首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pH-dependence of the oxidation state marker line v4 of human leucocyte myeloperoxidase is determined in the absence of chloride using Raman difference spectroscopy (RDS). A transition in the frequency of v4 with pK of 4.2 +/- 0.3 is found. The pK compares favorably with that previously determined by spectrophotometric titration and kinetic studies. The shift in v4 across the transition is -1.3 cm-1. The shift in v4 and other Raman marker lines indicates enhanced pi charge in the chlorin ring below the transition. The low frequencies of the oxidation state marker lines indicate that a structural change occurs near the chromophore, which results in the formation of a more pi-charge donating protein environment for the chlorin ring at low pH. The Raman results are discussed in terms of a proposed catalytic control mechanism based on charge stabilization of the energy of ring charge-depleted ferryl intermediates of the reaction with peroxide. The myeloperoxidase findings are compared with similar RDS results for ferrous horseradish peroxidase and ferric cytochrome c peroxidase.  相似文献   

2.
Resonance Raman enhancement of derivatives and intermediates of horseradish peroxidase in the near ultraviolet (N-band excitation) results in intensity and enhancement patterns that are different from those normally observed within the porphyrin Soret (B-band) and alpha-beta (Q-band) absorptions. In particular it allows the resolution of resonance Raman spectra of horseradish peroxidase compound I. The bands above 1300 cm-1 can be assigned to porphyrin vibrational modes that are characteristically shifted in frequency due to removal of an electron from the porphyrin ring. The resonance Raman frequency shifts follow normal mode compositions. Relative to resonance Raman spectra of compound II, the v4 frequency (primarily Ca-N) exhibits a 20 cm-1 downshift. The v2, v11, and v37 vibrational frequencies whose mode compositions are primarily porphyrin Cb-Cb, exhibit 10-20 cm-1 upshifts. The v3, v10, and v28 frequencies, whose mode compositions are primarily Ca-Cm, exhibit downshifts. The downshifts for v3 and v10 are small, 3-5 cm-1; however, the downshift for v28 is 14 cm-1. These frequency shifts are consistent with those of previously published resonance Raman studies of model compounds. In contrast to reports from other laboratories, the data presented here for horseradish peroxidase compound I can be attributed unambiguously to resonance Raman scattering from a porphyrin pi-cation radical.  相似文献   

3.
The pH dependence of the oxidation-state marker line of hemoproteins is investigated in cytochrome c peroxidase with Raman difference spectroscopy. The frequency is sensitive to ionization of a group on the protein that regulates catalytic activity of the resting ferriheme enzyme. The oxidation-state marker line shows a transition with pK of 5.5 in good agreement with other spectroscopic measurements and kinetic measurements of binding of peroxide, and other ligands to the native enzyme. The shift of 0.8 cm-1 to higher frequency at pH 4.5 relative to the pH 6.4 value is interpreted in terms of a substantial decrease in pi-electron density in the porphyrin ring. Charge density in the pi-system is highest at maximal activity, as would be expected if donor-acceptor interactions with residues of the protein stabilize the oxidized Fe(IV) reaction intermediate. Evidence of additional heme-linked ionizations with pK values near 7.5 is found; this alkaline transition involves deprotonation of several groups of the protein, conversion of iron from high to low spin, and, possibly, denaturation of the protein.  相似文献   

4.
Resonance Raman and visible absorption spectra were simultaneously observed for cytochrome oxidase reaction intermediates at 5 degrees C by using the artificial cardiovascular system (Ogura, T., Yoshikawa, S., and Kitagawa, T. (1989) Biochemistry 28, 8022-8027) and a device for Raman/absorption simultaneous measurements (Ogura, T., and Kitagawa, T. (1988) Rev. Sci. Instrum. 59, 1316-1320). The Fe4+ = O stretching (nu FeO) Raman band was observed at 788 cm-1 for compound B for the first time. This band showed the 16O/18O isotopic frequency shift (delta nu FeO) by 40 cm-1, in agreement with that for horseradish peroxidase compound II (nu FeO = 787 cm-1 and delta nu FeO = 34 cm-1). In the time region when the FeII-O2 stretching band for compound A and the nu FeO band for compound B were coexistent, a Raman band assignable to the Fe3+-O-O-Cu2+ linkage was not recognized.  相似文献   

