共查询到20条相似文献,搜索用时 15 毫秒
1.
Platoshyn O Yu Y Golovina VA McDaniel SS Krick S Li L Wang JY Rubin LJ Yuan JX 《American journal of physiology. Lung cellular and molecular physiology》2001,280(4):L801-L812
Activity of voltage-gated K+ (KV) channels regulates membrane potential (E(m)) and cytosolic free Ca2+ concentration ([Ca2+](cyt)). A rise in ([Ca2+](cyt))in pulmonary artery (PA) smooth muscle cells (SMCs) triggers pulmonary vasoconstriction and stimulates PASMC proliferation. Chronic hypoxia (PO(2) 30-35 mmHg for 60-72 h) decreased mRNA expression of KV channel alpha-subunits (Kv1.1, Kv1.5, Kv2.1, Kv4.3, and Kv9.3) in PASMCs but not in mesenteric artery (MA) SMCs. Consistently, chronic hypoxia attenuated protein expression of Kv1.1, Kv1.5, and Kv2.1; reduced KV current [I(KV)]; caused E(m) depolarization; and increased ([Ca2+](cyt)) in PASMCs but negligibly affected KV channel expression, increased I(KV), and induced hyperpolarization in MASMCs. These results demonstrate that chronic hypoxia selectively downregulates KV channel expression, reduces I(KV), and induces E(m) depolarization in PASMCs. The subsequent rise in ([Ca2+](cyt)) plays a critical role in the development of pulmonary vasoconstriction and medial hypertrophy. The divergent effects of hypoxia on KV channel alpha-subunit mRNA expression in PASMCs and MASMCs may result from different mechanisms involved in the regulation of KV channel gene expression. 相似文献
2.
Shimoda LA Sylvester JT Booth GM Shimoda TH Meeker S Undem BJ Sham JS 《American journal of physiology. Lung cellular and molecular physiology》2001,281(5):L1115-L1122
Recent studies demonstrate that endothelin-1 (ET-1) constricts human pulmonary arteries (PA). In this study, we examined possible mechanisms by which ET-1 might constrict human PA. In smooth muscle cells freshly isolated from these arteries, whole cell patch-clamp techniques were used to examine voltage-gated K(+) (K(V)) currents. K(V) currents were isolated by addition of 100 nM charybdotoxin and were identified by current characteristics and inhibition by 4-aminopyridine (10 mM). ET-1 (10(-8) M) caused significant inhibition of K(V) current. Staurosporine (1 nM), a protein kinase C (PKC) inhibitor, abolished the effect of ET-1. Rings of human intrapulmonary arteries (0.8-2 mm OD) were suspended in tissue baths for isometric tension recording. ET-1-induced contraction was maximal at 10(-8) M, equal to that induced by K(V) channel inhibition with 4-aminopyridine, and attenuated by PKC inhibitors. These data suggest that ET-1 constricts human PA, possibly because of myocyte depolarization via PKC-dependent inhibition of K(V). Our results are consistent with data we reported previously in the rat, suggesting similar mechanisms may be operative in both species. 相似文献
3.
4.
