首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
Nostoc punctiforme is a phenotypically complex, filamentous, nitrogen-fixing cyanobacterium, whose vegetative cells can mature in four developmental directions. The particular developmental direction is determined by environmental signals. The vegetative cell cycle is maintained when nutrients are sufficient. Limitation for combined nitrogen induces the terminal differentiation of heterocysts, cells specialized for nitrogen fixation in an oxic environment. A number of unique regulatory events and genes have been identified and integrated into a working model of heterocyst differentiation. Phosphate limitation induces the transient differentiation of akinetes, spore-like cells resistant to cold and desiccation. A variety of environmental changes, both positive and negative for growth, induce the transient differentiation of hormogonia, motile filaments that function in dispersal. Initiation of the differentiation of heterocysts, akinetes and hormogonia are hypothesized to depart from the vegetative cell cycle, following separate and distinct events. N. punctiforme also forms nitrogen-fixing symbiotic associations; its plant partners influence the differentiation and behavior of hormogonia and heterocysts. N. punctiforme is genetically tractable and its genome sequence is nearly complete. Thus, the regulatory circuits of three cellular differentiation events and symbiotic interactions of N. punctiforme can be experimentally analyzed by functional genomics.  相似文献   

6.
The hrmA gene of the N2-fixing cyanobacterium Nostoc punctiforme functions in repressing the formation of transitory motile filaments, termed hormogonia, by plant-associated vegetative filaments. Here, we report that anthocyanins can contribute to induction of hrmA expression. Aqueous extract from fronds of the fern Azolla pinnata, a host of symbiotic Nostoc spp., was found to be a potent inducer of hrmA-luxAB in N. punctiforme strain UCD 328. The hrmA-luxAB inducing activities of A. pinnata, as well as Azolla filiculoides, were positively correlated with levels of frond deoxyanthocyanins. Analyses of the deoxyanthocyanins in frond extracts revealed, in order of predominance, an acetylated glycoside derivative of luteolinidin (m/z 475) and of apigeninidin (m/z 459) and minor amounts of a second luteolinidin derivative. At up to 150 microM, a purified preparation of deoxyanthocyanins only weakly induced hrmA-luxAB on its own, but mixtures with hrmA-luxAB inducers (A. filiculoides extract or the flavonoid naringin) synergistically doubled to tripled their inducing activities. These results suggest that appropriately localized deoxyanthocyanins could function in plant-mediated mechanisms for repressing Nostoc spp. hormogonium formation.  相似文献   

7.
8.
9.
Differentiation of the filamentous cyanobacteria Calothrix sp strains PCC 7601 and PCC 7504 is regulated by light spectral quality. Vegetative filaments differentiate motile, gas-vacuolated hormogonia after transfer to fresh medium and incubation under red light. Hormogonia are transient and give rise to vegetative filaments, or to heterocystous filaments if fixed nitrogen is lacking. If incubated under green light after transfer to fresh medium, vegetative filaments do not differentiate hormogonia but may produce heterocysts directly, even in the presence of combined nitrogen. We used inhibitors of thylakoid electron transport (3-[3,4-dichlorophenyl]-1,1-dimethylurea and 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone) to show that the opposing effects of red and green light on cell differentiation arise through differential excitations of photosystems I and II. Red light excitation of photosystem I oxidizes the plastoquinone pool, stimulating differentiation of hormogonia and inhibiting heterocyst differentiation. Conversely, net reduction of plastoquinone by green light excitation of photosystem II inhibits differentiation of hormogonia and stimulates heterocyst differentiation. This photoperception mechanism is distinct from the light regulation of complementary chromatic adaptation of phycobilisome constituents. Although complementary chromatic adaptation operates independently of the photocontrol of cellular differentiation, these two regulatory processes are linked, because the general expression of phycobiliprotein genes is transiently repressed during hormogonium differentiation. In addition, absorbance by phycobilisomes largely determines the light wavelengths that excite photosystem II, and thus the wavelengths that can imbalance electron transport.  相似文献   

10.
11.
丝状体蓝藻藻殖段的分化及其调节机制   总被引:1,自引:0,他引:1  
钟泽璞  施定基 《植物学报》2000,17(3):204-210
本文介绍了丝状体蓝藻(亦称蓝细菌) 的藻殖段的分化及其调节机制。藻殖段与正常藻丝体的区别在于细胞形状、细胞内存有气囊和可移动的短而直的藻丝链等。本文对许多环境因子包括光和营养因素等促进或抑制藻殖段的分化进行了讨论;还介绍了念珠藻(Nostoc) ,单歧藻(Tolypothrix) 和眉藻(Calothrix)所具有复杂的细胞发育过程,即具气囊又可移动的藻殖段分化,异形胞分化以及营养细胞的补偿性色适应。这三种细胞类型的适应形成取决于两种不同的光受体系统。藻殖段和异形胞两者的分化可能取决于光合电子传递链;而营养细胞的补偿性色适应则受光敏色素的调节。此外,谷酰胺合成酶合成和活性调节的PII蛋白,在协同藻殖段分化、异形胞分化及营养细胞的补偿色适应中起重要作用。由于蓝藻藻殖段分化及其调节机制是一个新的研究领域,关于它的知识尚不完整,亟待人们加强研究。  相似文献   