5.
We have directly observed the oxyferryl group of ferryl myoglobin by resonance Raman spectroscopy. The FeIV = O stretching vibration is observed at 797 cm-1 and confirmed by an 18O-induced isotopic shift to 771 cm-1. The porphyrin center-to-nitrogen distance of ferryl myoglobin is significantly less than that previously observed for horseradish peroxidase compound II, which also contains an FeIV = O heme. The FeIII-CN- stretch of myoglobin (FeIII) cyanide is observed at 454 cm-1, which shifts to 449 cm-1 upon substitution with [13C]cyanide.  相似文献   

6.
Resonance Raman (RR) spectroscopy of lignin peroxidase (ligninase, dairylpropane oxygenase) from the basidiomycete Phanerochaete chrysosporium suggests two different coordination states for the native ferric enzyme. Evidence for a high-spin, hexacoordinate ferric protoporphyrin IX was presented by Andersson et al. [Andersson, L. A., Renganathan, V., Chiu, A.A., Loehr, T. M., & Gold, M. H. (1985) J. Biol. Chem. 260, 6080-6087], whereas Kuila et al. [Kuila, D., Tien, M., Fee, J. A., & Ondrias, M. R. (1985) Biochemistry 24, 3394-3397] proposed a high-spin, pentacoordinate ferric system. Because the two RR spectral studies were performed at different temperatures, we explored the possibility that lignin peroxidase might exhibit temperature-dependent coordination-state equilibria. Resonance Raman results presented herein indicate that this hypothesis is indeed correct. At or near 25 degrees C, the ferric iron of lignin peroxidase is predominantly high spin, pentacoordinate; however, at less than or equal to 2 degrees C, the high-spin, hexacoordinate state dominates, as indicated by the frequencies of well-documented spin- and coordination-state marker bands for iron protoporphyrin IX. The temperature-dependent behavior of lignin peroxidase is thus similar to that of cytochrome c peroxidase (CCP). Furthermore, lignin peroxidase, like horseradish peroxidase (HRP) and CCP, clearly has a vacant coordination site trans to the native fifth ligand at ambient temperature. High-frequency RR spectra of compound II of lignin peroxidase are also presented. The observed shifts to higher frequency for both the oxidation-state marker band v4 and the spin- and coordination-state marker band v10 are similar to those reported for the compound II forms of HRP and lactoperoxidase and for ferryl myoglobin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Nickel(II)-reconstituted hemoglobin (NiHb) and myoglobin (NiMb) and model Ni porphyrins have been investigated by Soret-resonance Raman difference spectroscopy. Two sets of frequencies for the oxidation-state and core-size marker lines in the region from 1300 to 1700 cm-1 indicate two distinct sites in NiHb. Only one of these sites is evident in the Raman spectra of NiMb. This result is consistent with the UV-visible absorption spectrum of NiHb, which shows two Soret bands at 397 and 420 nm and one Soret at 424 nm for NiMb. Excitation at the blue Soret component of NiHb with 406.7-nm laser radiation preferentially enhances the set of Raman marker lines typical of Ni-protoporphyrin IX [Ni(ProtoP )] in noncoordinating solvents. The wavelength of the blue Soret component and the Raman spectrum indicate four-coordination for this site in NiHb. Laser excitation in the red Soret band enhances a set of lines whose frequencies are compatible with neither four- nor six-coordinate frequencies but are intermediate between the two. The red Soret band of the proteins is also considerably less red shifted than six-coordinate Ni-porphyrin models. These results suggest that Ni in the second site possesses a single axial ligand. Raman spectra of 64Ni-reconstituted and natural abundance Ni-reconstituted hemoglobins, obtained simultaneously in a Raman difference spectrometer, have identified the Ni-ligand stretch at 236 cm-1. The line shifts to 229 cm-1 for the 64Ni-reconstituted Hb. For a pure Ni-ligand stretch a 10-cm-1 shift would be predicted.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Resonance Raman spectroscopy has been used to investigate the structure and environment of the heme group in bovine liver catalase compound II. Both Soret- and Q-band excitation have been employed to observe and assign the skeletal stretching frequencies of the porphyrin ring. The oxidation state marker band v4 increases in frequency from 1373 cm-1 in ferricatalase to 1375 cm-1 in compound II, consistent with oxidation of the iron atom to the Fe(IV) state. Oxidation of five-coordinate, high-spin ferricatalase to compound II is accompanied by a marked increase of the porphyrin core marker frequencies that is consistent with a six-coordinate low-spin state with a contracted core. An Fe(IV) = O stretching band is observed at 775 cm-1 for compound II at neutral pH, indicating that there is an oxo ligand at the sixth site. At alkaline pH, the Fe(IV) = O stretching band shifts to 786 cm-1 in response to a heme-linked ionization that is attributed to the distal His-74 residue. Experiments carried out in H218O show that the oxo ligand of compound II exchanges with bulk water at neutral pH, but not at alkaline pH. This is essentially the same behavior exhibited by horseradish peroxidase compound II and the exchange reaction at neutral pH for both enzymes is attributed to acid/base catalysis by a distal His residue that is believed to be hydrogen-bonded to the oxo ligand. Thus, the structure and environment of the heme group of the compound II species of catalase and horseradish peroxidase are very similar. This indicates that the marked differences in their reactivities as oxidants are probably due to the manner in which the protein controls access of substrates to the heme group.  相似文献   

