首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The HIV-1 envelope glycoprotein gp120 interacts consecutively with CD4 and CCR5 to mediate the entry of R5-HIV-1 strains into target cells. The N-terminus of CCR5, which contains several sulfated tyrosines, plays a critical role in gp120-CCR5 binding and, consequently, in viral entry. Here, we demonstrate that a tyrosine sulfated peptide, reproducing the entire N-terminal extracellular region of CCR5, its unsulfated analogue, and a point-mutated peptide are unable to inhibit R5-HIV-1 mediated infection, competing with the entire CCR5 in the formation of gp120-CD4-CCR5 complex. Surprisingly, these peptides show the capability of enhancing HIV-1 infection caused by X4 strains through the up-regulation of both CD4 and CXCR4 receptors.  相似文献   

2.
The CC chemokine receptors CCR5, CCR2, and CCR3 and the CXC chemokine receptor CXCR4 have been implicated as CD4-associated cofactors in the entry of primary and cell line-adapted human immunodeficiency virus type 1 (HIV-1) strains. CXCR4 is also a receptor for T-cell-line-adapted, CD4-independent strains of HIV-2. With the exception of this latter example, little has been reported on the entry cofactors used by HIV-2 strains. Here we show that a CD4-dependent, T-cell-line-adapted HIV-2 strain uses CXCR4 and, to a lesser extent, CCR3 for fusion with and infectious entry into cells. In a cell-to-cell fusion assay, the envelope protein of this virus can utilize a wider repertoire of chemokine receptors to induce fusion. These include CCR1, CCR2, CCR3, CCR4, CCR5, CXCR2, and CXCR4. Kinetic analysis indicated that cell lines expressing the receptors that support infection, CXCR4 and CCR3, form syncytia more rapidly than do cell lines expressing the other receptors. Nevertheless, although less efficient, fusion with CXCR2 expressing cells was specific, since it was inhibited by antibodies against CXCR2. The extensive use of chemokine receptors in cell-to-cell fusion has implications for understanding the molecular basis of CD4-chemokine receptor-induced lentivirus fusion and may have relevance for syncytium formation and the direct cell-to-cell transfer of virus in vivo.  相似文献   

3.
Most human immunodeficiency virus (HIV) strains require both CD4 and a chemokine receptor for entry into a host cell. In order to analyze how the HIV-1 envelope glycoprotein interacts with these cellular molecules, we constructed single-molecule hybrids of CD4 and chemokine receptors and expressed these constructs in the mink cell line Mv-1-lu. The two N-terminal (2D) or all four (4D) extracellular domains of CD4 were linked to the N terminus of the chemokine receptor CXCR4. The CD4(2D)CXCR4 hybrid mediated infection by HIV-1(LAI) to nearly the same extent as the wild-type molecules, whereas CD4(4D)CXCR4 was less efficient. Recombinant SU(LAI) protein competed more efficiently with the CXCR4-specific monoclonal antibody 12G5 for binding to CD4(2D)CXCR4 than for binding to CD4(4D)CXCR4. Stromal cell-derived factor 1 (SDF-1) blocked HIV-1(LAI) infection of cells expressing CD4(2D)CXCR4 less efficiently than for cells expressing wild-type CXCR4 and CD4, whereas down-modulation of CXCR4 by SDF-1 was similar for hybrids and wild-type CXCR4. In contrast, the bicyclam AMD3100, a nonpeptide CXCR4 ligand that did not down-modulate the hybrids, blocked hybrid-mediated infection at least as potently as for wild-type CXCR4. Thus SDF-1, but not the smaller molecule AMD3100, may interfere at multiple points with the binding of the surface unit (SU)-CD4 complex to CXCR4, a mechanism that the covalent linkage of CD4 to CXCR4 impedes. Although the CD4-CXCR4 hybrids yielded enhanced SU interactions with the chemokine receptor moiety, this did not overcome the specific coreceptor requirement of different HIV-1 strains: the X4 virus HIV-1(LAI) and the X4R5 virus HIV-1(89. 6), unlike the R5 strain HIV-1(SF162), infected Mv-1-lu cells expressing the CD4(2D)CXCR4 hybrid, but none could use hybrids of CD4 and the chemokine receptor CCR2b, CCR5, or CXCR2. Thus single-molecule hybrid constructs that mimic receptor-coreceptor complexes can be used to dissect coreceptor function and its inhibition.  相似文献   

