首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Activity of voltage-gated K+ (KV) channels regulates membrane potential (E(m)) and cytosolic free Ca2+ concentration ([Ca2+](cyt)). A rise in ([Ca2+](cyt))in pulmonary artery (PA) smooth muscle cells (SMCs) triggers pulmonary vasoconstriction and stimulates PASMC proliferation. Chronic hypoxia (PO(2) 30-35 mmHg for 60-72 h) decreased mRNA expression of KV channel alpha-subunits (Kv1.1, Kv1.5, Kv2.1, Kv4.3, and Kv9.3) in PASMCs but not in mesenteric artery (MA) SMCs. Consistently, chronic hypoxia attenuated protein expression of Kv1.1, Kv1.5, and Kv2.1; reduced KV current [I(KV)]; caused E(m) depolarization; and increased ([Ca2+](cyt)) in PASMCs but negligibly affected KV channel expression, increased I(KV), and induced hyperpolarization in MASMCs. These results demonstrate that chronic hypoxia selectively downregulates KV channel expression, reduces I(KV), and induces E(m) depolarization in PASMCs. The subsequent rise in ([Ca2+](cyt)) plays a critical role in the development of pulmonary vasoconstriction and medial hypertrophy. The divergent effects of hypoxia on KV channel alpha-subunit mRNA expression in PASMCs and MASMCs may result from different mechanisms involved in the regulation of KV channel gene expression.  相似文献   

2.
3.
Some ectothermic vertebrates show unusually good tolerance to oxygen shortage and it is therefore assumed that they might, as a defense mechanism, decrease number or activity of ion channels in order to reduce membrane leakage and thereby ATP-dependent ion pumping in hypoxia. Although several studies have provided indirect evidence in favor of this channel arrest hypothesis, only few experiments have examined activity of ion channels directly from animals exposed to chronic hypoxia or anoxia in vivo. Here we compare the inwardly rectifying K+ current (IK1), a major leak and repolarizing K+ pathway of the heart, in cardiac myocytes of normoxic and hypoxic crucian carp, using the whole-cell and cell-attached single-channel patch-clamp methods. Whole-cell conductance of IK1 was 0.5 ± 0.04 nS/pF in normoxic fish and did not change during the 4 weeks hypoxic (O2 < 0.4 mg/l; 2.68 mmHg) period, meanwhile the activity of Na+/K+ATPase decreased 33%. Single-channel conductance of the IK1 was 20.5 ± 0.8 pS in control fish and 21.4 ± 1.1pS in hypoxic fish, and the open probability of the channel was 0.80 ± 0.03 and 0.74 ± 0.04 (P > 0.05) in control and hypoxic fish, respectively. Open and closed times also had identical distributions in normoxic and hypoxic animals. These results suggest that the density and activity of the inward rectifier K+ channel is not modified by chronic hypoxia in ventricular myocytes of the crucian carp heart. It is concluded that instead of channel arrest, the hypoxic fish cardiac myocytes obtain energy savings through action potential arrest due to hypoxic bradycardia.  相似文献   

4.
低氧性肺血管收缩反应(HPV)是指在急性低氧时,肺泡氧分压降到某一临界值,肺血管发生的快速、可逆的收缩反应,以纠正肺泡通气/灌流的不匹配。HPV的发生与肺动脉平滑肌细胞上K^+、Ca^2+、Cl^-通道的状态密切相关,而这些通道在不同部位的肺动脉上分布存在差异,因此不同部位的肺动脉在低氧中所表现的收缩反应程度也不同,本综述将对上述通道在肺动脉上的分布特点及其在HPV中的作用做一总结。  相似文献   

