首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Condensation of 2,4,6-tri-O-acetyl-3-deoxy-3-fluoro-α- -galactopyranosyl bromide (3) with methyl 2,3,4-tri-O-acetyl-β- -galactopyranoside (4) gave a fully acetylated (1→6)-β- -galactobiose fluorinated at the 3′-position which was deacetylated to give the title disaccharide. The corresponding trisaccharide was obtained by reaction of 4 with 2,3,4-tri-O-acetyl-6-O-chloroacetyl-α- -galactopyranosyl bromide (5), dechloroacetylation of the formed methyl O-(2,3,4-tri-O-acetyl-6-O-chloroacetyl-β- -galactopyranosyl)-(1→6)- 2,3,4-tri-O-acetyl-β- -galactopyranoside to give methyl O-(2,3,4-tri-O-acetyl-β- -galactopyranosyl)-(1→6)-2,3,4-tri-O-acetyl-β- -galactopyranoside (14), condensation with 3, and deacetylation. Dechloroacetylation of methyl O-(2,3,4-tri-O-acetyl-6-O-chloroacetyl-β- -galactopyranosyl)-(1→6)-O-(2,3,4-tri-O-acetyl- β- -galactopyranosyl)-(1→6)-2,3,4-tri-O-acetyl-β- -galactopyranoside, obtained by condensation of disaccharide 14 with bromide 5, was accompanied by extensive acetyl migration giving a mixture of products. These were deacetylated to give, crystalline for the first time, the methyl β-glycoside of (1→6)-β- -galactotriose in high yield. The structures of the target compounds were confirmed by 500-MHz, 2D, 1H- and conventional 13C- and 19F-n.m.r. spectroscopy.  相似文献   

2.
Type 3 17β-hydroxysteroid dehydrogenase (17β-HSD), a key steroidogenic enzyme, transforms 4-androstene-3,17-dione (Δ4-dione) into testosterone. In order to produce potential inhibitors, we performed solid-phase synthesis of model libraries of 3β-peptido-3α-hydroxy-5α-androstan-17-ones with 1, 2, or 3 levels of molecular diversity, obtaining good overall yields (23–58%) and a high average purity (86%, without any purification steps) using the Leznoff's acetal linker. The libraries were rapidly synthesized in a parallel format and the generated compounds were tested as inhibitors of type 3 17β-HSD. Potent inhibitors were identified from these model libraries, especially six members of the level 3 library having at least one phenyl group. One of them, the 3β-(N-heptanoyl- -phenylalanine- -leucine-aminomethyl)-3α-hydroxy-5α-androstan-17-one (42) inhibited the enzyme with an IC50 value of 227 nM, which is twice as potent as the natural substrate Δ4-dione when used itself as an inhibitor. Using the proliferation of androgen-sensitive (AR+) Shionogi cells as model of androgenicity, the compound 42 induced only a slight proliferation at 1 μM (less than previously reported type 3 17β-HSD inhibitors) and, interestingly, no proliferation at 0.1 μM.  相似文献   

3.
A series of m-alkyl α,α,α-trifluoroacetophenones (1–5) was synthesized and evaluated as inhibitors of acetylcholinesterase from Torpedo california. All ketones (1–5) were found to be potent inhibitors of the enzyme; m-t-butyl α,α,α-trifluoroacetophenone (4) was the most potent inhibitor with a Ki value of 3.7 pM.  相似文献   