4.
Human immunodeficiency virus (HIV) and simian (SIV) immunodeficiency virus entry is mediated by binding of the viral envelope glycoprotein (Env) to CD4 and chemokine receptors, CCR5 and/or CXCR4. CD4 induces extensive conformational changes that expose and/or induce formation of a chemokine receptor binding site on gp120. CD4-independent Env's of HIV type 1 (HIV-1), HIV-2, and SIV have been identified that exhibit exposed chemokine receptor binding sites and can bind directly to CCR5 or CXCR4 in the absence of CD4. While many studies have examined determinants for gp120-CCR5 binding, analysis of gp120-CXCR4 binding has been hindered by the apparently lower affinity of this interaction for X4-tropic HIV-1 isolates. We show here that gp120 proteins from two CD4-independent HIV-2 Env's, VCP and ROD/B, bind directly to CXCR4 with an apparently high affinity. By use of CXCR4 N-terminal deletion constructs, CXCR4-CXCR2 chimeras, and human-rat CXCR4 chimeras, binding determinants were shown to reside in the amino (N) terminus, extracellular loop 2 (ECL2), and ECL3. Alanine-scanning mutagenesis of charged residues, tyrosines, and phenylalanines in extracellular CXCR4 domains implicated multiple amino acids in the N terminus (E14/E15, D20, Y21, and D22), ECL2 (D187, R188, F189, Y190, and D193), and ECL3 (D262, E268, E277, and E282) in binding, although minor differences were noted between VCP and ROD/B. However, mutations in CXCR4 that markedly reduced binding did not necessarily hinder cell-cell fusion by VCP or ROD/B, especially in the presence of CD4. These gp120 proteins will be useful in dissecting determinants for CXCR4 binding and Env triggering and in evaluating pharmacologic inhibitors of the gp120-CXCR4 interaction.  相似文献   

5.
Human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env)-mediated membrane fusion occurs as a sequence of events that is triggered by CD4 binding to the Env gp120 subunit. In this study, we analyzed the dynamics of Env-mediated membrane fusion at the single-cell level using fluorescent fusion proteins and confocal laser fluorescent microscopy. Either enhanced cyan or yellow fluorescent protein (CFP and YFP, respectively) was fused to the end of the cytoplasmic regions of the HIV-1 receptors (CD4 and CCR5) and Env proteins. Real-time imaging of membrane fusion mediated by these recombinant proteins revealed that the kinetics of fusion in our system was faster than that previously reported. Analysis of the receptor interaction by fluorescence resonance energy transfer (FRET) at the single-cell level demonstrated a tendency for oligomerization of CD4-CD4, but not of CD4-CCR5, in the absence of Env-expressing cells. However, when Env-expressing cells attached to the receptor cells, FRET produced by CD4-CCR5 interaction was increased; the FRET intensity began to decline before the formation of the fusion pore. These changes in FRET may represent the temporal association of these receptors, triggered by gp120 binding, and their dissociation during the formation of the fusion pore. In addition, the FRET analysis of receptor interactions in the presence of fusion inhibitors showed that not only inhibitors acting on CCR5 but also the gp41-derived peptide T-20 interfered with CD4-CCR5 interaction during fusion. These data suggest that T-20 could affect the formation of Env-receptors complexes during the membrane fusion.  相似文献   