5.
Exposure to chronic hypoxia (CH) causes pulmonary hypertension. The vasoconstrictor endothelin-1 (ET-1) is thought to play a role in the development of hypoxic pulmonary hypertension. In pulmonary arterial smooth muscle cells (PASMCs) from chronically hypoxic rats, ET-1 signaling is altered, with the ET-1-induced change in intracellular calcium concentration (Δ[Ca(2+)](i)) occurring through activation of voltage-dependent Ca(2+) channels (VDCC) even though ET-1-induced depolarization via inhibition of K(+) channels is lost. The mechanism underlying this response is unclear. We hypothesized that activation of VDCCs by ET-1 following CH might be mediated by protein kinase C (PKC) and/or Rho kinase, both of which have been shown to phosphorylate and activate VDCCs. To test this hypothesis, we examined the effects of PKC and Rho kinase inhibitors on the ET-1-induced Δ[Ca(2+)](i) in PASMCs from rats exposed to CH (10% O(2), 3 wk) using the Ca(2+)-sensitive dye fura 2-AM and fluorescent microscopy techniques. We found that staurosporine and GF109203X, inhibitors of PKC, and Y-27632 and HA 1077, Rho kinase inhibitors, reduced the ET-1-induced Δ[Ca(2+)](i) by >70%. Inhibition of tyrosine kinases (TKs) with genistein or tyrphostin A23, or combined inhibition of PKC, TKs, and Rho kinase, reduced the Δ[Ca(2+)](i) to a similar extent as inhibition of either PKC or Rho kinase alone. The ability of PKC or Rho kinase to activate VDCCs in our cells was verified using phorbol 12-myristate 13-acetate and GTP-γ-S. These results suggest that following CH, the ET-1-induced Δ[Ca(2+)](i) in PASMCs occurs via Ca(2+) influx through VDCCs mediated primarily by PKC, TKs, and Rho kinase.  相似文献   

6.
We have cloned a delayed rectifier type K channel from rat heart (RH1). RH1 was identical to the rat brain K channel BK2 and differed from recently cloned rat cardiac K channel RAK by one amino acid residue. Endothelin receptors(ETRs)-mediated modulation of RH1 current (IRH1) was studied using Xenopus oocyte expression system. Activation of two different subtypes of ETRs by endothelin-1 equally suppressed the amplitude of IRH1. Stimulation of phosphatidylinositol turnover will probably be responsible for the suppression.  相似文献   

7.
K(V)10.1 is a mammalian brain voltage-gated potassium channel whose ectopic expression outside of the brain has been proven relevant for tumor biology. Promotion of cancer cell proliferation by K(V)10.1 depends largely on ion flow, but some oncogenic properties remain in the absence of ion permeation. Additionally, K(V)10.1 surface populations are small compared to large intracellular pools. Control of protein turnover within cells is key to both cellular plasticity and homeostasis, and therefore we set out to analyze how endocytic trafficking participates in controlling K(V)10.1 intracellular distribution and life cycle. To follow plasma membrane K(V)10.1 selectively, we generated a modified channel of displaying an extracellular affinity tag for surface labeling by α-bungarotoxin. This modification only minimally affected K(V)10.1 electrophysiological properties. Using a combination of microscopy and biochemistry techniques, we show that K(V)10.1 is constitutively internalized involving at least two distinct pathways of endocytosis and mainly sorted to lysosomes. This occurs at a relatively fast rate. Simultaneously, recycling seems to contribute to maintain basal K(V)10.1 surface levels. Brief K(V)10.1 surface half-life and rapid lysosomal targeting is a relevant factor to be taken into account for potential drug delivery and targeting strategies directed against K(V)10.1 on tumor cells.  相似文献   

8.
High-altitude long-term hypoxia (LTH) alters cerebral vascular contractile and relaxation responses in both fetus and adult. We tested the hypotheses that LTH-mediated vascular responses were secondary to altered K+ channel function and that in the fetus these responses differ from those of the adult. In middle cerebral arteries (MCA) from both nonpregnant adult and fetal (approximately 140 days gestation) sheep, which were either acclimatized to high altitude (3,820 m) or sea-level controls, we measured norepinephrine (NE)-induced contractions and intracellular Ca2+ concentration ([Ca2+]i) simultaneously, in the presence or absence of different K+ channel openers or blockers. In adult MCA, LTH was associated with approximately 20% decrease in NE-induced tension and [Ca2+]i, with a significant increase in Ca2+ sensitivity. In contrast, in fetal MCA, LTH failed to affect significantly NE-induced contraction or [Ca2+]i but significantly decreased the ATP-sensitive K+ (K(ATP)) channel and Ca2+-activated K+ (K(Ca)) channel-mediated relaxation. The significant effect of K(ATP) and K(Ca) channel activators on the relaxation responses and the fact that K+ channels play a key role in myogenic tone support the hypotheses that K+ channels play an important role in hypoxia-mediated responses. These results also support the hypothesis of significant developmental differences with maturation from fetus to adult.  相似文献   

