首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
ApoM is mainly associated with HDL. Nevertheless, we have consistently observed positive correlations of apoM with plasma LDL cholesterol in humans. Moreover, LDL receptor deficiency is associated with increased plasma apoM in mice. Here, we tested the idea that plasma apoM concentrations are affected by the rate of LDL receptor-mediated clearance of apoB-containing particles. We measured apoM in humans each carrying one of three different LDL receptor mutations (n = 9) or the apoB3500 mutation (n = 12). These carriers had increased plasma apoM (1.34 ± 0.13 μM, P = 0.003, and 1.23 ± 0.10 μM, P = 0.02, respectively) as compared with noncarriers (0.93 ± 0.04 μM). When we injected human apoM-containing HDL into Wt (n = 6) or LDL receptor-deficient mice (n = 6), the removal of HDL-associated human apoM was delayed in the LDL receptor-deficient mice. After 2 h, 54 ± 5% versus 90 ± 8% (P < 0.005) of the initial amounts of human apoM remained in the plasma of Wt and LDL receptor-deficient mice, respectively. Finally, we compared the turnover of radio-iodinated LDL and plasma apoM concentrations in 45 normocholesterolemic humans. There was a negative correlation between plasma apoM and the fractional catabolic rate of LDL (r = -0.38, P = 0.009). These data suggest that the plasma clearance of apoM, despite apoM primarily being associated with HDL, is influenced by LDL receptor-mediated clearance of apoB-containing particles.  相似文献   

2.
Lipoproteins consist of lipids solubilized by apolipoproteins. The lipid-binding structural motifs of apolipoproteins include amphipathic alpha-helixes and beta-sheets. Plasma apolipoprotein (apo) M lacks an external amphipathic motif but, nevertheless, is exclusively associated with lipoproteins (mainly high density lipoprotein). Uniquely, however, apoM is secreted to plasma without cleavage of its hydrophobic NH(2)-terminal signal peptide. To test whether the signal peptide serves as a lipoprotein anchor for apoM in plasma, we generated mice expressing a mutated apoM(Q22A) cDNA in the liver (apoM(Q22A)-Tg mice (transgenic mice)) and compared them with mice expressing wild-type human apoM (apoM-Tg mice). The substitution of the amino acid glutamine 22 with alanine in apoM(Q22A) results in secretion of human apoM without a signal peptide. The human apoM mRNA level in liver and the amount of human apoM protein secretion from hepatocytes were similar in apoM-Tg and apoM(Q22A)-Tg mice. Nevertheless, human apoM was not detectable in plasma of apoM(Q22A)-Tg mice, whereas it was easily measured in the apoM-Tg mice. To examine the plasma metabolism, recombinant apoM lacking the signal peptide was produced in Escherichia coli and injected into wild-type mice. The apoM without signal peptide did not associate with lipoproteins and was rapidly cleared in the kidney. Accordingly, ligation of the kidney arteries in apoM(Q22A)-Tg mice resulted in rapid accumulation of human apoM in plasma. The data suggest that hydrophobic signal peptide sequences, if preserved upon secretion, can anchor plasma proteins in lipoproteins. In the case of apoM, this mechanism prevents rapid loss by filtration in the kidney.  相似文献   

3.
Apolipoprotein E (apoE) is the major apolipoprotein of the CNS. Differential expression of apoE isoforms has been linked to longevity and to the pathogenesis of Alzheimer's disease. Several studies have demonstrated that this glycoprotein is important in mature as well as in aging CNS, where it may serve neurotrophic and/or neuroprotective functions. Some reports have shown that apoE-deficient mice have age-dependent neurodegeneration and cognitive impairment; others have not confirmed these observations. ApoE-deficient mice also develop hypercholesterolemia on a chow diet and have in vivo increased plasma lipid peroxidation products. F2-isoprostanes are prostaglandin F2alpha isomers and chemically stable peroxidation products of arachidonic acid. Both isoprostane F2alpha-III and isoprostane F2alpha-VI were markedly elevated in the brains of aged apoE-deficient mice compared with either wild-type C57 Bl/6 mice or a distinct mouse model of hypercholesterolemia, the low-density lipoprotein receptor-deficient mouse. By contrast, no difference in isoprostane levels was observed in young apoE-deficient mice compared with age-matched wild-type control mice. Our findings indicate that disorder of lipid metabolism in the absence of apoE can induce an age-dependent increase in brain lipid peroxidation products.  相似文献   