6.
Lin G  Lee B  Haggarty BS  Doms RW  Hoxie JA 《Journal of virology》2001,75(22):10766-10778
Envelope glycoproteins (Envs) of human immunodeficiency virus type 2 (HIV-2) are frequently able to use chemokine receptors, CXCR4 or CCR5, in the absence of CD4. However, while these Envs are commonly dual-tropic, no isolate has been described to date that is CD4 independent on both CXCR4 and CCR5. In this report we show that a variant of HIV-2/NIHz, termed HIV-2/vcp, previously shown to utilize CXCR4 without CD4, is also CD4 independent on rhesus (rh) CCR5, but requires CD4 to fuse with human (hu) CCR5. The critical determinant for this effect was an acidic amino acid at position 13 in the CCR5 N terminus, which is an asparagine in huCCR5 and an aspartic acid in rhCCR5. Transferring the huCCR5 N terminus with an N13D substitution to CCR2b or CXCR2 was sufficient to render these heterologous chemokine receptors permissive for CD4-independent fusion. Chimeric Envs between HIV-2/vcp and a CD4-dependent clone of HIV-2/NIHz as well as site-directed Env mutations implicated a positively charged amino acid (lysine or arginine) at position 427 in the C4 region of the HIV-2/vcp env gene product (VCP) gp120 as a key determinant for this phenotype. Because CD4-independent use of CCR5 mapped to a negatively charged amino acid in the CCR5 N terminus and a positively charged amino acid in the gp120 C4 domain, an electrostatic interaction between these residues or domains is likely. Although not required for CD4-dependent fusion, this interaction may serve to increase the binding affinity of Env and CCR5 and/or to facilitate subsequent conformational changes that are required for fusion. Because the structural requirements for chemokine receptor use by HIV are likely to be more stringent in the absence of CD4, CD4-independent viruses should be particularly useful in dissecting molecular events that are critical for viral entry.  相似文献   

7.
The fusion of human immunodeficiency virus type 1 (HIV-1) to host cells is a dynamic process governed by the interaction between glycoproteins on the viral envelope and the major receptor, CD4, and coreceptor on the surface of the cell. How these receptors organize at the virion-cell interface to promote a fusion-competent site is not well understood. Using single-molecule force spectroscopy, we map the tensile strengths, lifetimes, and energy barriers of individual intermolecular bonds between CCR5-tropic HIV-1 gp120 and its receptors CD4 and CCR5 or CXCR4 as a function of the interaction time with the cell. According to the Bell model, at short times of contact between cell and virion, the gp120-CD4 bond is able to withstand forces up to 35 pN and has an initial lifetime of 0.27 s and an intermolecular length of interaction of 0.34 nm. The initial bond also has an energy barrier of 6.7 k(B)T (where k(B) is Boltzmann's constant and T is absolute temperature). However, within 0.3 s, individual gp120-CD4 bonds undergo rapid destabilization accompanied by a shortened lifetime and a lowered tensile strength. This destabilization is significantly enhanced by the coreceptor CCR5, not by CXCR4 or fusion inhibitors, which suggests that it is directly related to a conformational change in the gp120-CD4 bond. These measurements highlight the instability and low tensile strength of gp120-receptor bonds, uncover a synergistic role for CCR5 in the progression of the gp120-CD4 bond, and suggest that the cell-virus adhesion complex is functionally arranged about a long-lived gp120-coreceptor bond.  相似文献   

8.
The entry of human immunodeficiency virus into target cells requires successive interactions of the viral envelope glycoprotein gp120 with CD4 and the chemokine receptors CCR5 or CXCR4. We previously demonstrated, by F?rster resonance energy transfer experiments, the constitutive association of CD4 and CCR5 at the surface of living cells. We therefore speculated that this interaction may correlate with compartmentalization of CD4 and CCR5 within the plasma membrane. Here, we characterize the lateral distribution, the dynamics, and the stoichiometry of these receptors in living cells stably expressing CD4 and/or CCR5 by means of fluorescence recovery after photobleaching at variable radii experiments. We found that (i) these receptors expressed alone are confined into 1-microm-sized domains, (ii) CD4-CCR5 associations occur outside and inside smaller domains, and (iii) these interactions involve multiple CCR5 molecules per CD4.  相似文献   

