stable when released from their normal attachment to 30S subunits. In contrast, elongation factors, aminoacyl-tRNA synthetases, and tRNA persisted. During further incubation, until viability was reduced to 10(-5), the ribosomal particles disappeared altogether, while tRNA continued to be preserved. These results suggest that an excessive loss of ribosomes (and of initiation factors) may be a major cause of cell death during prolonged phosphate starvation.  相似文献   

18.
A novel method of RNA fractionation has been developed. Nuclear and cytoplasmic rat liver RNA species were fractionated as constituents of corresponding ribonucleoprotein particles, which were previously adsorbed on a Celite-column by their protein component. The fractionation is based on a dissociation of the particles (linear concentration gradient of LiCl and urea with subsequent temperature gradient), which results in a gradual release of the RNA molecules from ribonucleoprotein complexes. Thus the fractionation is in accordance with the tightness of the RNA-protein bonds. A gradient elution of RNA from a nucleoprotein-Celite column permitted fractionation of both ribosomal and rapidly labelled non-ribosomal RNA. The latter, both nuclear and cytoplasmic, could be separated by chromatography on nucleoprotein-Celite columns into two main fractions (components I and V). In cytoplasmic RNA components I and V presumably correspond to mlRNA (messenger-like RNA of free cytoplasmic particles) and mRNA (template RNA associated with ribosomes) respectively.  相似文献   

19.
Transient incubation of bacterial ribosomes with virginiamycin M produces a lasting damage of 50 S ribosomal subunits, whereby the elongation of peptide chains is still blocked after removal of the antibiotic. To elucidate the mechanism of this inactivation, ribosomal proteins were stepwise removed from 50 S subunits previously incubated with virginiamycin M, and cores were submitted to three functional tests. Total removal of proteins L7, L8, L12 and L16, and partial removal of L6, L9, L10 and L11, resulted in a loss of the virginiamycin M-induced alteration. When the split protein fractions were added back to these cores, unaltered functional particles were obtained. The reconstituted subunits, on the other hand, proved fully sensitive to virginiamycin M in vitro as they underwent, upon transient contact with the antibiotic, an alteration comparable to that of native particles. It is concluded that the virginiamycin M-induced ribosome damage is due to the production of a stable conformational change of the 50 S subunit. These data parallel those of an accompanying paper (Cocito, C., Vanlinden, F. and Branlant, C. (1983) Biochim. Biophys. Acta 739, 158-163) showing the intactness of all rRNA species from ribosomes treated in vivo and in vitro with virginiamycin M.  相似文献   

20.
Previously it has been shown that 12 of the yeast ribosomal proteins were extractable from 60 S subunits under a specific nondenaturing condition [J. C. Lee, R. Anderson, Y. C. Yeh, and P. Horowitz (1985) Arch. Biochem. Biophys. 237, 292-299]. In the present paper, we showed that these proteins could be reassembled with the corresponding protein-deficient core particles to form biologically active ribosomal subunits. Effects of time, temperature, and varying concentrations of monovalent cations, divalent cations, cores, and ribosomal proteins on reconstitution were examined. Reconstitution was determined by binding of radiolabeled proteins to the nonradiolabeled cores as well as activity for polypeptide synthesis in a cell-free protein-synthesizing system. The optimal conditions for reconstitution were established. Whereas the core particles were about 10-20% as active as native 60 S subunits in an in vitro yeast cell-free protein-synthesizing system, the reconstituted particles were 80% as active. The activity of the reconstituted particles was proportional to the amount of extracted proteins added to the reconstitution mixture. About 55 +/- 7% of the core particles recombined with the extracted proteins to form reconstituted particles. These reconstituted particles cosedimented with native 60 S subunits in glycerol gradients and contained all of the 12 extractable proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号