A F James J E Ramsey A M Reynolds B M Hendry M J Shattock 《Biochemical and biophysical research communications》2001,284(4):1048-1055
It has been suggested that the positive inotropic effect of the vasoactive peptide hormone, endothelin-1 (ET-1), involves inhibition of cardiac K(+) currents. In order to identify the K(+) currents modulated by ET-1, the outward K(+) currents of isolated rat ventricular myocytes were investigated using whole-cell patch-clamp recording techniques. Outward currents were elicited by depolarisation to +40 mV for 200 ms from the holding potential of -60 mV. Currents activated rapidly, reaching a peak (I(pk)) of 1310 +/- 115 pA and subsequently inactivating to an outward current level of 1063 +/- 122 pA at the end of the voltage-pulse (I(late)) (n = 11). ET-1 (20 nM) reduced I(pk) by 247.6 +/- 60.7 pA (n = 11, P < 0.01) and reduced I(late) by 323.2 +/- 43.9 pA (P < 0.001). The effects of ET-1 were abolished in the presence of the nonselective ET receptor antagonist, PD 142893 (10 microM, n = 5). Outward currents were considerably reduced and the effects of ET-1 were not observed when K(+) was replaced with Cs(+) in the experimental solutions; this indicates that ET-1 modulated K(+)-selective currents. A double-pulse protocol was used to investigate the inactivation of the currents. The voltage-dependent inactivation of the currents from potentials positive to -80 mV was fitted by a Boltzmann equation revealing the existence of an inactivating transient outward component (I(to)) and a noninactivating steady-state component (I(ss)). ET-1 markedly inhibited I(ss) by 43.0 +/- 3.8% (P < 0.001, n = 7) and shifted the voltage-dependent inactivation of I(to) by +3.3 +/- 1.2 mV (P < 0.05). Although ET-1 had little effect on the onset of inactivation of the currents elicited from a conditioning potential of -70 mV, the time-independent noninactivating component of the currents was markedly inhibited. In conclusion, the predominant effect of ET-1 was to inhibit a noninactivating steady-state background K(+) current (I(ss)). These results are consistent with the hypothesis that I(ss) inhibition contributes to the inotropic effects of ET-1. 相似文献
5.
Some ectothermic vertebrates show unusually good tolerance to oxygen shortage and it is therefore assumed that they might, as a defense mechanism, decrease number or activity of ion channels in order to reduce membrane leakage and thereby ATP-dependent ion pumping in hypoxia. Although several studies have provided indirect evidence in favor of this channel arrest hypothesis, only few experiments have examined activity of ion channels directly from animals exposed to chronic hypoxia or anoxia in vivo. Here we compare the inwardly rectifying K+ current (IK1), a major leak and repolarizing K+ pathway of the heart, in cardiac myocytes of normoxic and hypoxic crucian carp, using the whole-cell and cell-attached single-channel patch-clamp methods. Whole-cell conductance of IK1 was 0.5 ± 0.04 nS/pF in normoxic fish and did not change during the 4 weeks hypoxic (O2 < 0.4 mg/l; 2.68 mmHg) period, meanwhile the activity of Na+/K+ATPase decreased 33%. Single-channel conductance of the IK1 was 20.5 ± 0.8 pS in control fish and 21.4 ± 1.1pS in hypoxic fish, and the open probability of the channel was 0.80 ± 0.03 and 0.74 ± 0.04 (P > 0.05) in control and hypoxic fish, respectively. Open and closed times also had identical distributions in normoxic and hypoxic animals. These results suggest that the density and activity of the inward rectifier K+ channel is not modified by chronic hypoxia in ventricular myocytes of the crucian carp heart. It is concluded that instead of channel arrest, the hypoxic fish cardiac myocytes obtain energy savings through action potential arrest due to hypoxic bradycardia. 相似文献
6.
Luke T Maylor J Undem C Sylvester JT Shimoda LA 《American journal of physiology. Lung cellular and molecular physiology》2012,302(10):L1128-L1139
Exposure to chronic hypoxia (CH) causes pulmonary hypertension. The vasoconstrictor endothelin-1 (ET-1) is thought to play a role in the development of hypoxic pulmonary hypertension. In pulmonary arterial smooth muscle cells (PASMCs) from chronically hypoxic rats, ET-1 signaling is altered, with the ET-1-induced change in intracellular calcium concentration (Δ[Ca(2+)](i)) occurring through activation of voltage-dependent Ca(2+) channels (VDCC) even though ET-1-induced depolarization via inhibition of K(+) channels is lost. The mechanism underlying this response is unclear. We hypothesized that activation of VDCCs by ET-1 following CH might be mediated by protein kinase C (PKC) and/or Rho kinase, both of which have been shown to phosphorylate and activate VDCCs. To test this hypothesis, we examined the effects of PKC and Rho kinase inhibitors on the ET-1-induced Δ[Ca(2+)](i) in PASMCs from rats exposed to CH (10% O(2), 3 wk) using the Ca(2+)-sensitive dye fura 2-AM and fluorescent microscopy techniques. We found that staurosporine and GF109203X, inhibitors of PKC, and Y-27632 and HA 1077, Rho kinase inhibitors, reduced the ET-1-induced Δ[Ca(2+)](i) by >70%. Inhibition of tyrosine kinases (TKs) with genistein or tyrphostin A23, or combined inhibition of PKC, TKs, and Rho kinase, reduced the Δ[Ca(2+)](i) to a similar extent as inhibition of either PKC or Rho kinase alone. The ability of PKC or Rho kinase to activate VDCCs in our cells was verified using phorbol 12-myristate 13-acetate and GTP-γ-S. These results suggest that following CH, the ET-1-induced Δ[Ca(2+)](i) in PASMCs occurs via Ca(2+) influx through VDCCs mediated primarily by PKC, TKs, and Rho kinase. 相似文献
7.