9.
CD4 and the chemokine receptors, CXCR4 and CCR5, serve as receptors for human immunodeficiency virus type 1 (HIV-1). Binding of the HIV-1 gp120 envelope glycoprotein to the chemokine receptors normally requires prior interaction with CD4. Mapping the determinants on gp120 for the low-affinity interaction with CXCR4 has been difficult due to the nonspecific binding of this viral glycoprotein to cell surfaces. Here we examine the binding of a panel of gp120 mutants to paramagnetic proteoliposomes displaying CXCR4 on their surfaces. We show that the gp120 beta19 strand and third variable (V3) loop contain residues important for CXCR4 interaction. Basic residues from both elements, as well as a conserved hydrophobic residue at the V3 tip, contribute to CXCR4 binding. Removal of the gp120 V1/V2 variable loops allows the envelope glycoprotein to bind CXCR4 in a CD4-independent manner. These results indicate that although some variable gp120 residues contribute to the specific binding to CCR5 or CXCR4, gp120 elements common to CXCR4- or CCR5-using strains are involved in the interaction with both coreceptors.  相似文献   

10.
The CC-chemokine receptor CCR5 is required for the efficient fusion of macrophage (M)-tropic human immunodeficiency virus type 1 (HIV-1) strains with the plasma membrane of CD4+ cells and interacts directly with the viral surface glycoprotein gp120. Although receptor chimera studies have provided useful information, the domains of CCR5 that function for HIV-1 entry, including the site of gp120 interaction, have not been unambiguously identified. Here, we use site-directed, alanine-scanning mutagenesis of CCR5 to show that substitutions of the negatively charged aspartic acid residues at positions 2 and 11 (D2A and D11A) and a glutamic acid residue at position 18 (E18A), individually or in combination, impair or abolish CCR5-mediated HIV-1 entry for the ADA and JR-FL M-tropic strains and the DH123 dual-tropic strain. These mutations also impair Env-mediated membrane fusion and the gp120-CCR5 interaction. Of these three residues, only D11 is necessary for CC-chemokine-mediated inhibition of HIV-1 entry, which is, however, also dependent on other extracellular CCR5 residues. Thus, the gp120 and CC-chemokine binding sites on CCR5 are only partially overlapping, and the former site requires negatively charged residues in the amino-terminal CCR5 domain.  相似文献   

11.
Human (H-) CCR5 is the primary coreceptor for ENV-mediated fusion by R5 strains of human immunodeficiency virus type 1, whereas mouse (M-) CCR5 lacks this function. An array of 23 H/M-CCR5 hybrids containing increasing amounts of H-CCR5 extending from the N terminus generated by random chimeragenesis had a biphasic pattern of coreceptor activity with JRFL and 89.6, revealing active regions in the N-terminal extracellular domain (N-ED) and at the junction of cytoplasmic loop 3. The M-CCR5 mutant in which divergent residues were replaced with the corresponding H-CCR5 N-ED sequence (NyYTsE) gained coreceptor function in fusion but not infection experiments. A M-CCR5 double mutant with substitution of human sequences for divergent residues from the N-ED and cytoplasmic loop 3 had augmented coreceptor activity in fusion assays and gain of function in infection experiments. The SIV-251 ENV utilized H- and M-CCR5 and variants. Flow cytometric analysis of M-CCR5 mutants and bifunctional receptors composed of CD4 domains fused to M-CCR5 mutants excluded the possibility that differences in coreceptor activity resulted from variations in cell surface expression. These results demonstrate that the coreceptor activity of the H-CCR5 N-ED is modulated by intracellular residues, illustrating the complexity of CCR5 requirements for interaction with ENV.  相似文献   

12.
The chemokine receptors CCR5 and CXCR4 were found to function in vivo as the principal coreceptors for M-tropic and T-tropic human immunodeficiency virus (HIV) strains, respectively. Since many primary cells express multiple chemokine receptors, it was important to determine if the efficiency of virus-cell fusion is influenced not only by the presence of the appropriate coreceptor (CXCR4 or CCR5) but also by the levels of other coreceptors expressed by the same target cells. We found that in cells with low to medium surface CD4 density, coexpression of CCR5 and CXCR4 resulted in a significant reduction in the fusion with CXCR4 domain (X4) envelope-expressing cells and in their susceptibility to infection with X4 viruses. The inhibition could be reversed either by increasing the density of surface CD4 or by antibodies against the N terminus and second extracellular domains of CCR5. In addition, treatment of macrophages with a combination of anti-CCR5 antibodies or beta-chemokines increased their fusion with X4 envelope-expressing cells. Conversely, overexpression of CXCR4 compared with CCR5 inhibited CCR5-dependent HIV-dependent fusion in 3T3.CD4.401 cells. Thus, coreceptor competition for association with CD4 may occur in vivo and is likely to have important implications for the course of HIV type 1 infection, as well as for the outcome of coreceptor-targeted therapies.  相似文献   

