首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This review is aimed at readers seeking an introductory overview, teaching courses and interested in visionary ideas. It first describes the range of topics covered by evolutionary medicine, which include human genetic variation, mismatches to modernity, reproductive medicine, degenerative disease, host–pathogen interactions and insights from comparisons with other species. It then discusses priorities for translational research, basic research and health management. Its conclusions are that evolutionary thinking should not displace other approaches to medical science, such as molecular medicine and cell and developmental biology, but that evolutionary insights can combine with and complement established approaches to reduce suffering and save lives. Because we are on the cusp of so much new research and innovative insights, it is hard to estimate how much impact evolutionary thinking will have on medicine, but it is already clear that its potential is enormous.  相似文献   

2.
A recent study has combined methods of experimental evolution and DNA microarray technology to examine evolved changes in gene expression in yeast, providing intriguing insights into the genetics of adaptation and functional genomics, and pointing to future uses of microarray technology in evolutionary genetics.  相似文献   

3.
Mammalian evolution and biomedicine: new views from phylogeny   总被引:1,自引:1,他引:0  
Recent progress resolving the phylogenetic relationships of the major lineages of mammals has had a broad impact in evolutionary biology, comparative genomics and the biomedical sciences. Novel insights into the timing and historical biogeography of early mammalian diversification have resulted from a new molecular tree for placental mammals coupled with dating approaches that relax the assumption of the molecular clock. We highlight the numerous applications to come from a well-resolved phylogeny and genomic prospecting in multiple lineages of mammals, from identifying regulatory elements in mammalian genomes to assessing the functional consequences of mutations in human disease loci and those driving adaptive evolution.  相似文献   

4.
Cancer initiation, progression, and the emergence of therapeutic resistance are evolutionary phenomena of clonal somatic cell populations. Studies in microbial experimental evolution and the theoretical work inspired by such studies are yielding deep insights into the evolutionary dynamics of clonal populations, yet there has been little explicit consideration of the relevance of this rapidly growing field to cancer biology. Here, we examine how the understanding of mutation, selection, and spatial structure in clonal populations that is emerging from experimental evolution may be applicable to cancer. Along the way, we discuss some significant ways in which cancer differs from the model systems used in experimental evolution. Despite these differences, we argue that enhanced prediction and control of cancer may be possible using ideas developed in the context of experimental evolution, and we point out some prospects for future research at the interface between these traditionally separate areas.  相似文献   

5.
Odonata (dragonflies and damselflies) present an unparalleled insect model to integrate evolutionary genomics with ecology for the study of insect evolution. Key features of Odonata include their ancient phylogenetic position, extensive phenotypic and ecological diversity, several unique evolutionary innovations, ease of study in the wild and usefulness as bioindicators for freshwater ecosystems worldwide. In this review, we synthesize studies on the evolution, ecology and physiology of odonates, highlighting those areas where the integration of ecology with genomics would yield significant insights into the evolutionary processes that would not be gained easily by working on other animal groups. We argue that the unique features of this group combined with their complex life cycle, flight behaviour, diversity in ecological niches and their sensitivity to anthropogenic change make odonates a promising and fruitful taxon for genomics focused research. Future areas of research that deserve increased attention are also briefly outlined.  相似文献   

6.
Gould and Lewontin's 30-year-old critique of adaptionism fundamentally changed the discourse of evolutionary biology. However, with the influx of new ideas and scientific traditions from genomics into evolutionary biology, the old adaptionist controversies are being recycled in a new context. The insight gained by evolutionary biologists, that functional differences cannot be equated to adaptive changes, has at times not been appreciated by the genomics community. In this comment, I argue that even in the presence of both functional data and evidence for selection from DNA sequence data, it is still difficult to construct strong arguments in favor of adaptation. However, despite the difficulties in establishing scientific arguments in favor of specific historic evolutionary events, there is still much to learn about evolution from genomic data.  相似文献   