低氧性肺血管收缩反应(HPV)是指在急性低氧时,肺泡氧分压降到某一临界值,肺血管发生的快速、可逆的收缩反应,以纠正肺泡通气/灌流的不匹配。HPV的发生与肺动脉平滑肌细胞上K^+、Ca^2+、Cl^-通道的状态密切相关,而这些通道在不同部位的肺动脉上分布存在差异,因此不同部位的肺动脉在低氧中所表现的收缩反应程度也不同,本综述将对上述通道在肺动脉上的分布特点及其在HPV中的作用做一总结。 相似文献
8.
K(V)10.1 is a mammalian brain voltage-gated potassium channel whose ectopic expression outside of the brain has been proven relevant for tumor biology. Promotion of cancer cell proliferation by K(V)10.1 depends largely on ion flow, but some oncogenic properties remain in the absence of ion permeation. Additionally, K(V)10.1 surface populations are small compared to large intracellular pools. Control of protein turnover within cells is key to both cellular plasticity and homeostasis, and therefore we set out to analyze how endocytic trafficking participates in controlling K(V)10.1 intracellular distribution and life cycle. To follow plasma membrane K(V)10.1 selectively, we generated a modified channel of displaying an extracellular affinity tag for surface labeling by α-bungarotoxin. This modification only minimally affected K(V)10.1 electrophysiological properties. Using a combination of microscopy and biochemistry techniques, we show that K(V)10.1 is constitutively internalized involving at least two distinct pathways of endocytosis and mainly sorted to lysosomes. This occurs at a relatively fast rate. Simultaneously, recycling seems to contribute to maintain basal K(V)10.1 surface levels. Brief K(V)10.1 surface half-life and rapid lysosomal targeting is a relevant factor to be taken into account for potential drug delivery and targeting strategies directed against K(V)10.1 on tumor cells. 相似文献
9.
K Ishii K Nunoki H Murakoshi N Taira 《Biochemical and biophysical research communications》1992,184(3):1484-1489
We have cloned a delayed rectifier type K channel from rat heart (RH1). RH1 was identical to the rat brain K channel BK2 and differed from recently cloned rat cardiac K channel RAK by one amino acid residue. Endothelin receptors(ETRs)-mediated modulation of RH1 current (IRH1) was studied using Xenopus oocyte expression system. Activation of two different subtypes of ETRs by endothelin-1 equally suppressed the amplitude of IRH1. Stimulation of phosphatidylinositol turnover will probably be responsible for the suppression. 相似文献
10.
11.
High-altitude long-term hypoxia (LTH) alters cerebral vascular contractile and relaxation responses in both fetus and adult. We tested the hypotheses that LTH-mediated vascular responses were secondary to altered K+ channel function and that in the fetus these responses differ from those of the adult. In middle cerebral arteries (MCA) from both nonpregnant adult and fetal (approximately 140 days gestation) sheep, which were either acclimatized to high altitude (3,820 m) or sea-level controls, we measured norepinephrine (NE)-induced contractions and intracellular Ca2+ concentration ([Ca2+]i) simultaneously, in the presence or absence of different K+ channel openers or blockers. In adult MCA, LTH was associated with approximately 20% decrease in NE-induced tension and [Ca2+]i, with a significant increase in Ca2+ sensitivity. In contrast, in fetal MCA, LTH failed to affect significantly NE-induced contraction or [Ca2+]i but significantly decreased the ATP-sensitive K+ (K(ATP)) channel and Ca2+-activated K+ (K(Ca)) channel-mediated relaxation. The significant effect of K(ATP) and K(Ca) channel activators on the relaxation responses and the fact that K+ channels play a key role in myogenic tone support the hypotheses that K+ channels play an important role in hypoxia-mediated responses. These results also support the hypothesis of significant developmental differences with maturation from fetus to adult. 相似文献
12.