9.
Summary The effects of ADP upon the gating of ATP-sensitive K+ channels from rat ventricular myocytes have been investigated by patch-clamp single-channel current recording experiments. ADP was applied to the internal surface of excised insideout membrane patches and depending upon the experimental protocol and the concentration it was found that ADP could either inhibit or stimulate openings of ATP-sensitive K+ channels. In the absence of inactivation, ATP-sensitive K+ channels were inhibited by ADP in a dose-dependent manner. Partially inactivated channels, on the other hand, were stimulated by low (10 to 250 M) and inhibited by high (>250 M) concentrations of ADP. ATP-sensitive K+ channels which were being inhibited by ATP (<1 mM) could be opened by the simultaneous application of ADP (50 M to 1 mM). ADP had no effect upon channels inhibited by mM concentrations of ATP. The situation was further complicated when it was found that inhibition evoked by ADP was strongly attenuated by the presence of Mg2+ ions whilst channel stimulation, whether of partially inactivated channels or channels inhibited by ATP, required the presence of Mg2+ ions. The analog of ADP, ADPS, always evoked inhibition of ATP-sensitive K+ channels which was not affected by the presence or absence of Mg2+ ions.  相似文献   

10.
Tension and patch clamp recording techniques were used to investigate the relaxation of rabbit pulmonary artery and the properties of the K+ current activated by levcromakalim in isolated myocytes. Under whole-cell voltage clamp, holding at –60 mV in symmetrical 139 mm K+, levcromakalim (10 m) induced a noisy inward current of –116 ± 19 pA (n = 13) which developed over 1 to 2 min. This current could be blocked by either glibenclamide (10 m) or phencyclidine (5–50 M) and was unaffected when extracellular Ca2+ was removed. Both these drugs inhibited the levcromakalim-induced relaxation of muscle strips precontracted with 20 mm [K+] o . Application of voltage ramps in symmetrical 139 mm K+ confirmed that the levcromakalim-induced current was carried by K+ ions and was weakly voltage dependent over the potential range from –100 to +40 mV.The unitary current amplitude and density of the channels underlying the levcromakalim-activated whole-cell K+ current was estimated from the noise in the current record. We estimate that levcromakalim caused activation of around 300 channels per cell, with a single channel current of 1.1 pA, corresponding to a slope conductance of about 19 pS. Furthermore, cells dialyzed with an ATP-free pipette solution developed a large noisy inward current at –60 mV, which could subsequently be blocked by flash photolysis of caged ATP. Analysis of the noise associated with this current indicated that the single channel amplitude underlying the ATP-blocked current was 1.4 pA, a value similar to that estimated for the levcromakalim-induced current. We conclude that the conductance of this ATP-sensitive channel is likely to be small under physiological conditions and that it is present at low density.We thank SmithKline & Beecham for the gift of levcromakalim, ICI Pharmaceuticals for the gift of charybdotoxin and Prof. D. Colquhoun for the noise analysis programs. We also thank Mr. R. Davey for technical assistance with tension experiments. This work was supported by the British Heart Foundation and the Wellcome Trust. L.H.C. is a Wellcome Research Fellow and P.L. is an intermediate fellow of the BHF.  相似文献   

11.
低氧对培养的不同内径的肺动脉平滑肌细胞增殖的影响   总被引:4,自引:0,他引:4  
目的和方法:分离培养三种不同内径的肺动脉平滑肌细胞(PASMCs),用^3H-TdR掺入速率和细胞计数作为细胞增殖的指标,观察低氧对其增殖作用的影响。结果:低氧对三种不同内径的PASMCs(内径分别为>1000μm、500-800μm、300-400μm)增殖促进作用显著不同,其^3H-TdR掺入速率和细胞计数分别增加23.5%和11.1%、60.0%和33.8%、141.4%和52.0%,选择对低氧最敏感的PASMCs(内径为300-400μm),进一步探讨低氧促PASMCs增殖作用的细胞机制:钙拮抗剂verapail、蛋白激酶C抑制剂staurosporine(Stau)和细胞Na-H交换抑制剂amiloride可显著降低低氧情况下PASMCs^3H-TdR掺入速率和细胞计数。结论:低氧对三种不同内径的PASMCs增殖促进作用显著不同; Ca^2 、蛋白激酶C和Na^2 -H^ 交换的激活,可能是低氧促PASMCs增殖的重要胞内信息转导机制。  相似文献   

12.
13.
To investigate the effect of pulmonary alveolar hypoxia on the synthesis and release of endothelin (ET)-1, ET-1-like immunoreactivity (-LI) levels of the lung and plasma were measured in conscious unrestrained rats under hypoxic conditions. Sixty-min exposure to alveolar hypoxia (10% O2 or 5% O2) increased the ET-1-LI level in the lung. The plasma ET-1-LI level in hypoxic rats also increased significantly. The increase of plasma and lung ET-1-LI levels were parallel to the severity of hypoxia. These results demonstrates that acute pulmonary alveolar hypoxia increases lung and plasma ET-1-LI levels in conscious unrestrained rats, suggesting a possible physiological or pathophysiological significance of ET in alveolar hypoxia.  相似文献   