7.
Yue JX  Meyers BC  Chen JQ  Tian D  Yang S 《The New phytologist》2012,193(4):1049-1063
Plant disease resistance genes (R genes) encode proteins that function to monitor signals indicating pathogenic infection, thus playing a critical role in the plant's defense system. Although many studies have been performed to explore the functional details of these important genes, their origin and evolutionary history remain unclear. In this study, focusing on the largest group of R genes, the nucleotide-binding site-leucine-rich repeat (NBS-LRR) genes, we conducted an extensive genome-wide survey of 38 representative model organisms and obtained insights into the evolutionary stage and timing of NBS-LRR genes. Our data show that the two major domains, NBS and LRR, existed before the split of prokaryotes and eukaryotes but their fusion was observed only in land plant lineages. The Toll/interleukin-1 receptor (TIR) class of NBS-LRR genes probably had an earlier origin than its nonTIR counterpart. The similarities of the innate immune systems of plants and animals are likely to have been shaped by convergent evolution after their independent origins. Our findings start to unravel the evolutionary history of these important genes from the perspective of comparative genomics and also highlight the important role of reorganizing pre-existing building blocks in generating evolutionary novelties.  相似文献   

8.
Studies of adaptive evolution have experienced a recent revival in population genetics of natural populations and there is currently much focus on identifying genomic signatures of selection in space and time. Insights into local adaptation, adaptive response to global change and evolutionary consequences of selective harvesting can be generated through population genomics studies, allowing the separation of the effects invoked by neutral processes (drift-migration) from those due to selection. Such knowledge is important not only for improving our basic understanding of natural as well as human-induced evolutionary processes, but also for predicting future trajectories of biodiversity and for setting conservation priorities. Marine fishes possess a number of features rendering them well suited for providing general insights into adaptive genomic evolution in natural populations. These include well-described population structures, substantial and rapidly developing genomic resources and abundant archived samples enabling temporal studies. Furthermore, superior possibilities for conducting large-scale experiments under controlled conditions, due to the economic resources provided by the large and growing aquaculture industry, hold great promise for utilizing recent technological developments. Here, we review achievements in marine fish genomics to date and highlight potential avenues for future research, which will provide both general insights into evolution in high gene flow species, as well as specific knowledge which can lead to improved management of marine organisms.  相似文献   

9.
Comparative genomics has proven a fruitful approach to acquire many functional and evolutionary insights into core cellular processes. Here it is argued that in order to perform accurate and interesting comparative genomics, one first and foremost has to be able to recognize, postulate, and revise different evolutionary scenarios. After all, these studies lack a simple protocol, due to different proteins having different evolutionary dynamics and demanding different approaches. The authors here discuss this challenge from a practical (what are the observations?) and conceptual (how do these indicate a specific evolutionary scenario?) viewpoint, with the aim to guide investigators who want to analyze the evolution of their protein(s) of interest. By sharing how the authors draft, test, and update such a scenario and how it directs their investigations, the authors hope to illuminate how to execute molecular evolution studies and how to interpret them. Also see the video abstract here https://youtu.be/VCt3l2pbdbQ .  相似文献   

10.
11.
Studies of adaptation and speciation have greatly benefited from rapid progress of DNA sequencing and genotyping technologies. Comparative genomics of closely related taxa has great potential to advance evolutionary research on genetic architecture of adaptive traits and reproductive isolation. Such studies that utilized closely related plant species and ecotypes have already provided some important insights into genomic regions and/or genes that are potentially involved in local adaptation and speciation. The choice of an appropriate species model for such research is crucial. The paper discusses current approaches used to reveal the patterns of intra‐ and interspecific divergence due to natural selection. Its outcomes in herbaceous plants and forest trees are briefly summarized and compared to reveal general regularities concerning evolutionary processes. We then highlight the importance of multispecies studies and discuss the utility of several related pine taxa as fine candidates for evolutionary inferences. Genetically similar but ecologically and phenotypically diverged taxa seem a promising study system to search for genomic patterns of speciation and adaptive variation.  相似文献   

12.
A key objective of population genomics is to identify portions of the genome that have been shaped by natural selection rather than by neutral divergence. A previously recognized but underappreciated challenge to this objective is that observations of allele frequencies across genomes in natural populations often correspond to a single, unreplicated instance of the outcome of evolution. This is because the composition of each individual genomic region and population is expected to be the outcome of a unique array of evolutionary processes. Given a single observation, inference of the evolutionary processes that led to the observed state of a locus is associated with considerable uncertainty. This constraint on inference can be ameliorated by utilizing multi-allelic (e.g. DNA haplotypes) rather than bi-allelic markers, by analysing two or more populations with certain models and by utilizing studies of replicated experimental evolution. Future progress in population genomics will follow from research that recognizes the 'n = 1 constraint' and that utilizes appropriate and explicit evolutionary models for analysis.  相似文献   