4.
Cycloaddition reactions with α,β-unsaturated carbene complexes of the Fischer-type bearing the carbene carbon atom and the double bond incorporated in the same ring are described. Pentacarbonyl(2H-benzopyran-2- ylidene)chromium(0) complexes (2a-c) and pentacarbonyl(4-methoxy-3,3-dimethyl-2-oxacyclopentylidene)- chromium(0) (3) show a rather low reactivity towards 1,3-dipoles and 1,3-dienes. The reactions with diazomethane are regioselective but not chemoselective; compounds 2 and 3 show two sites of attack: the α,β carbon-carbon and the carbon-metal double bond. The crystal and molecular structures of 2a and 3 have been elucidated by single crystal X-ray analysis. Crystals of 2a are monoclinic, space group P21/c, a=7.614(3), b=14.033(3), c=12.766(3) Å, β=95.24°, V=1358.3(7) Å Z=4; crystals of 3 are triclinic, space group P , a=6.553(1), b=9.408(1), c=10.620(1) Å α=92.70(1), β=92.30(1), γ=92.12(1)°, V=653.0(1), Å3, Z=2. Final agreement indices for 2a and 3 are R=0.034 and 0.033, respectively. Vibrational properties of the Cr(CO)5 moiety were interpreted by FT-IR and FT-Raman spectroscopy. Electronic spectra and π electron distribution were interpreted by resonance Raman spectroscopy.  相似文献   

5.
O-α- -Rhamnopyranosyl-(1→3)- -rhamnopyranose (19) and O-α- -rhamnopyranosyl-(1→2)- -rhamnopyranose were obtained by reaction of benzyl 2,4- (7) and 3,4-di-O-benzyl-α- -rhamnopyranoside (8) with 2,3,4-tri-O-acetyl-α- -rhamnopyranosyl bromide, followed by deprotection. The per-O-acetyl α-bromide (18) of 19 yielded, by reaction with 8 and 7, the protected derivatives of the title trisaccharides (25 and 23, respectively), from which 25 and 23 were obtained by Zemplén deacetylation and catalytic hydrogenolysis, With benzyl 2,3,4-tri-O-benzyl-β- -galactopyranoside, compound 18 gave an ≈3:2 mixture of benzyl 2,3,4-tri-O-benzyl-6-O-[2,4-di-O-acetyl-3-O-(2,3,4-tri-O-acetyl-α- -rhamnopyranosyl)-α- -rhamnopyranosyl]-β- -galactopyranoside and 4-O-acetyl-3-O-(2,3,4-tri-O-acetyl-α- -rhamnopyranosyl)-β- -rhamnopyranose 1,2-(1,2,3,4-tetra-O-benzyl-β- -galactopyranose-6-yl (orthoacetate). The downfield shift at the α-carbon atom induced by α- -rhamnopyranosylation at HO-2 or -3 of a free α- -rhamnopyranose is 7.4-8.2 p.p.m., ≈1 p.p.m. higher than when the (reducing-end) rhamnose residue is benzyl-protected (6.6-6.9 p.p.m.). α- -Rhamnopyranosylation of HO-6 of gb- -galactopyranose deshields the C-6 atom by 5.7 p.p.m. The 1 2-orthoester ring structure [O2,C(me)OR] gives characteristic resonances at 24.5 ±0.2 p.p.m. for the methyl, and at 124.0 ±0.5 p.p.m. for the quaternary, carbon atom.  相似文献   

6.
Sequential tritylation, benzoylation, and detritylation of methyl 3-deoxy-3-fluoro-β- -galactopyranoside gave crystalline methyl 2,4-di-O-benzoyl-3-deoxy-3-fluoro-β- -galactopyranoside (9), which was used as the initial nucleophile in the synthesis of the target oligosaccharide (16). Treatment of 9 with 2,3,4-tri-O-benzoyl-6-O-bromoacetyl-α- -galactopyranosyl bromide gave the corresponding disaccharide derivative 13, having a selectively removable blocking group at O-6′. Debromoacetylation of 13 afforded the disaccharide nucleophile 14 which, when treated with 2,4,6-tri-O-benzoyl-3-deoxy-3-fluoro-α- -galactopyranosyl bromide, gave the fully protected trisaccharide 15. Debenzoylation of 15 gave the title glycoside 16. Condensation reactions were performed with silver trifluoromethane-sulfonate as a promoter in the presence of sym-collidine under base-deficient conditions, and gave excellent yields of the desired β-(trans)-products. Analyses of the 1H- and 13C-n.m.r. spectra, as well as determination of the JCF and JHF coupling constants, were made by using various one- and two-dimensional n.m.r. techniques.  相似文献   