13.
The entry of human immunodeficiency virus (HIV) into cells depends on a sequential interaction of the gp120 envelope glycoprotein with the cellular receptors CD4 and members of the chemokine receptor family. The CC chemokine receptor CCR5 is such a receptor for several chemokines and a major coreceptor for the entry of R5 HIV type-1 (HIV-1) into cells. Although many studies focus on the interaction of CCR5 with HIV-1, the corresponding interaction sites in CCR5 and gp120 have not been matched. Here we used an approach combining protein structure modeling, docking and molecular dynamics simulation to build a series of structural models of the CCR5 in complexes with gp120 and CD4. Interactions such as hydrogen bonds, salt bridges and van der Waals contacts between CCR5 and gp120 were investigated. Three snapshots of CCR5-gp120-CD4 models revealed that the initial interactions of CCR5 with gp120 are involved in the negatively charged N-terminus (Nt) region of CCR5 and positively charged bridging sheet region of gp120. Further interactions occurred between extracellular loop2 (ECL2) of CCR5 and the base of V3 loop regions of gp120. These interactions may induce the conformational changes in gp120 and lead to the final entry of HIV into the cell. These results not only strongly support the two-step gp120-CCR5 binding mechanism, but also rationalize extensive biological data about the role of CCR5 in HIV-1 gp120 binding and entry, and may guide efforts to design novel inhibitors.  相似文献   

14.
CD4 and CCR5 mediate fusion and entry of R5 human immunodeficiency virus type 1 (HIV-1) strains. Sulfotyrosine and other negatively charged residues in the CCR5 amino-terminal domain (Nt) are crucial for gp120 binding and viral entry. We previously showed that a soluble gp120-CD4 complex specifically binds to a peptide corresponding to CCR5 Nt residues 2 to 18, with sulfotyrosines in positions 10 and 14. This sulfopeptide also inhibits soluble gp120-CD4 binding to cell surface CCR5 as well as infection by an R5 virus. Here we show that residues 10 to 18 constitute the minimal domain of the CCR5 Nt that is able to specifically interact with soluble gp120-CD4 complexes. In addition to sulfotyrosines in positions 10 and 14, negatively charged residues in positions 11 and 18 participate in this interaction. Furthermore, the CCR5 Nt binds to a CD4-induced surface on gp120 that is composed of conserved residues in the V3 loop stem and the C4 domain. Binding of gp120 to cell surface CCR5 is further influenced by residues in the crown of the V3 loop, C1, C2, and C3. Our data suggest that gp120 docking to CCR5 is a multistep process involving several independent regions of the envelope glycoprotein and the coreceptor.  相似文献   

15.
Desensitization of the chemokine receptors, a large class of G protein-coupled receptors, is mediated in part by agonist-driven receptor endocytosis. However, the exact pathways have not been fully defined. Here we demonstrate that the rate of ligand-induced endocytosis of CCR5 in leukocytes and expression systems is significantly slower than that of CXCR4 and requires prolonged agonist treatment, suggesting that these two receptors use distinct mechanisms. We show that the C-terminal domain of CCR5 is the determinant of its slow endocytosis phenotype. When the C-tail of CXCR4 was exchanged for that of CCR5, the resulting CXCR4-CCR5 (X4-R5) chimera displayed a CCR5-like trafficking phenotype. We found that the palmitoylated cysteine residues in this domain anchor CCR5 to plasma membrane rafts. CXCR4 and a C-terminally truncated CCR5 mutant (CCR5-KRFX) lacking these cysteines are not raft associated and are endocytosed by a clathrin-dependent pathway. Genetic inhibition of clathrin-mediated endocytosis demonstrated that a significant fraction of ligand-occupied CCR5 trafficked by clathrin-independent routes into caveolin-containing vesicular structures. Thus, the palmitoylated C-tail of CCR5 is the major determinant of its raft association and endocytic itineraries, differentiating it from CXCR4 and other chemokine receptors. This novel feature of CCR5 may modulate its signaling potential and could explain its preferential use by HIV for person-to-person transmission of disease.  相似文献   