4.
Sphingosine 1-phosphate (S1P) is a vasoactive lipid mediator that is speculated to be involved in various aspects of atherosclerosis. About 70% of circulating plasma S1P is carried on HDL, and several pleiotropic properties of HDL have been ascribed to S1P. In the previous study with human subjects, however, LDL cholesterol or apoB, but not HDL cholesterol or apoA-I, had a significant positive correlation with the plasma S1P level, suggesting that the metabolic pathway for LDL might have some roles in the metabolism of S1P. In this study, we analyzed the association between LDL receptor, an important protein in the clearance of LDL, and circulating S1P. We observed that in LDL receptor-overexpressing mice, the plasma S1P levels as well as apolipoprotein M (apoM), a carrier of S1P, were decreased and that exogenously administered C17S1P bound to apoM-containing lipoproteins was cleared more rapidly. Unlike the situation in wild-type mice, LDL receptor overexpression in apoE-deficient mice did not reduce the plasma S1P or apoM levels, suggesting that apoE might be a ligand for the LDL receptor during the clearance of these factors. The present findings clarify the novel roles of the LDL receptor and apoE in the clearance of S1P, a multifunctional bioactive phospholipid.  相似文献   

5.
Transforming growth factor-beta down-regulates apolipoprotein M in HepG2 cells   总被引:13,自引:0,他引:13  
Apolipoprotein M (apoM) is a novel apolipoprotein presented mostly in high-density lipoprotein (HDL) in human plasma, and is exclusively expressed in liver and in kidney. The pathophysiological function of apoM has not yet been elucidated. Apolipoprotein B (apoB), the characteristic apolipoprotein of low-density lipoprotein (LDL), is like apoM, a very hydrophobic protein, and thereafter they both must co-circulate with lipoprotein particles in plasma. The cytokine, transforming growth factor-beta (TGF-beta), has been shown to decreased apoB secretion in HepG2 cells, and we hypothesized that TGF-beta may have the same effects on apoM expression in HepG2 cells. In the present study, we used real-time RT-PCR to analyze apoM and apoB mRNA levels during administration of TGF-beta, as well as TGF-alpha, epidermal growth factor (EGF) and hepatic growth factor (HGF). TGF-beta significantly inhibited both apoM and apoB mRNA expression in HepG2 cells. The inhibitory effects of TGF-beta were dose-dependent, i.e. 1 ng/ml of TGF-beta decreased apoM mRNA levels by 30%, and 10 or 100 ng/ml of TGF-beta decreased apoM mRNA levels more than 65%. The effect of TGF-beta on apoB mRNA expression was slightly weaker than that of apoM, with a maximum effect at 10 or 100 ng/ml TGF-beta where apoB mRNA levels decreased about 55%. The inhibitory effects of TGF-beta on apoM and apoB mRNA levels also increased with increasing incubation time, where the maximum effect was obtained at 24 h. Moreover TGF-alpha, EGF and HGF all decreased both apoM and apoB mRNA levels, but to a less extent than TGF-beta. Further, all four cytokines had more pronounced effects on apoM mRNA expression than apoB mRNA expression. The present study suggested that apoM, like apoB, may be involved in the hepatic lipoprotein assembly in vivo.  相似文献   

6.
To investigate the role of apoM in high density lipoprotein (HDL) metabolism and atherogenesis, we generated human apoM transgenic (apoM-Tg) and apoM-deficient (apoM(-/-)) mice. Plasma apoM was predominantly associated with 10-12-nm alpha-migrating HDL particles. Human apoM overexpression (11-fold) increased plasma cholesterol concentration by 13-22%, whereas apoM deficiency decreased it by 17-21%. The size and charge of apoA-I-containing HDL in plasma were not changed in apoM-Tg or apoM(-/-) mice. However, in plasma incubated at 37 degrees C, lecithin:cholesterol acyltransferase-dependent conversion of alpha- to pre-alpha-migrating HDL was delayed in apoM-Tg mice. Moreover, lecithin: cholesterol acyltransferase-independent generation of pre-beta-migrating apoA-I-containing particles in plasma was increased in apoM-Tg mice (4.2 +/- 1.1%, p = 0.06) and decreased in apoM(-/-) mice (0.5 +/- 0.3%, p = 0.03) versus controls (1.8 +/- 0.05%). In the setting of low density lipoprotein receptor deficiency, apoM-Tg mice with approximately 2-fold increased plasma apoM concentrations developed smaller atherosclerotic lesions than controls. The effect of apoM on atherosclerosis may be facilitated by enzymatic modulation of plasma HDL particles, increased cholesterol efflux from foam cells, and an antioxidative effect of apoM-containing HDL.  相似文献   