7.
3β-Hydroxysteroid dehydrogenase (3β-HSD)/Δ5→4-isomerase activity in steroidogenic tissues is required for the synthesis of biologically active steroids. Previously, by use of dehydroepiandrosterone (3β-hydroxy-5-androsten-17-one, DHEA) as substrate, it was established that in addition to steroidogenic tissues 3β-HSD/Δ5→4-isomerase activity also is expressed in extraglandular tissues of the human fetus. In the present study, we attempted to determine whether the C-5,C-6-double bond of DHEA serves to influence 3β-HSD activity. For this purpose, we compared the efficiencies of a 3β-hydroxy-5-ene steroid (DHEA) and a 3β-hydroxy-5α-reduced steroid (5α-androstane-3β,17β-diol, 5α-A-diol) as substrates for the enzyme. The apparent Michaelis constant (Km) for 5α-A-diol in midtrimester placenta, fetal liver, and fetal skin tissues was at least one order of magnitude higher than that for DHEA, viz the apparent Km of placental 3β-HSD for 5α-A-diol was in the range of 18 to 40 μmol/l (n = 3) vs 0.45 to 4 μmol/l for DHEA (n = 3); for the liver enzyme, 17 μmol/l for 5α-A-diol and 0.60 μmol/l for DHEA, and for the skin enzyme 14 and 0.18 μmol/l, respectively. Moreover, in 13 human fetal tissues evaluated the maximal velocities obtained with 5α-A-diol as substrate were higher than those obtained with DHEA. A similar finding in regard to Kms and rates of product formation was obtained by use of purified placental 3β-HSD with DHEA, pregnenolone, and 3β-hydroxy-5α-androstan-17-one (epiandrosterone) as substrates: the Km of 3β-HSD for DHEA was 2.8 μmol/l, for pregnenolone 1.9 μmol/l, and for epiandrosterone 25 μmol/l. The specific activity of the purified enzyme with pregnenolone as substrate was 27 nmol/mg protein·min and, with epiandrosterone, 127 nmol/mg protein·min. With placental homogenate as the source of 3β-HSD, DHEA at a constant level of 5 μmol/l behaved as a competitive inhibitor when the radiolabeled substrate, [3H]5α-A-diol, was present in concentrations of 20 to 60 μmol/l, but a lower substrate concentrations the inhibition was of the mixed type; similar results were obtained with [3H]DHEA as the substrate at variable concentrations in the presence of a fixed concentration of 5α-A-diol (40 μmol/l). These findings are indicative that both steroids bind to a common site on the enzyme, however, the binding affinity for these steroids appear to differ markedly as suggested by the respective Kms. Studies of inactivation of purified placental 3β-HSD/Δ5→4-isomerase by an irreversible inhibitor, viz 5,10-secoestr-4-yne-3,10,17-trione, were suggestive that the placental protein adopts different conformations depending on whether the steroidal substrate has a 5α-configuration, e.g. epiandrosterone, or a C-5,C-6-double bond e.g. DHEA or pregnenolone. The lower rates of product formation obtained with placenta and fetal tissues by use of 3β-hydroxy-5-ene steroids as substrates when compared with those obtained with 3β-hydroxy-5α-reduced steroids may be explained by a combination of factors, including: (i) inhibition of 3β-HSD activity by end products of metabolism of 3β-hydroxy-5-ene steroids, e.g. 4-androstene-3,17-dione formed with DHEA as substrate; (ii) higher binding affinity of the enzyme for 3β-hydroxy-5-ene steroids—and possibly for their 3-oxo-5-ene metabolites; (iii) lack of a requirement for the isomerization step with 5α-reduced steroids as substrates, and (iv) the possible presence in fetal tissues of an enzyme with 3β-HSD activity only (i.e. no Δ5→4-isomerase).  相似文献   