14.
Vasodilatory responses to exogenous nitric oxide (NO) are diminished following exposure to chronic hypoxia (CH) in isolated, perfused rat lungs. We hypothesized that both endothelium-derived reactive oxygen species (ROS) and endothelin-1 (ET-1) mediate this attenuated NO-dependent pulmonary vasodilation following CH. To test this hypothesis, we examined vasodilatory and vascular smooth muscle (VSM) Ca2+ responses to the NO donor spermine NONOate in UTP-constricted, isolated pressurized small pulmonary arteries from control and CH rats. Consistent with our previous findings in perfused lungs, we observed attenuated NO-dependent vasodilation following CH in endothelium-intact vessels. However, in endothelium-denuded vessels, responses to spermine NONOate were augmented in CH rats compared with controls, thus demonstrating an inhibitory influence of the endothelium on NO-dependent reactivity following CH. Whereas both the ROS scavenger tiron and the ETA receptor antagonist BQ-123 augmented NO-dependent reactivity in endothelium-intact vessels from CH rats, neither fully restored vasodilatory responses to those observed following endothelium denudation in vessels from CH rats. In contrast, the combination of tiron and BQ-123 or the nonselective ET receptor antagonist PD-145065 enhanced NO responsiveness in endothelium-intact vessels from CH rats similar to that observed following endothelium denudation. We conclude that both endothelium-derived ROS and ET-1 attenuate NO-dependent pulmonary vasodilation following CH. Furthermore, CH augments pulmonary VSM reactivity to NO.  相似文献   

15.
Differential segmental distribution of electrophysiologically distinct myocytes helps to explain the variability of the pulmonary arteries to vasoactive agents. We have studied whether Ca2+ -dependent CI- (CICa) and K+ (KCa) channels are activated differentially in enzymatically dispersed conduit and resistance myocytes. We measured cytosolic [Ca2+] and the changes of membrane current and potential elicited by spontaneous or agonist-induced Ca2+ oscillations. Conduit arteries contained a heterogeneous cell population with a variable mixture of KCa and CICa conductances. Resistance arteries contained a more homogeneous cell population with predominance of CICa channel activation. The relation between KCa and CICa conductances in a given conduit myocyte determines the size of the V(m)change in response to a rise of cytosolic [Ca2+]. Conduit myocytes tend to hyperpolarize towards the K+ equilibrium potential (approximately - 90 m V). In resistance myocytes, release of Ca2+ from stores activates CI Cachannels and brings Vm to a value close to the chloride equilibrium potential (approximately - 20 or - 30 m V) thus favouring opening of Ca2+ channels and Ca2+ influx. In resistance vessels CICachannels contribute to link agonist-induced Ca2+ release from stores and membrane depolarization, thus permitting protracted vasoconstriction.  相似文献   

16.
ATP-sensitive potassium (K(ATP)) channels play important roles in many cellular functions such as hormone secretion and excitability of muscles and neurons. Classical ATP-sensitive potassium (K(ATP)) channels are heteromultimeric membrane proteins comprising the pore-forming Kir6.2 subunits and the sulfonylurea receptor subunits (SUR1 or SUR2). The molecular mechanism by which hormones and neurotransmitters modulate K(ATP) channels via protein kinase A (PKA) is poorly understood. We mutated the PKA consensus sequences of the human SUR1 and Kir6.2 subunits and tested their phosphorylation capacities in Xenopus oocyte homogenates and in intact cells. We identified the sites responsible for PKA phosphorylation in the C-terminus of Kir6.2 (S372) and SUR1 (S1571). Kir6.2 can be phosphorylated at its PKA phosphorylation site in intact cells after G-protein (Gs)-coupled receptor or direct PKA stimulation. While the phosphorylation of Kir6.2 increases channel activity, the phosphorylation of SUR1 contributes to the basal channel properties by decreasing burst duration, interburst interval and open probability, and also increasing the number of functional channels at the cell surface. Moreover, the effect of PKA could be mimicked by introducing negative charges in the PKA phosphorylation sites. These data demonstrate direct phosphorylation by PKA of the K(ATP) channel, and may explain the mechanism by which Gs-coupled receptors stimulate channel activity. Importantly, they also describe a model of heteromultimeric ion channels in which there are functionally distinct roles of the phosphorylation of the different subunits.  相似文献   