9.
Resonance Raman spectra of ferrous and ferric cytochrome c peroxidase and Compound ES and their pH dependences were investigated in resonance with Soret band. The Fe(IV) = O stretching Raman line of Compound ES was assigned to a broad band around 767 cm-1, which was shifted to 727 cm-1 upon 18O substitution. The 18O-isotopic frequency shift was recognized for Compound ES derived in H218O, but not in H216O. This clearly indicated occurrence of an oxygen exchange between the Fe(IV) = O heme and bulk water. The Fe(IV) = O stretching Raman band was definitely more intense and of higher frequency in D2O than in H2O as in Compound II of horseradish peroxidase, but in contrast with this its frequency was unaltered between pH 4 and 11. The Fe(II)-histidine stretching Raman line was assigned on the basis of the frequency shift observed for 54Fe isotopic substitution. From the intensity analysis of this band, the pKa of the heme-linked ionization of ferrocytochrome c peroxidase was determined to be 7.3. The Raman spectrum of ferricytochrome c peroxidase strongly suggested that the heme is placed under an equilibrium between the 5- and 6-coordinate high-spin structures. At neutral pH it is biased to the 5-coordinate structure, but at the acidic side of the transition of pKa = 5.5 the 6-coordinate heme becomes dominant. F- was bound to the heme iron at pH 6, but Cl- was bound only at acidic pH. Acidification by HNO3, H2SO4, CH3COOH, HBr, or HI resulted in somewhat different populations of the 5- and 6-coordinate forms when they were compared at pH 4.3. Accordingly, it is inferred that a water molecule which is suggested to occupy the sixth coordination position of the heme iron is not coordinated to the heme iron at pH 6 but that protonation of the pKa = 5.5 residue induces an appreciable structural change, allowing the coordination of the water molecule to the heme iron.  相似文献   

10.
Resonance Raman spectra have been obtained for Compound II of horseradish peroxidase. Its prophyrin vibrational frequencies are consistent with a planar low-spin heme containing Fe(IV). The oxidation-state marker band is found at the unprecedentedly high value of 1382 cm?1. This band was also observed in solutions of myoglobin and cytochrome c peroxidase to which H2O2 had been added. No evidence was found for an actual FeO double bond in Compound II.  相似文献   

11.
Resonance Raman spectra were observed for compound II of horseradish peroxidase A2, and the Fe(IV) = O stretching Raman line was identified at 775 cm-1. This Raman line shifted to 741 cm-1 upon a change of solvent from H2(16)O to H2(18)O, indicating occurrence of the oxygen exchange between the Fe(IV) = O heme and bulk water. The oxygen exchange took place only at the acidic side of the heme-linked ionization with pKa = 6.9.  相似文献   