8.
Ammonium 2,6-anhydro-3-deoy- -glycero- -talo-octonate (1), a potent inhibitor of the enzyme CMP-KDO synthetase, its C-2 epimer 2, and the methyl β-(3) and α-glycoside (4) of KDO were studied by 1H- and 13C-n.m.r. spectroscopy. Compound 1 was also analysed by X-ray crystallography. Each compound adopted a 5C2 chair conformation with the side chain equatorial. The preponderant side-chain conformation of 1 in solution was the same as that in the crystal and was stabilised by an intramolecular hydrogen bond from HO-8 to the carboxylate group. This hydrogen bond appeared to be present also in 3. However, the side-chain conformation of 2 and 4 was different from that in 1 and 3. The metal-ion-binding properties, determined on the basis of the line-broadening effects of Mn2+ on the 13C-n.m.r. signals, showed that the carboxylate group was involved in the binding with O-8 in 1 and 3 and with O-6 and O-8 in 2 and 4.  相似文献   

9.
An α- -fucosidase from porcine liver produced α- -Fuc-(1→2)-β- -Gal-(1→4)- -GlcNAc (2′-O-α- -fucosyl-N-acetyllactosamine, 1) together with its isomers α- -Fuc-(1→3)-β- -Gal-(1→4)- -GlcNAc (2) and α- -Fuc-(1→6)-β- -Gal-(1→4)- -GlcNAc (3) through a transglycosylation reaction from p-nitrophenyl α- -fucopyranoside and β- -Gal-(1→4)- -GlcNAc. The enzyme formed the trisaccharides 13 in 13% overall yield based on the donor, and in the ratio of 40:37:23. In contrast, transglycosylation by Alcaligenes sp. α- -fucosidase led to the regioselective synthesis of trisaccharides containing a (1→3)-linked α- -fucosyl residue. When β- -Gal-(1→4)- -GlcNAc and lactose were acceptors, the enzyme formed regioselectively compound 2 and α- -Fuc-(1→3)-β- -Gal-(1→4)- -Glc (3′-O-α- -fucosyllactose, 4), respectively, in 54 and 34% yields, based on the donor.  相似文献   

10.
Complexes [M(η12-C8H12OMe)((2,6-(R)2---C6H3)N=C(R′)---C(R′)=N((2,6-(R)2---C6H3))]PF6 (where M=Pd, R=H and R′2=Me2 (1), M=Pd, R=Me and R′2=Me2 (2), M=Pd, R=Et and R′2=Me2 (3), M=Pd, R=iPr and R′2=Me2 (4), M=Pd, R=iPr and R′2=An (5), M=Pt, R=iPr and R′2=An (6)) were synthesized by the reaction of [M(η12-C8H12OMe)Cl]2 with the appropriate α-diimine ligand in the presence of NH4PF6. Their ion pair structure in solution was investigated by detecting dipolar interactions between protons belonging to the cation and fluorine nuclei of the anion (interionic contacts) in the 19F, 1H-HOESY NMR spectra. In complexes 14, the anion in solution is located close to the peripheral protons of the α-diimine ligand and it interacts with the R′ protons and with the R protons that point toward the R′ groups. The steric protection of apical position exerted by the R substituents is clearly illustrated by the absence of interionic contacts between any protons of the cycloctenylmethoxy-moiety and the anion for R≥Me in 14. In complexes 5 and 6 the interactions between the anion and the peripheral N,N protons also predominate but other anion–cation orientations are significantly present and, consequently, the interionic structure is less specific.  相似文献   