7.
We have generated and characterized a murine monoclonal antibody (mAb) that binds to both mouse apolipoprotein (apo) B48 and apoB100. We immunized "apoB39-only" mice (mice that synthesize a truncated form of apoB, apoB39, but no apoB48 or apoB100) with lipoproteins containing mouse apoB48 and then used splenocytes from the immunized mice to create hybridomas. We identified a hybridoma, 2G11, that secretes a mAb that binds to mouse apoB48 and apoB100 but not to apoB39. Antibody 2G11 also binds apoB48 and apoB100 from rats and hamsters but not from humans. The mAb recognizes mouse apoB equally in very low and low density lipoproteins and was used to quantify apoB in wild-type, apoE-deficient and low-density lipoprotein receptor-deficient mice and in mice treated with an antisense drug that lowers plasma apoB levels. The antibody will be an important reagent for studying mouse models of atherosclerosis. The study also underscores the utility of genetically modified mice for generating mouse mAbs against mouse proteins.  相似文献   

8.
The cellular and molecular mechanisms responsible for lipoprotein [a] (Lp[a]) catabolism are unknown. We examined the plasma clearance of Lp[a] and LDL in mice using lipoproteins isolated from human plasma coupled to radiolabeled tyramine cellobiose. Lipoproteins were injected into wild-type, LDL receptor-deficient (Ldlr-/-), and apolipoprotein E-deficient (Apoe-/-) mice. The fractional catabolic rate of LDL was greatly slowed in Ldlr-/- mice and greatly accelerated in Apoe-/- mice compared with wild-type mice. In contrast, the plasma clearance of Lp[a] in Ldlr-/- mice was similar to that in wild-type mice and was only slightly accelerated in Apoe-/- mice. Hepatic uptake of Lp[a] in wild-type mice was 34.6% of the injected dose over a 24 h period. The kidney accounted for only a small fraction of tissue uptake (1.3%). To test whether apolipoprotein [a] (apo[a]) mediates the clearance of Lp[a] from plasma, we coinjected excess apo[a] with labeled Lp[a]. Apo[a] acted as a potent inhibitor of Lp[a] plasma clearance. Asialofetuin, a ligand of the asialoglycoprotein receptor, did not inhibit Lp[a] clearance. In summary, the liver is the major organ accounting for the clearance of Lp[a] in mice, with the LDL receptor and apolipoprotein E having no major roles. Our studies indicate that apo[a] is the primary ligand that mediates Lp[a] uptake and plasma clearance.  相似文献   

9.
Scavenger receptor BI (SR-BI) is a multi-ligand lipoprotein receptor that mediates selective lipid uptake from HDL, and plays a central role in hepatic HDL metabolism. In this report, we investigated the extent to which SR-BI selective lipid uptake contributes to LDL metabolism. As has been reported for human LDL, mouse SR-BI expressed in transfected cells mediated selective lipid uptake from mouse LDL. However, LDL-cholesteryl oleoyl ester (CE) transfer relative to LDL-CE bound to the cell surface (fractional transfer) was approximately 18-fold lower compared with HDL-CE. Adenoviral vector-mediated SR-BI overexpression in livers of human apoB transgenic mice ( approximately 10-fold increased expression) reduced plasma HDL-cholesterol (HDL-C) and apolipoprotein (apo)A-I concentrations to nearly undetectable levels 3 days after adenovirus infusion. Increased hepatic SR-BI expression resulted in only a modest depletion in LDL-C that was restricted to large LDL particles, and no change in steady-state concentrations of human apoB. Kinetic studies showed a 19% increase in the clearance rate of LDL-CE in mice with increased SR-BI expression, but no change in LDL apolipoprotein clearance. Quantification of hepatic uptake of LDL-CE and LDL-apolipoprotein showed selective uptake of LDL-CE in livers of human apo B transgenic mice. However, such uptake was not significantly increased in mice over-expressing SR-BI. We conclude that SR-BI-mediated selective uptake from LDL plays a minor role in LDL metabolism in vivo.  相似文献   