13.
14.
Ungerer MC  Johnson LC  Herman MA 《Heredity》2008,100(2):178-183
The field of ecological genomics seeks to understand the genetic mechanisms underlying responses of organisms to their natural environments. This is being achieved through the application of functional genomic approaches to identify and characterize genes with ecological and evolutionary relevance. By its very nature, ecological genomics is an interdisciplinary field. In this review, we consider the significance of this new area of study from both an ecological and genomic perspective using examples from the recent literature. We submit that by considering more fully an ecological context, researchers may gain additional insights into the underlying genetic basis of ecologically relevant phenotypic variation. Likewise, genomic approaches are beginning to offer new insights into higher-level biological phenomena that previously occupied the realm of ecological investigation only. We discuss various approaches that are likely to be useful in ecological genomic studies and offer thoughts on where this field is headed in the future.  相似文献   

15.
细菌比较基因组学和进化基因组学   总被引:2,自引:0,他引:2  
通过比较不同细菌基因组间差异性与相似性,进而深入研究其分子机理,最终与其表型特征联系起来,是为比较基因组学;不同细菌经过长期进化,其基因组在结构与功能上存在着明显的分化,并构成表型进化的遗传基础,大量细菌全基因组测序的完成,细菌进化基因组学应运而生;以比较基因组学为研究手段,细菌进化基因组学可从基因组水平深入认识物种分化、生境适应、毒力进化、耐药性产生蔓延等表型进化过程。  相似文献   

16.
Upland cotton is an important global cash crop for its long seed fibers and high edible oil and protein content.Progress in cotton genomics promotes the advancement of cotton genetics,evolutionary studies,functional genetics,and breeding,and has ushered cotton research and breeding into a new era.Here,we summarize high-impact genomics studies for cotton from the last 10 years.The diploid Gossypium arboreum and allotetraploid Gossypium hirsutum are the main focus of most genetic and genomic studi...  相似文献   

17.
Genetic variation is the major mechanism behind adaptation and evolutionary change. As most proteins operate through interactions with other proteins, changes in protein complex composition and subunit sequence provide potentially new functions. Comparative genomics can reveal expansions, losses and sequence divergence within protein-coding genes, but in silico analysis cannot detect subunit substitutions or replacements of entire protein complexes. Insights into these fundamental evolutionary processes require broad and extensive comparative analyses, from both in silico and experimental evidence. Here, we combine data from both approaches and consider the gamut of possible protein complex compositional changes that arise during evolution, citing examples of complete conservation to partial and total replacement by functional analogues. We focus in part on complexes in trypanosomes as they represent one of the better studied non-animal/non-fungal lineages, but extend insights across the eukaryotes by extensive comparative genomic analysis. We argue that gene loss plays an important role in diversification of protein complexes and hence enhancement of eukaryotic diversity.  相似文献   

18.
Research in quantitative evolutionary genomics and systems biology led to the discovery of several universal regularities connecting genomic and molecular phenomic variables. These universals include the log-normal distribution of the evolutionary rates of orthologous genes; the power law-like distributions of paralogous family size and node degree in various biological networks; the negative correlation between a gene's sequence evolution rate and expression level; and differential scaling of functional classes of genes with genome size. The universals of genome evolution can be accounted for by simple mathematical models similar to those used in statistical physics, such as the birth-death-innovation model. These models do not explicitly incorporate selection; therefore, the observed universal regularities do not appear to be shaped by selection but rather are emergent properties of gene ensembles. Although a complete physical theory of evolutionary biology is inconceivable, the universals of genome evolution might qualify as "laws of evolutionary genomics" in the same sense "law" is understood in modern physics.  相似文献   

19.
Comparative genome sequencing projects are providing insight into aspects of genome biology that raise new questions and challenge existing paradigms. Placement in the phylogenetic tree can often be a major determinant of which organism to choose for study. Lemurs hold a key position at the base of the primate evolutionary tree and will be highly informative for the genomics community by offering comparisons of primate-specific characteristics and processes. Combining research in chromosome evolution, genome evolution and behavior with lemur comparative genomic sequencing will offer insights into many levels of primate evolution. We discuss the current state of lemur cytogenetic and phylogenetic analyses, and suggest how focusing more genomic efforts on lemurs will be beneficial to understanding human and primate evolution, as well as disease, and will contribute to conservation efforts.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号