L. H. Clapp A. M. Gurney N. B. Standen P. D. Langton 《The Journal of membrane biology》1994,140(3):205-213
Tension and patch clamp recording techniques were used to investigate the relaxation of rabbit pulmonary artery and the properties of the K+ current activated by levcromakalim in isolated myocytes. Under whole-cell voltage clamp, holding at –60 mV in symmetrical 139 mm K+, levcromakalim (10 m) induced a noisy inward current of –116 ± 19 pA (n = 13) which developed over 1 to 2 min. This current could be blocked by either glibenclamide (10 m) or phencyclidine (5–50 M) and was unaffected when extracellular Ca2+ was removed. Both these drugs inhibited the levcromakalim-induced relaxation of muscle strips precontracted with 20 mm [K+]
o
. Application of voltage ramps in symmetrical 139 mm K+ confirmed that the levcromakalim-induced current was carried by K+ ions and was weakly voltage dependent over the potential range from –100 to +40 mV.The unitary current amplitude and density of the channels underlying the levcromakalim-activated whole-cell K+ current was estimated from the noise in the current record. We estimate that levcromakalim caused activation of around 300 channels per cell, with a single channel current of 1.1 pA, corresponding to a slope conductance of about 19 pS. Furthermore, cells dialyzed with an ATP-free pipette solution developed a large noisy inward current at –60 mV, which could subsequently be blocked by flash photolysis of caged ATP. Analysis of the noise associated with this current indicated that the single channel amplitude underlying the ATP-blocked current was 1.4 pA, a value similar to that estimated for the levcromakalim-induced current. We conclude that the conductance of this ATP-sensitive channel is likely to be small under physiological conditions and that it is present at low density.We thank SmithKline & Beecham for the gift of levcromakalim, ICI Pharmaceuticals for the gift of charybdotoxin and Prof. D. Colquhoun for the noise analysis programs. We also thank Mr. R. Davey for technical assistance with tension experiments. This work was supported by the British Heart Foundation and the Wellcome Trust. L.H.C. is a Wellcome Research Fellow and P.L. is an intermediate fellow of the BHF. 相似文献
13.
Ian Findlay 《The Journal of membrane biology》1988,101(1):83-92
Summary The effects of ADP upon the gating of ATP-sensitive K+ channels from rat ventricular myocytes have been investigated by patch-clamp single-channel current recording experiments. ADP was applied to the internal surface of excised insideout membrane patches and depending upon the experimental protocol and the concentration it was found that ADP could either inhibit or stimulate openings of ATP-sensitive K+ channels. In the absence of inactivation, ATP-sensitive K+ channels were inhibited by ADP in a dose-dependent manner. Partially inactivated channels, on the other hand, were stimulated by low (10 to 250 M) and inhibited by high (>250 M) concentrations of ADP. ATP-sensitive K+ channels which were being inhibited by ATP (<1 mM) could be opened by the simultaneous application of ADP (50 M to 1 mM). ADP had no effect upon channels inhibited by mM concentrations of ATP. The situation was further complicated when it was found that inhibition evoked by ADP was strongly attenuated by the presence of Mg2+ ions whilst channel stimulation, whether of partially inactivated channels or channels inhibited by ATP, required the presence of Mg2+ ions. The analog of ADP, ADPS, always evoked inhibition of ATP-sensitive K+ channels which was not affected by the presence or absence of Mg2+ ions. 相似文献
14.
15.