12.
To investigate heme-protein coupling via the Fe(2+)-N epsilon (His F8) linkage we have measured the profile of the Raman band due to the Fe(2+)-N epsilon (His F8) stretching mode (nu Fe-His) of deoxyHb-trout IV and deoxyHbA at various pH between 6.0 and 9.0. Our data establish that the band of this mode is composed of five different sublines. In deoxyHb-trout IV, three of these sublines were assigned to distinct conformations of the alpha-subunit (omega alpha 1 = 202 cm-1, omega alpha 2 = 211 cm-1, omega alpha 3 = 217 cm-1) and the other two to distinct conformations of the beta-subunit (omega beta 1 = 223 cm-1 and omega beta 2 = 228 cm-1). Human deoxyHbA exhibits two alpha-chain sublines at omega alpha 1 = 203 cm-1, omega alpha 2 = 212 cm-1 and two beta-chain sublines at omega beta 1 = 217 cm-1 and omega beta 2 = 225 cm-1. These results reveal that each subunit exists in different conformations. The intensities of the nu Fe-His sublines in deoxyHb-trout IV exhibit a significant pH dependence, whereas the intensities of the corresponding sublines in the deoxyHbA spectrum are independent on pH. This finding suggests that the structural basis of the Bohr effect is different in deoxyHbA and deoxyHb-trout IV. To analyse the pH dependence of the deoxyHb-trout IV sublines we have applied a titration model describing the intensity of each nu Fe-His subline as an incoherent superposition of the intensities from sub-sublines with the same frequency but differing intrinsic intensities due to the different protonation states of the respective subunit. The molar fractions of these protonation states are determined by the corresponding Bohr groups (i.e., pK alpha 1 = pK alpha 2 = 8.5, pK beta 1 = 7.5, pK beta 2 = 7.4) and pH. Hence, the intensities of these sublines reflect the pH dependence of the molar fractions of the involved protonation states. Fitting this model to the pH-dependent line intensities yields a good reproduction of the experimental data.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
The low-frequency FeCN vibrations of cyanoferric myeloperoxidase (MPO) and horseradish peroxidase (HRP) have been measured by resonance Raman spectroscopy. The ordering of the frequencies of the predominantly FeC stretching and FeCN bending normal vibrational modes in the two peroxidases differs. These normal mode vibrations are identified by their wavenumber shifts upon isotopic substitution of the cyanide ligand. For MPO, the stretching mode nu 1 (361 cm-1) occurs at a lower frequency than the bending mode delta 2 (454 cm-1). For HRP, the order is reversed as nu 1 (456 cm-1) is at a higher frequency than delta 2 (404 cm-1). Normal coordinate analyses and model complexes have been used to address the origin of this behavior. The nu 1 stretching frequencies in cyanide complexes of iron porphyrin and iron chlorin model compounds are similar to one another and to that of HRP. Thus, the inverted order and altered frequencies of the nu 1 and delta 2 vibrations in MPO, relative to those in HRP and the model compounds, are not inherent to the proposed iron chlorin prosthetic group in MPO but, rather, are attributed to distinct distal environmental effects in the MPO active site. The normal coordinate analyses for MPO and HRP showed that the nu 1 and delta 2 vibrational frequencies are not pure; the potential energy distributions for these modes respond not only to the geometry but also to the force constants of the nu(FeC) and delta(FeCN) internal coordinates.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Resonance Raman (RR) spectroscopy and infrared spectroscopy have been used to characterize the three vibrational modes, CO and FeC stretching and FeCO bending, for carbon monoxide bound to reduced horseradish peroxidase, with the aid of 13CO and C18O isotope shifts. At high pH, one species, I, is observed, with nu FeC = 490 cm-1 and nu CO = 1932 cm-1. The absence of a band attributable to delta FeCO suggests a linear FeCO unit normal to the heme plane. The data were consistent with I having a strongly H-bonded proximal histidine, as shown by a comparison with imidazole and imidazolate adducts of FeIIPPDME(CO) (PPDME = protoporphyrin IX dimethyl ester), with nu FeC = 497 and 492 cm-1 and nu CO = 1960 and 1942 cm-1. At low pH an additional species, II, is observed, with nu FeC = 537 cm-1, nu CO = 1904 cm-1, and delta FeCO = 587 cm-1; it is attributed to FeCO that is H bonded to a protonated distal histidine, the H bond strongly lowering nu CO and raising nu FeC. The appearance of delta FeCO in the RR spectrum suggests that the FeCO unit in II is tilted with respect to the heme plane. At low pH, the population of I and II depends on the CO concentration. I dominates at low CO/protein levels but is replaced by II as the amount of CO is increased. This behavior is suggested to arise from secondary binding of CO, which induces a conformation change involving the distal residues of the heme pocket.  相似文献   