11.
The compound (HOCH2CH2S) ) (1) has been prepared by the reaction of antimony(III) isopropoxide and 2-mercaptoethanol in a 1:2 molar ratio. Reaction of 1 with MOCH3 (where M = Li, Na and K) yields bimetallic products of the type, M[(OCH2CH2S) )]. All these derivatives have been characterized by elemental analysis, IR, NMR (1H and 13C) spectra and molar conductivity measurements. Crystals of 1 are triclinic, space group P , with a = 6.449(2), b = 10.285(2), c = 13.494(1) Å, α = 78.08(1), β = 75.99(1), γ = 71.54(2)°, V = 815.48 Å3, Z = 4, Dcalc = 2.239 g cm−3, (Mo Kα) λ = 0.7107 Å, μ = 3.55 mm−1, F(000) = 528, T = 295 K, final R = 0.0189 for 2344 reflections. One of the two mercaptoethanol moieties in 1 forms a five-membered chelate ring with antimony, Sb(1)---O(11) = 2.023(2) Å and Sb(1)---S(11) = 2.434(1) Å, while the other is bonded through the S atom only, Sb(1)---S(12) = 2.434(1) Å. The angles between these primary bonds with a mean value of 90.2° suggest a basically pyramidal, or pseudo tetrahedral structure if the stereochemically active lone pair is included in the coordination sphere. Two molecules are linked by intermolecular hydrogen bridges. The presence of weak intermolecular secondary bonding, Sb(1)---O(12) = 2.567(3) Å, in the complex indicates that the overall coordination polyhedron is best described in terms of a distorted trigonal bipyramidal arrangement.  相似文献   

12.
The Halide ion-catalysed reaction of benzyl exo-2,3-O-benzylidene-α- -rhamnopyranoside with tetra-O-benzyl-α- -galactopyranosyl bromide and hydrogenolysis of the exo-benzylidene group of the product 2 gave benzyl 3-O-benzyl-4-O-(2,3,4,6-tetra-O-benzyl-α- -galactopyranosyl)-α- -rhamnopyranoside (6). Compound 2 was converted into 4-O-α- -galactopyranosyl- -rhamnose. The reaction of 6 with tetra-O-acetyl-α- -glucopyranosyl bromide and removal of the protecting groups from the product gave 4-O-α- -galactopyranosyl-2-O-β- -glucopyranosyl- -rhamnose.  相似文献   

13.
(Methyl 2-acetamidoacrylate)tricarbonyliron(0) (3) reacts with 2 equivalents of methyllithium to give methyl N-acetylalaninate (4) and 2-acetamido-4-oxopentanoate (5) when the reaction is quenched with trifluoroacetic acid. Production of methyl N-acetylalaninate is dependent only on the presence of trifluoroacetic acid, and the ratio of 4 to 5 generated in these reactions is related to the quantity of trifluoroacetic acid used to quench them. Addition of two equivalents of methyllithium followed by tertiary haloalkanes gives protected β,β,β-trialkyl α-amino acids which may be hydrolysed to give tert-leucine (13) and the new α-amino acids 2-amino-3,3-dimethylpentanoic acid (14) and 2-amino-3,3-dimethylhexanoic acid (15).  相似文献   

14.
The reaction between the redox-active diphosphine ligand 4,5-bis(diphenylphosphino)-4-cyclopenten-1,3-dione (bpcd) and the dirhenium compound Re2(CO)8(μ-H)(μ-η12-C CPh) in CH2Cl2 at room temperature proceeds by CO loss to give the dirhenium complex Re2(CO)7(bpcd)(μ-H)(η1-C CPh) (1). This new complex was characterized in solution by IR and NMR (1H and 31P) spectroscopy and in the solid state by X-ray diffraction analysis. Re2(CO)7(bpcd)(μ-H)(η1-C CPh) crystallizes in the triclinic space group

γ = 69.240(6)°, V = 2024.9(3) Å3, Z = 2, dcalc = 1.862 g cm−3 R = 0.0221, Rw = 0.243 for 4066 observed reflections. The bpcd ligand in 1 adopts a chelating mode with a linear phenylacetylide ligand being located on the adjacent rhenium center cis to the bpcd ligand. This complex represents the first structurally characterized example of a hydrido-bridged dirhenium complex possessing both a linear acetylide ligand and a chelating diphosphine ligand.  相似文献   