低氧对培养的不同内径的肺动脉平滑肌细胞增殖的影响 总被引:4,自引:0,他引:4
目的和方法:分离培养三种不同内径的肺动脉平滑肌细胞(PASMCs),用^3H-TdR掺入速率和细胞计数作为细胞增殖的指标,观察低氧对其增殖作用的影响。结果:低氧对三种不同内径的PASMCs(内径分别为>1000μm、500-800μm、300-400μm)增殖促进作用显著不同,其^3H-TdR掺入速率和细胞计数分别增加23.5%和11.1%、60.0%和33.8%、141.4%和52.0%,选择对低氧最敏感的PASMCs(内径为300-400μm),进一步探讨低氧促PASMCs增殖作用的细胞机制:钙拮抗剂verapail、蛋白激酶C抑制剂staurosporine(Stau)和细胞Na-H交换抑制剂amiloride可显著降低低氧情况下PASMCs^3H-TdR掺入速率和细胞计数。结论:低氧对三种不同内径的PASMCs增殖促进作用显著不同; Ca^2 、蛋白激酶C和Na^2 -H^ 交换的激活,可能是低氧促PASMCs增殖的重要胞内信息转导机制。 相似文献
16.
Acute pulmonary alveolar hypoxia increases lung and plasma endothelin-1 levels in conscious rats. 总被引:13,自引:0,他引:13
G Shirakami K Nakao Y Saito T Magaribuchi M Jougasaki M Mukoyama H Arai K Hosoda S Suga Y Ogawa 《Life sciences》1991,48(10):969-976
To investigate the effect of pulmonary alveolar hypoxia on the synthesis and release of endothelin (ET)-1, ET-1-like immunoreactivity (-LI) levels of the lung and plasma were measured in conscious unrestrained rats under hypoxic conditions. Sixty-min exposure to alveolar hypoxia (10% O2 or 5% O2) increased the ET-1-LI level in the lung. The plasma ET-1-LI level in hypoxic rats also increased significantly. The increase of plasma and lung ET-1-LI levels were parallel to the severity of hypoxia. These results demonstrates that acute pulmonary alveolar hypoxia increases lung and plasma ET-1-LI levels in conscious unrestrained rats, suggesting a possible physiological or pathophysiological significance of ET in alveolar hypoxia. 相似文献
17.
Jernigan NL Walker BR Resta TC 《American journal of physiology. Lung cellular and molecular physiology》2004,287(4):L801-L808
Vasodilatory responses to exogenous nitric oxide (NO) are diminished following exposure to chronic hypoxia (CH) in isolated, perfused rat lungs. We hypothesized that both endothelium-derived reactive oxygen species (ROS) and endothelin-1 (ET-1) mediate this attenuated NO-dependent pulmonary vasodilation following CH. To test this hypothesis, we examined vasodilatory and vascular smooth muscle (VSM) Ca2+ responses to the NO donor spermine NONOate in UTP-constricted, isolated pressurized small pulmonary arteries from control and CH rats. Consistent with our previous findings in perfused lungs, we observed attenuated NO-dependent vasodilation following CH in endothelium-intact vessels. However, in endothelium-denuded vessels, responses to spermine NONOate were augmented in CH rats compared with controls, thus demonstrating an inhibitory influence of the endothelium on NO-dependent reactivity following CH. Whereas both the ROS scavenger tiron and the ETA receptor antagonist BQ-123 augmented NO-dependent reactivity in endothelium-intact vessels from CH rats, neither fully restored vasodilatory responses to those observed following endothelium denudation in vessels from CH rats. In contrast, the combination of tiron and BQ-123 or the nonselective ET receptor antagonist PD-145065 enhanced NO responsiveness in endothelium-intact vessels from CH rats similar to that observed following endothelium denudation. We conclude that both endothelium-derived ROS and ET-1 attenuate NO-dependent pulmonary vasodilation following CH. Furthermore, CH augments pulmonary VSM reactivity to NO. 相似文献
18.
Differential segmental distribution of electrophysiologically distinct myocytes helps to explain the variability of the pulmonary arteries to vasoactive agents. We have studied whether Ca2+ -dependent CI- (CICa) and K+ (KCa) channels are activated differentially in enzymatically dispersed conduit and resistance myocytes. We measured cytosolic [Ca2+] and the changes of membrane current and potential elicited by spontaneous or agonist-induced Ca2+ oscillations. Conduit arteries contained a heterogeneous cell population with a variable mixture of KCa and CICa conductances. Resistance arteries contained a more homogeneous cell population with predominance of CICa channel activation. The relation between KCa and CICa conductances in a given conduit myocyte determines the size of the V(m)change in response to a rise of cytosolic [Ca2+]. Conduit myocytes tend to hyperpolarize towards the K+ equilibrium potential (approximately - 90 m V). In resistance myocytes, release of Ca2+ from stores activates CI Cachannels and brings Vm to a value close to the chloride equilibrium potential (approximately - 20 or - 30 m V) thus favouring opening of Ca2+ channels and Ca2+ influx. In resistance vessels CICachannels contribute to link agonist-induced Ca2+ release from stores and membrane depolarization, thus permitting protracted vasoconstriction. 相似文献
19.