15.
The Fe-histidine stretching (nu(Fe-His)) frequency was determined for deoxy subunits of intermediately ligated human hemoglobin A in equilibrium and CO-photodissociated picosecond transient species in the presence and absence of strong allosteric effectors like inositol(hexakis)phosphate, bezafibrate, and 2,3-bisphosphoglycerate. The nu(Fe-His) frequency of deoxyHb A was unaltered by the effectors. The T-to-R transition occurred around m = 2-3 in the absence of effectors but m > 3.5 in their presence, where m is the average number of ligands bound to Hb and was determined from the intensity of the nu(4) band measured in the same experiment. The alpha1-beta2 subunit contacts revealed by ultraviolet resonance Raman spectra, which were distinctly different between the T and R states, remained unchanged by the effectors. This observation would solve the recent discrepancy that the strong effectors remove the cooperativity of oxygen binding in the low-affinity limit, whereas the (1)H NMR spectrum of fully ligated form exhibits the pattern of the R state.  相似文献   

16.
A resonance Raman band involving significantly the iron(III)-histidine stretching (upsilonFe-His) character is identified for metmyoglobin (metMb) through isotope sensitivity of its low-frequency resonance Raman bands, but the identification was not successful for methemoglobin (metHb) and its isolated alpha and beta subunits. A band at 218 cm-1 of natural abundance metMb exhibited a low-frequency shift for 15N-His-labeled metMb (-1.4 cm-1 shift), while the strong porphyrin bands at 248 and 271 cm-1 did not shift significantly. The frequency of the 218-cm-1 band of metMb decreased by 1.6 cm-1 in D2O, probably due to Ndelta-deuteration of the proximal His, in a similar manner to that of the upsilonFe-His band of deoxyMb in D2O. This 218-cm-1 band shifted slightly to a lower frequency in H2(18)O, whereas it did little upon 54Fe isotopic substitution (<0.3 cm-1), presumably because of the six-coordinate structure. The lack of the 54Fe-isotope shift shows that the 218-cm-1 band is specific to metMb and not due to the deoxy species. The intensity of this band decreased for hydroxymetMb and was indiscernible for cyanometMb. For metHb and its alpha and beta subunits, however, the frequencies of the band around 220 cm-1 were not D2O sensitive. These results suggest an assignment of the band around 220 cm-1 to a pyrrole tilting mode, which significantly contains the Fe-His stretching character for metMb but scarcely for metHb and its subunits. The differences in the isotope sensitivity of this band in different proteins are considered to reflect the heme distortion from the planarity and the Fe-His geometry specific to individual proteins.  相似文献   

17.
Fe(IV)=O resonance Raman stretching vibrations were recently identified by this laboratory for horseradish peroxidase compound II and ferryl myoglobin. In the present report it is shown that Fe(IV)=O stretching frequency for horseradish peroxidase compound II will switch between two values depending on pH, with pKa values corresponding to the previously reported compound II heme-linked ionizations of pKa = 6.9 for isoenzyme A-2 and pKa = 8.5 for isoenzyme C. Similar pH-dependent shifts of the Fe(IV)=O frequency of ferryl myoglobin were not detected above pH 6. The Fe(IV)=O stretching frequencies of compound II of the horseradish peroxidase isoenzymes at pH values above the transition points were at a high value approaching the Fe(IV)=O stretching frequency of ferryl myoglobin. Below the transition points the horseradish peroxidase frequencies were found to be 10 cm-1 lower. Frequencies of the Fe(IV)=O stretching vibrations of horseradish peroxidase compound II for one set of isoenzymes were found to be sensitive to deuterium exchange below the transition point but not above. These results were interpreted to be indicative of an alkaline deprotonation of a distal amino acid group, probably histidine, which is hydrogen bonded to the oxyferryl group below the transition point. Deprotonation of this group at pH values above the pKa disrupts hydrogen bonding, raising the Fe(IV)=O stretching frequency, and is proposed to account for the lowering of compound II reactivity at alkaline pH. The high value of the Fe(IV)=O vibration of compound II above the transition point appears to be identical in frequency to what is believed to be the Fe(IV)=O vibration of compound X.  相似文献   