15.
Reactions of [CpCo(PPh3)2](Cp=η5-cyclopentadienyl) with conjugated diacetylenes were investigated in terms of the synthesis of π-conjugated organometallic polymers. The reaction of an α,β-diyne, PhCC---CCPh, gave three geometric isomers of dialkynylcobaltacyclopentadienes, 1a-c, and an insoluble polymeric product, 1d. A 2,4-dialkynyl complex, 2, and a 2,5-dialkynyl complex, 3, were obtained solely from Me3SiCC---CCSiMe3 and MeCC---CCMe, respectively. 1,1′-Bis(trimethylsilylethynyl)-4,4′-biphenyl afforded two isomers of 1,3-dialkynylcyclobutadiene complexes, 4a and 4b. The stability of the one-electron oxidized forms of the cobalacyclopentadiene and cyclobutadiene complexes was examined by cyclic voltammetry.  相似文献   

16.
The relationship between the A-ring chair conformation of vitamin D compounds and their ability to bind the vitamin D receptor (VDR) has long attracted the attention of many researchers. It was established that in the crystalline complexes of hVDRmt with the natural hormone, 1α,25-dihydroxyvitamin D3 (1), and its side-chain analogs the vitamins exist in β-chair form with an equatorial orientation of 1α-OH. However, with all these ligands the interconversion between both A-ring forms would be possible in solution. In an attempt to verify the conformation of vitamin D compounds required for binding the VDR we prepared analog 4, characterized by the presence of an axial 1α-hydroxy group. Since the additional ring connecting 3β-oxygen and C-2 prevents A-ring conformational flexibility, the synthesized vitamin 4 can exist exclusively in the α-chair form. The geometrical isomer 5 with a free 3β-OH group was also obtained. The analog 5 binds very poorly to VDR, whereas the vitamin 4 is practically devoid of binding ability. Both compounds also show very low HL-60-differentiating activity. When tested in vivo in mice the analogs 4 and 5 exhibit significant calcemic responses with analog 4 showing more activity than analog 5.  相似文献   

17.
The reaction of 2,3-di-O-acetyl-4-O-benzyl-α,β-d-xylopyranosyl bromide (2) with methyl 2,3-di-O-acetyl-β-d-xylopyranoside gave methyl O-(2,3-di-O-acetyl-4-O-benzyl-β-d-xylopyranosyl)-(1→4)-2,3-di-O-acetyl-β-d-xylopyranoside (22). Catalytic hydrogenolysis of 22 exposed HO-4′ which was then condensed with 2. This sequence of reactions was repeated three more times to afford, after complete removal of protecting groups, a homologous series of methyl β-glycosides of (1→4)-β-d-xylo-oligosaccharides. 13C-N.m.r. spectra of the synthetic methyl β-glycosides (di- to hexa-saccharide) are presented together with data for six other, variously substituted, homologous series of (1→4)-d-xylo-oligosaccharides.  相似文献   

18.
Laminins assemble into trimers composed of α, β, and γ chains which posttranslationally are glycosylated and sometimes proteolytically cleaved. In the current paper we set out to characterize posttranslational modifications and the laminin isoforms formed by laminin α1 and α5 chains. Comparative pulse–chase experiments and deglycosylation studies in JAR cells established that the Mr 360,000 laminin α1 chain is glycosylated into a mature Mr 400,000 band while the Mr 370,000 laminin α5 chain is glycosylated into a Mr 390,000 form that upon secretion is further processed into a Mr 380,000 form. Hence, despite the shorter peptide length of α1 chain in comparison with the α5 chain, secreted α1 assumes a larger size in SDS–PAGE due to a higher degree of N-linked glycosylation and due to the lack of proteolytic processing. Immunoprecipitations and Western blotting of JAR laminins identified laminin α1 and laminin α5 chains in laminin-1 and laminin-10. In placenta laminin α1 chain (Mr 400,000) and laminin α5 chain (Mr 380,000/370,000 doublet) were found in laminin-1/-3 and laminin-10/-11. Immunohistochemically we could establish that the laminin α1 chain in placenta is deposited in the developing villous and trophoblast basement membrane, also found to contain laminin β2 chains. Surprisingly, a fraction of the laminin α1 chain from JAR cells and placenta could not be precipitated by antibodies to laminin β1–β3 chains, possibly pointing to an unexpected complexity in the chain composition of α1-containing laminin isoforms.  相似文献   