Involvement of anion channel(s) in the modulation of the transient outward K(+) channel in rat ventricular myocytes 总被引:5,自引:0,他引:5
Lai XG Yang J Zhou SS Zhu J Li GR Wong TM 《American journal of physiology. Cell physiology》2004,287(1):C163-C170
The cardiac Ca2+-independent transient outward K+ current (Ito), a major repolarizing ionic current, is markedly affected by Cl substitution and anion channel blockers. We reexplored the mechanism of the action of anions on Ito by using whole cell patch-clamp in single isolated rat cardiac ventricular myocytes. The transient outward current was sensitive to blockade by 4-aminopyridine (4-AP) and was abolished by Cs+ substitution for intracellular K+. Replacement of most of the extracellular Cl with less permeant anions, aspartate (Asp) and glutamate (Glu), markedly suppressed the current. Removal of external Na+ or stabilization of F-actin with phalloidin did not significantly affect the inhibitory action of less permeant anions on Ito. In contrast, the permeant Cl substitute Br did not markedly affect the current, whereas F substitution for Cl induced a slight inhibition. The Ito elicited during Br substitution for Cl was also sensitive to blockade by 4-AP. The ability of Cl substitutes to induce rightward shifts of the steady-state inactivation curve of Ito was in the following sequence: NO3 > Cl Br > gluconate > Glu > Asp. Depolymerization of actin filaments with cytochalasin D (CytD) induced an effect on the steady-state inactivation of Ito similar to that of less permeant anions. Fluorescent phalloidin staining experiments revealed that CytD-pretreatment significantly decreased the intensity of FITC-phalloidin staining of F-actin, whereas Asp substitution for Cl was without significant effect on the intensity. These results suggest that the Ito channel is modulated by anion channel(s), in which the actin cytoskeleton may be implicated. transient outward potassium current; anion channel; actin cytoskeleton; myocyte; potassium ion 相似文献
20.
PKA-mediated phosphorylation of the human K(ATP) channel: separate roles of Kir6.2 and SUR1 subunit phosphorylation. 下载免费PDF全文
ATP-sensitive potassium (K(ATP)) channels play important roles in many cellular functions such as hormone secretion and excitability of muscles and neurons. Classical ATP-sensitive potassium (K(ATP)) channels are heteromultimeric membrane proteins comprising the pore-forming Kir6.2 subunits and the sulfonylurea receptor subunits (SUR1 or SUR2). The molecular mechanism by which hormones and neurotransmitters modulate K(ATP) channels via protein kinase A (PKA) is poorly understood. We mutated the PKA consensus sequences of the human SUR1 and Kir6.2 subunits and tested their phosphorylation capacities in Xenopus oocyte homogenates and in intact cells. We identified the sites responsible for PKA phosphorylation in the C-terminus of Kir6.2 (S372) and SUR1 (S1571). Kir6.2 can be phosphorylated at its PKA phosphorylation site in intact cells after G-protein (Gs)-coupled receptor or direct PKA stimulation. While the phosphorylation of Kir6.2 increases channel activity, the phosphorylation of SUR1 contributes to the basal channel properties by decreasing burst duration, interburst interval and open probability, and also increasing the number of functional channels at the cell surface. Moreover, the effect of PKA could be mimicked by introducing negative charges in the PKA phosphorylation sites. These data demonstrate direct phosphorylation by PKA of the K(ATP) channel, and may explain the mechanism by which Gs-coupled receptors stimulate channel activity. Importantly, they also describe a model of heteromultimeric ion channels in which there are functionally distinct roles of the phosphorylation of the different subunits. 相似文献