16.
Much is known about G protein coupled receptor trafficking and internalization following agonist stimulation. However, much less is known about outward trafficking of receptors from synthesis in the endoplasmic reticulum to the plasma membrane, or the role that trafficking might play in the assembly of receptor signaling complexes, important for targeting, specificity, and rapidity of subsequent signaling events. Up to now, very little is understood about receptor hetero-oligomers other than the fact that their assembly is done rapidly after biosynthesis. In our study we use bimolecular fluorescence complementation to selectively follow receptor dimers when expressed in Jurkat cells in order to clarify the trafficking itinerary those receptors follow to reach the plasma membrane and the resulting effect on signal transduction. CXCR4 and CCR5, previously shown to form both homo and hetero-oligomers, were used as our model to understand the specificities of trafficking along the anterograde pathway. The CXCR4 homodimer relies on Rabs2, 6 and 8 for anterograde transport regardless of the presence of endogenous CD4. The CCR5 homodimer relies on Rabs1 and 11 when CD4 is absent, but Rabs1 and 8 when CD4 was present. Interestingly, similar to the CCR5 homodimer, the CXCR4-CCR5 heterodimer relied on Rabs1 and 11 but also required Rab2 when CD4 was absent, and only Rab 1 when CD4 was present. Our results demonstrate that, although the receptors composing the heterodimeric complex are the same as in the homodimeric ones, the heterodimer traffics and signals differently than each homodimer. Our study demonstrates the importance of considering the receptor heterodimers as distinct signaling entities that should be carefully and individually characterized.  相似文献   

17.
Because the chemokine receptor CCR5 is expressed on Th1 CD4(+) cells, it is important to investigate the expression and function of this receptor on other T cells involved in Th1 immune responses, such as Ag-specific CD8(+) T cells, which to date have been only partially characterized. Therefore, we analyzed the expression and function of CCR5 on virus-specific CD8+ T cells identified by HLA class I tetramers. Multicolor flow cytometry analysis demonstrated that CCR5 is expressed on memory (CD28+CD45RA-) and effector (CD28-CD45RA- and CD28-CD45RA+) CD8+ T cells but not on naive (CD28+CD45RA+) CD8+ T cells. CCR5 expression was much lower on two effector CD8+ T cells than on memory CD8+ T cells. Analysis of CCR7 and CCR5 expression on the different types of CD8+ T cells showed that memory CD8+ T cells have three phenotypic subsets, CCR5+CCR7-, CCR5+CCR7+, and CCR5-CCR7+, while naive and effector CD8+ T cells have CCR5-CCR7+ and CCR5+CCR7- phenotypes, respectively. These results suggest the following sequence for differentiation of memory CD8+ T cells: CCR5-CCR7+-->CCR5+CCR7+-->CCR5+CCR7-. CCR5+CD8+ T cells effectively migrated in response to RANTES, suggesting that CCR5 plays a critical role in the migration of Ag-specific effector and differentiated memory CD8+ T cells to inflammatory tissues and secondary lymphoid tissues. This is in contrast to CCR7, which functions as a homing receptor in migration of naive and memory CD8+ T cells to secondary lymphoid tissues.  相似文献   

18.
The V3 loop and the bridging sheet domain of human immunodeficiency virus type 1 (HIV-1) subtype B envelope glycoprotein gp120 have been implicated in CCR5 coreceptor utilization. In this study, mutant envelope glycoproteins of a subtype C isolate containing substitutions in the V3 or C4 region were generated to determine which are required for efficient CCR5-dependent cell fusion and viral entry. We found that the V3 crown and C4 residues are relatively dispensable for cell-cell fusion, although some residues may be involved in the regulation of early postentry steps in viral replication. In contrast, seven highly conserved residues located in the V3 stem are critical for CCR5 utilization, which can explain the apparent paradox that the functional convergence in CCR5 usage by genetically divergent HIV-1 strains involves a variable region. The finding that C4 residues do not have a critical role may appear to contradict the current model that bridging sheet residues are involved in the gp120-CCR5 interaction. However, a plausible interpretation is that these C4 residues may have a distinct role in the binding and fusion steps of the gp120-CCR5 interaction.  相似文献   