18.
Resonance Raman scattering studies are reported on freshly prepared and aged ferric, ligand-free ferrous, and CO-bound ferrous cytochrome c peroxidase. The ferric form of the fresh enzyme has a heme which is penta-coordinate high spin, independent of buffer over the pH range 4.3-7, as determined by well established Raman marker lines. The aged enzyme displays a mixture of spin and coordination states, but it can be stabilized in the penta-coordinate high spin form in the presence of phosphate. These results can be accounted for by considering the size of the channel (6 A wide, 11 A long) between the distal side of the heme and the outer surface of the protein. A phosphate ion may be accommodated in this channel resulting in the stabilization of the distal heme pocket. The ferrous cytochrome c peroxidase in both the ligand-free and CO-bound states has an acidic and an alkaline form. The acidic form has the characteristic spectral features of peroxidases: a high frequency iron-histidine stretching mode (248 cm-1), a high frequency Fe-CO stretching mode (537 cm-1), and a low frequency C-O stretching mode (1922 cm-1). At alkaline pH these frequencies become similar to those of hemoglobin and myoglobin, with the corresponding modes located at 227, 510, and 1948 cm-1, respectively. We attribute the acid/alkaline transition in the ferrous forms of cytochrome c peroxidase to a rearrangement mainly of the proximal side of the heme, culminating in a change of steric interactions between the proximal histidine and the heme or of the hydrogen bonding network involving the proximal histidine. The new data presented here reconcile many inconsistencies reported in the past.  相似文献   

19.
Raman spectroscopic study of left-handed Z-RNA   总被引:3,自引:0,他引:3  
The solvent conditions that induce the formation of a left-handed Z form of poly[r(G-C)] have been extended to include 6.5 M NaBr at 35 degrees C and 3.8 M MgCl2 at room temperature. The analysis of the A----Z transition in RNA by circular dichroism (CD), 1H and 31P NMR, and Raman spectroscopy shows that two distinct forms of left-handed RNA exist. The ZR-RNA structure forms in high concentrations of NaBr and NaClO4 and exhibits a unique CD signature. ZD-RNA is found in concentrated MgCl2 and has a CD signature similar to the Z form of poly[d(G-C)]. The loss of Raman intensity of the 813-cm-1 A-form marker band in both the A----ZR-RNA and A----ZD-RNA transitions parallels the loss of intensity at 835 cm-1 in the B----Z transition of DNA. A guanine vibration that is sensitive to the glycosyl torsion angle shifts from 671 cm-1 in A-RNA to 641 cm-1 in both ZD- and ZR-RNA, similar to the B----Z transition in DNA in which this band shifts from 682 to 625 cm-1. Significant differences in the glycosyl angle and sugar pucker between Z-DNA and Z-RNA are suggested by the 16-cm-1 difference in the position of this band. The Raman evidence for structural difference between ZD- and ZR-RNA comes from two groups of bands: First, Raman intensities between 1180 and 1600 cm-1 of ZD-RNA differ from those for ZR-RNA, corroborating the CD evidence for differences in base-stacking geometry. Second, the phosphodiester stretching bands near 815 cm-1 provide evidence of differences in backbone geometry between ZD- and ZR-RNA.  相似文献   

20.
Resonance Raman investigations on compound II of native, diacetyldeuteroheme-, and manganese-substituted horseradish peroxidase (isozyme C) revealed that the metal-oxygen linkage in the compound differed from one another in its bond strength and/or structure. Fe(IV) = O stretching frequency for compound II of native enzyme was pH sensitive, giving the Raman line at 772 and 789 cm-1 at pH 7 and 10, respectively. The results confirmed the presence of a hydrogen bond between the oxo-ligand and a nearby amino acid residue (Sitter, A. J., Reczek, C. M., and Terner, J. (1985) J. Biol. Chem. 260, 7515-7522). The Fe(IV) = O stretch for compound II of diacetylheme-enzyme was located at 781 cm-1 at pH 7 which was 9 cm-1 higher than that of native enzyme compound II. At pH 10, however, the Fe(IV) = O stretch was found at 790 cm-1, essentially the same frequency as that of native enzyme compound II. The pK value for the pH transition, 8.5, was also the same as that of native compound II. Unlike in native enzyme, D2O-H2O exchange did not cause a shift of the Fe(IV) = O frequency of diacetylheme-enzyme. Thus, the metal-oxygen bond at pH 7 was stronger in diacetylheme-enzyme due to a weaker hydrogen bonding to the oxo-ligand, while the Fe(IV) = O bond strength became essentially the same between both enzymes at alkaline pH upon disruption of the hydrogen bond. A much lower reactivity of the diacetylheme-enzyme compound II was accounted to be due to the weaker hydrogen bond. Compound II of manganese-substituted enzyme exhibited Mn(IV)-oxygen stretch about 630 cm-1, which was pH insensitive but down-shifted by 18 cm-1 upon the D2O-H2O exchange. The finding indicates that its structure is in Mn(IV)-OH, where the proton is exchangeable with a water proton. These results establish that the structure of native enzyme compound II is Fe(IV) = O but not Fe(IV)-OH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号