10.
A novel human apolipoprotein (apoM).   总被引:29,自引:0,他引:29  
A novel human apolipoprotein designated apolipoprotein M (apoM) is described. The unique N-terminal amino acid sequence of apoM was found in an approximately 26-kDa protein present in a protein extract of triglyceride-rich lipoproteins (TGRLP). The isolated apoM cDNA (734 base pairs) encoded a 188-amino acid residue-long protein, distantly related to the lipocalin family. The mRNA of apoM was detected in the liver and kidney. Western blotting demonstrated apoM to be present in high density lipoprotein (HDL) and to a lesser extent in TGRLP and low density lipoproteins (LDL). The first 20 amino acid residues of apoM constituted a hydrophobic segment with characteristic features of a signal peptide. This was retained in the mature protein because of the lack of a signal peptidase cleavage site. In vitro translation in the presence of microsomes demonstrated translocation of apoM over the membrane and glycosylation but no signal peptide cleavage. The in vitro translated product remained associated with the microsomes after treatment with carbonate at pH 11, demonstrating that apoM is an integral protein. This finding suggests that apoM is linked to the single phospholipid layer of lipoproteins with a hydrophobic signal anchor. In conclusion, a novel human apolipoprotein, the function of which remains to be determined, is described.  相似文献   

11.
Obese mice without leptin (ob/ob) or the leptin receptor (db/db) have increased plasma HDL levels and accumulate a unique lipoprotein referred to as LDL/HDL1. To determine the role of apolipoprotein A-I (apoA-I) in the formation and accumulation of LDL/HDL1, both ob/ob and db/db mice were crossed onto an apoA-I-deficient (apoA-I(-/-)) background. Even though the obese apoA-I(-/-) mice had an expected dramatic decrease in HDL levels, the LDL/HDL1 particle persisted. The cholesterol in this lipoprotein range was associated with both alpha- and beta-migrating particles, confirming the presence of small LDLs and large HDLs. Moreover, in the obese apoA-I(-/-) mice, LDL particles were smaller and HDLs were more negatively charged and enriched in apoE compared with controls. This LDL/HDL1 particle was rapidly remodeled to the size of normal HDL after injection into C57BL/6 mice, but it was not catabolized in obese apoA-I(-/-) mice even though plasma hepatic lipase (HL) activity was increased significantly. The finding of decreased hepatic scavenger receptor class B type I (SR-BI) protein levels may explain the persistence of LDL/HDL1 in obese apoA-I(-/-) mice. Our studies suggest that the maturation and removal of large HDLs depends on the integrity of a functional axis of apoA-I, HL, and SR-BI. Moreover, the presence of large HDLs without apoA-I provides evidence for an apoA-I-independent pathway of cholesterol efflux, possibly sustained by apoE.  相似文献   

12.
Constitutive expression of a cholesterol-7alpha-hydroxylase (CYP7A1) transgene in LDL receptor-deficient mice blocked the ability of a cholesterol-enriched diet to increase plasma levels of apolipoprotein B-containing lipoproteins. LDL receptor-deficient mice expressing the CYP7A1 transgene exhibited complete resistance to diet-induced hypercholesterolemia and to the accumulation of cholesterol in the liver. Hepatic mRNA expression of liver X receptor-inducible ABCG5 and ABCG8 was decreased in CYP7A1 transgenic, LDL receptor-deficient mice fed a cholesterol-enriched diet. Thus, increased biliary cholesterol excretion could not account for the maintenance of cholesterol homeostasis. CYP7A1 transgenic, LDL receptor-deficient mice fed the cholesterol-enriched diet exhibited decreased jejunal Niemann-Pick C1-Like 1 protein (NPC1L1) mRNA expression, an important mediator of intestinal cholesterol absorption. A taurocholate-enriched diet also decreased NPC1L1 mRNA expression in a farnesoid X receptor-independent manner. Reduced expression of NPC1L1 mRNA was associated with decreased cholesterol absorption ( approximately 20%; P < 0.05) exhibited by CYP7A1 transgenic LDL receptor-deficient mice fed the cholesterol-enriched diet. The combined data show that enhanced expression of CYP7A1 is an effective means to prevent the accumulation of cholesterol in the liver and of atherogenic apolipoprotein B-containing lipoproteins in plasma.  相似文献   