19.
Cell surface receptors exploited by human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) for infection are major determinants of tropism. HIV-1 usually requires two receptors to infect cells. Gp120 on HIV-1 virions binds CD4 on the cell surface, triggering conformational rearrangements that create or expose a binding site for a seven-transmembrane (7TM) coreceptor. Although HIV-2 and SIV strains also use CD4, several laboratory-adapted HIV-2 strains infect cells without CD4, via an interaction with the coreceptor CXCR4. Moreover, the envelope glycoproteins of SIV of macaques (SIV(MAC)) can bind to and initiate infection of CD4(-) cells via CCR5. Here, we show that most primary HIV-2 isolates can infect either CCR5(+) or CXCR4(+) cells without CD4. The efficiency of CD4-independent infection by HIV-2 was comparable to that of SIV, but markedly higher than that of HIV-1. CD4-independent HIV-2 strains that could use both CCR5 and CXCR4 to infect CD4(+) cells were only able to use one of these receptors in the absence of CD4. Our observations therefore indicate (i) that HIV-2 and SIV envelope glycoproteins form a distinct conformation that enables contact with a 7TM receptor without CD4, and (ii) the use of CD4 enables a wider range of 7TM receptors to be exploited for infection and may assist adaptation or switching to new coreceptors in vivo. Primary CD4(-) fetal astrocyte cultures expressed CXCR4 and supported replication by the T-cell-line-adapted ROD/B strain. Productive infection by primary X4 strains was only triggered upon treatment of virus with soluble CD4. Thus, many primary HIV-2 strains infect CCR5(+) or CXCR4(+) cell lines without CD4 in vitro. CD4(-) cells that express these coreceptors in vivo, however, may still resist HIV-2 entry due to insufficient coreceptor concentration on the cell surface to trigger fusion or their expression in a conformation nonfunctional as a coreceptor. Our study, however, emphasizes that primary HIV-2 strains carry the potential to infect CD4(-) cells expressing CCR5 or CXCR4 in vivo.  相似文献   

20.
In the present sudy, chemokine receptor-usage of primary HIV-1 isolates was examined using U87-CD4 cells expressing chemokine receptors CCR3, CCR5 and CXCR4. HIV-1 was isolated from the peripheral blood mononuclear cells (PBMC) and/or plasma of eight HIV-1-infected individuals in late CDC-II and CDC-IV clinical stages using PHA-blast prepared from the PBMC of healthy blood donors. The primary HIV-1 isolates from patients in late CDC-II stage rarely infected monocyte-derived macrophages in the present study, whereas most isolates from patients in the CDC-IV stage infected the macrophages. In the experiments using U87-CD4 cells expressing chemokine receptors, the isolates from patients in the late CDC-II stage infected U87-CD4 cells expressing CXCR4, but not U87-CD4 cells expressing CCR5. In contrast, most isolates from patients in the CDC-IV stage infected both U87-CD4 cells expressing CXCR4 or CCR5. The isolates which infected both U87-CD4 cells were supposed to contain dual tropic HIV-1 or a mixture of CXCR4-tropic and CCR5-tropic HIV-1s. Analysis of the deduced amino acid sequence of the V3 region in proviral env gene showed that the V3 region in U87-CD4 cells infected with CXCR4-tropic HIV-1 isolates was largely different from that in the cells infected with CCR5-tropic isolates, but were highly similar to that in cells infected with dual tropic isolates. These results suggest that PHA-blasts may preferentially support the replication of the CXCR4-tropic and dual tropic HIV-1s, and that CXCR4-tropic and dual tropic HIV-1s are also present in peripheral blood from patients in the late stage of the asymptomatic phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号