19.
Seven estradiol (E2) derivatives with an alkynylamide side chain at the 17α position were synthesized starting from ethynylestradiol (EE2). The main chemical step was the coupling reaction of the acetylide ion of EE2 with carbon dioxide, glutaric anhydride or bromoalkyl ortho ester. The synthesis of these compounds is fast (3–6 steps according to the compound) and is easily achieved with good yield. Five compounds with different side chain lenghts were evaluated for uterotrophic and antiuterotrophic activity in the CD-1 mouse. None of the tested compounds shows estrogenic activity in this sensitive in vitro system. At low doses (1 and 3 μg), a 14–57% inhibition of E2-induced uterine growth was observed while no additional inhibition was observed at the 10, 20 and 30 μg doses. In human breast carcinoma cells in culture, all compounds show estrogenic activity at high concentrations while only compound 39 (N-buty,N-methyl-8-[3′,17′β-dihydroxy estra-1′,3′,5′(10′)-trien-17′α-yl]-7-octynamide) possesses antiproliferative or antiestrogenic effects. No significant correlation could be demonstrated between alkynylamide side chain length and estrogenic or antiestrogenic activity. Among the compounds tested, the derivative of EE2 possessing a five-methylene (CH2) side chain (compound 39) possesses the best antiestrogenic activity (44 ± 7% in the CD-1 mouse uterus assay at the 3μg dose and 57 ± 4% at 0.1 nM in human ZR-75-1 cancer cells in culture).  相似文献   

20.
In recent years several 15β-hydroxysteroids have emerged pathognomonic of adrenal disorders in human neonates of which 3α,15β,17α-trihydroxy-5β-pregnan-20-one (2) was the first to be identified in the urine of newborn infants affected with congenital adrenal hyperplasia. In this investigation we report the synthesis of the three remaining 3ξ,5ξ-isomers, namely 3α,15β,17α-trihydroxy-5α-pregnan-20-one (3), 3β,15β,17α-trihydroxy-5α-pregnan-20-one (7) and 3β,15β,17α-trihydroxy-5β-pregnan-20-one (8) for their definitive identification in pathological conditions in human neonates. 3β,15β-Diacetoxy-17α-hydroxy-5-pregnen-20-one (11), a product of chemical synthesis was converted to the isomeric 3 and 7, while conversion of 15β,17α-dihydroxy-4-pregnen-3,20-dione (4), a product of microbiological transformation, resulted in the preparation of 8. In brief, selective acetate hydrolysis of 11 gave 15β-acetoxy-3β,17α-dihydroxy-5-pregnen-20-one (12) which on catalytic hydrogenation gave 15β-acetoxy-3β,17α-dihydroxy-5α-pregnan-20-one (13) a common intermediate for the synthesis of the 3β(and α),5α-isomers. Hydrolysis of the 15β-acetate gave 7, whereas oxidation with pyridinium chlorochromate gave 15β-acetoxy-17α-hydroxy-5α-pregnan-3,20-dione (14) which on reduction with -Selectride and hydrolysis of the 15β-acetate gave 3. Finally, hydrogenation of 4 gave 15β,17α-dihydroxy-5β-pregnan-3,20-dione (10) which on reduction with -Selectride gave 8.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号