12.
To establish a sensitive bioassay for Nostocean hormogonium induction, we compared the effectiveness of the morpho-differentiation induction on two gelled plates, agar and gellan gum, for anacardic acid C15:1-Δ8 decyl ester (1) (100 nmol/disc). On BG-110 (nitrogen-free) medium-based 0.6 and 0.8% agar plates, Nostoc sp. strain Yaku-1 isolated from a coralloid root of Cycas revoluta in Yakushima Island showed clear morpho-differentiation from filamentous aggregates into hormogonia, and the induced hormogonia dispersed within 24 h; however, similar hormogonium formation was not observed at agar concentrations of 1.0% or higher. Conversely, hormogonium induction was considerably more pronounced on gellan gum plates than those on agar plates through concentrations ranging from 0.6 to 1.6% even after 12 h of incubation, particularly active on the 0.8–1.0% gellan gum plates. Thus, gellan gum plates can achieve clear results within 12 h and are thus highly useful for primary screening for hormogonium-inducing factors (HIFs).  相似文献   

13.
丝状体蓝藻藻殖段的分化及其调节机制   总被引:4,自引:0,他引:4  
本文介绍了丝状体蓝藻(亦称蓝细菌)的藻殖段的分化及其调节机制。藻殖段与正常藻丝体的区别在于细胞开状、细胞内存有气囊和可移动的短而真的藻丝链等。本文对许多环境因子包括光和营养因素等促进或抑制藻殖段的分化进行一讨论;还介绍了含球藻(Nostoc),单歧藻(Tolypothrix)和眉藻(Calothrix)所具有复杂的细胞发育过程,即具气囊又可移动的藻殖段分化,异形胞分化以及营养细胞的被偿性色适应。这  相似文献   

14.
15.
The cyanobacterium Mastigocladus laminosus produces motile hormogonia which move by gliding motility. These hormogonia were characterized in terms of their morphology, state of differentiation of the cells, optimal temperature for production and motility, minimal nutritional requirements to sustain motility, liberation of the hormogonium from its parental trichome, average surface velocity, and maximal concentration of agar through which the hormogonium may move. We found that an average hormogonium consisted of 13.6 cells of only the narrow-cell-type morphology. Gliding motility and the production of hormogonia were maximal at 45 degrees C. Agarose plus 0.20 mM Ca2+ was sufficient to sustain gliding motility. Hormogonia were liberated from the parental trichome by formation and lysis of a necridium. The average surface velocity of a hormogonium was 1.7 micron/s with a maximal velocity of 3 micron/s. Hormogonia were motile through 7% agar. Motile hormogonia leave a record of their passage in the form of easily visible tracks on the surface of solid media. Three types of tracks were observed: straight, sinusoidal, and circular. Normal, forward-directed motion involves screwlike rotation that describes a right-handed helix. However, observations are presented which suggest that rotational motion is not a prerequisite for gliding motility in this cyanobacterium.  相似文献   

16.
It was found that, after colonies of Nostoc sphaeroides Kütz. in exponential phase of growth were transferred to fresh complete BG‐110 medium, the hormogonia differentiated independent of the type of preculture used. This provided evidence that the hormogonia differentiation was not directly related to phosphorus and potassium status, nor to the osmotic effect of the media. In contrast, all the cultures in the stationary growth phase had no hormogonium differentiation after being transferred to fresh medium. However, the incomplete media for preculture seemed to favor the liberation of hormogonia from colonies to the medium. The result showed that the morphology and ultrastruc‐tures of the vegetative filament, the main stage of Nostocacean life history, determine its adaptability in changing environments, while the hormogonium remains as a propagule of the species.  相似文献   

17.
18.
Abstract The time course for the development of motility in cultures of the cyanobacterium Mastigocladus laminosus was established quantitatively using a slicer tool as described here. The slicer tool produces samples of trichomes from centrifuged pellets that, under identical conditions, shed comparable numbers of hormogonia. The number of hormogonia formed in liquid culture rises steeply between 24 and 31 h of incubation, returning to essentially zero in the next 24 h. The initial lag may be devoted to the cell divisions needed to form the cells of the hormogonium. The drop in motility could be due to one or more heat-stable substance(s) accumulated in the medium, since used media inhibited motility and the effect resisted autoclaving. The fact that the inoculum needed to be ground in order for motility to occur suggests that the structure of the clump inhibits the shedding of hormogonia. Some ecological implications are proposed, assuming that the clump structure interferes with light and mass transfer.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号