17.
BACKGROUND AND AIM: The action potential plateau of Purkinje fibers is particularly sensitive to tetrodotoxin (TTX) and this could be due to a TXX-sensitive Na(+) current. The expression of TTX-sensitive neuronal Na(V)1.1 and Na(V)1.2 isoforms has been reported in canine Purkinje myocytes. Our aim was to investigate by means of biochemical and functional techniques whether the TTX-sensitive skeletal Na(V)1.4 isoform is also expressed in canine cardiac Purkinje myocytes. METHODS AND RESULTS: Using Na(V)1.4 specific primers, a PCR product corresponding to Na(V)1.4 was amplified from canine Purkinje fibers RNA and confirmed by sequencing and megablast of the gene bank. Confocal indirect immunostaining using anti-Na(V)1.4 antibody demonstrates distinct sarcolemmal staining pattern compared to that of the cardiac isoform Na(V)1.5. Expression of Na(V)1.4 in tsA201 cells yielded a TTX-sensitive Na(+) current with an IC(50) of 10nM. CONCLUSIONS: These results demonstrate the expression of the TTX-sensitive Na(V)1.4 channel in canine cardiac Purkinje myocytes. This novel finding suggests a role of Na(V)1.4 channel in Purkinje myocytes and thus has important clinical implications for the mechanisms and management of ventricular arrhythmias originating in the Purkinje network.  相似文献   

18.
19.
We investigated the molecular forms of endothelin (ET) related peptides in porcine spinal cord by high performance liquid chromatography coupled with radioimmunoassays using three antisera raised against ET-1 and C-terminal fragments of ET-1 and big ET-1. ET-1 and its oxidized form were isolated as major immunoreactive peptides and sequenced. Furthermore, immunoreactivities like ET-3 and big ET-1(22-39) (contents: less than 8% and less than 1% of ET-1, respectively) were detected based on their chromatographic retention times and characteristics of immunoreactivity to the antisera. Big ET-1 was only scarcely detected. Immunohistochemical study showed the presence of ET-1-like immunoreactivity in motoneurons, dorsal horn neurons and dot- and fiber-like structures in the dorsal horn of lumbar spinal cord. These results indicate that ET-1 is present not only in endothelial cells but also in spinal cord, and that big ET-1 is converted into ET-1 in spinal cord by specific processing between Trp21-Val22. The data also indicate that ET-1 may act as a neuropeptide in the central nervous system.  相似文献   

20.
We have investigated which follicular compartment and stage of follicular development are associated with endothelin-1 (ET-1) gene expression in the porcine ovary. The localization of mature ET-1 peptide and of its mRNA was determined by immunohistochemistry and by in situ hybridization. Stage of follicular development associated with ET-1 expression was investigated in terms of follicular class and occurrence of atresia. The latter was investigated by determining the occurrence of DNA fragmentation in apoptotic cells on adjacent sections to those used for ET-1 gene expression. Fifteen ovaries from 10 prepubertal pigs stimulated with gonadotropin were collected; a total of 1050 follicles were examined. Specific ET-1 immunoreactivity was restricted to the ovarian vasculature and to the granulosa cell compartment of antral follicles. The pattern of ET-1 mRNA expression was similar to that found for ET-1 immunoreactivity. Primordial, primary, and most secondary follicles did not express ET-1. The theca cell layer did not express ET-1 regardless of follicle developmental stage. ET-1 expression occurred with a significantly greater probability (P < 0.001 by the likelihood ratio test) in the granulosa cell compartment of antral follicles than in any other follicle class. Furthermore, in antral follicles, ET-1 expression occurred with a greater likelihood in large antral follicles than in small antral follicles (P < 0.001 by the likelihood ratio test). In small antral follicles, only 16.8% expressed ET-1; in contrast, 66.7% of large antral follicles exhibited ET-1 expression. It is interesting that in follicles in which ovulation had already occurred, intense ET-1 expression was found only in the prominent developing vasculature, the other cells present in the luteinized follicle did not display any ET-1 expression. The pattern of ET-1 gene expression observed in this study would be in agreement with our previous suggestion of a plausible physiological role for ET-1 in preventing premature progesterone production by granulosa cells of an antral follicle. The occurrence of atresia and expression of ET-1 in the same follicle was rare. Small and large antral follicles constituted 5.1% and 5.6%, respectively, of the examined follicles in this category. The majority of atretic follicles did not express ET-1 and, conversely, follicles that expressed ET-1 were not atretic. To the best of our knowledge, this is the first report in which large, nonatretic follicles are clearly identified as the population of follicles expressing ET-1. The results of this study delineate the follicular developmental stage and the compartment of when and where ET-1 may be physiologically meaningful.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号