13.
Through its interaction with the low density lipoprotein (LDL) receptor, apolipoprotein (apo) B-100 is a major determinant of LDL metabolism and plasma cholesterol. Its receptor binding ability is conformation-dependent and requires its expression on the right lipoprotein particles. The structural signal that targets apoB-100 to LDL is unknown. We have microinjected a human apoB-100 minigene construct comprising less than 25% of the apoB-100 sequence driven by the natural apoB promoter to produce transgenic mice. The transgene product was expressed at a high level and was present exclusively in the LDL of these animals. Analysis of the responsible sequence (residues 2878-3925 of apoB-100) reveals unique structural features that may be important in its role as an LDL-targeting domain.  相似文献   

14.
Familial combined hyperlipidemia (FCHL) is a common inherited hyperlipidemia and a major risk factor for atherothrombotic cardiovascular disease. The cause(s) leading to FCHL are largely unknown, but the existence of unidentified "major" genes that would increase VLDL production and of "modifier" genes that would influence the phenotype of the disease has been proposed. Expression of apolipoprotein A-II (apoA-II), a high density lipoprotein (HDL) of unknown function, in transgenic mice produced increased concentration of apoB-containing lipoproteins and decreased HDL. Here we show that expression of human apoA-II in apoE-deficient mice induces a dose-dependent increase in VLDL, resulting in plasma triglyceride elevations of up to 24-fold in a mouse line that has 2-fold the concentration of human apoA-II of normolipidemic humans, as well as other well-known characteristics of FCHL: increased concentrations of cholesterol, triglyceride, and apoB in very low density lipoprotein (VLDL), intermediate density lipoprotein (IDL) and low density lipoprotein (LDL), reduced HDL cholesterol, normal lipoprotein lipase and hepatic lipase activities, increased production of VLDL triglycerides, and increased susceptibility to atherosclerosis. However, FCHL patients do not have plasma concentrations of human apoA-II as high as those of apoE-deficient mice overexpressing human apoA-II, and the apoA-II gene has not been linked to FCHL in genome-wide scans. Therefore, the apoA-II gene could be a "modifier" FCHL gene influencing the phenotype of the disease in some individuals through unkown mechanisms including an action on a "major" FCHL gene. We conclude that apoE-deficient mice overexpressing human apoA-II constitute useful animal models with which to study the mechanisms leading to overproduction of VLDL, and that apoA-II may function to regulate VLDL production.  相似文献   

15.
Apolipoprotein (apo) M is a novel apolipoprotein belonging to the lipocalin protein superfamily, i.e. proteins binding small lipophilic compounds. Like other apolipoproteins, it is expressed in hepatocytes and secreted into plasma where it associates with high-density lipoprotein particles. In addition, apoM is expressed at high levels in the kidney tubule cells. In this study, we show that the multiligand receptor megalin, which is expressed in kidney proximal tubule cells, is a receptor for apoM and mediates its uptake in the kidney. To examine apoM binding to megalin, a recombinant apoM was expressed in Escherichia coli and used in surface plasmon resonance and cell culture studies. The results showed apoM binding to immobilized megalin [dissociation constant (Kd) approximately 0.3-1 microm] and that the apoM was endocytosed by cultured rat yolk sac cells in a megalin-dependent manner. To examine the importance of apoM binding by megalin in vivo, we analyzed mice with a tissue-specific deficiency of megalin in the kidney. Megalin deficiency was associated with pronounced urinary excretion of apoM, whereas apoM was not detected in normal mouse, human, or rat urine. Gel filtration analysis showed that the urinary apoM-containing particles were small and devoid of apoA-I. The results suggest that apoM binds to megalin and that megalin-mediated endocytosis in kidney proximal tubules prevents apoM excretion in the urine.  相似文献   

16.
Vitamin E is a lipophilic anti-oxidant that can prevent the oxidative damage of atherogenic lipoproteins. However, human trials with vitamin E have been disappointing, perhaps related to ineffective levels of vitamin E in atherogenic apoB-containing lipoproteins. Phospholipid transfer protein (PLTP) promotes vitamin E removal from atherogenic lipoproteins in vitro, and PLTP deficiency has recently been recognized as an anti-atherogenic state. To determine whether PLTP regulates lipoprotein vitamin E content in vivo, we measured alpha-tocopherol content and oxidation parameters of lipoproteins from PLTP-deficient mice in wild type, apoE-deficient, low density lipoprotein (LDL) receptor-deficient, or apoB/cholesteryl ester transfer protein transgenic backgrounds. In all four backgrounds, the vitamin E content of very low density lipoprotein (VLDL) and/or LDL was significantly increased in PLTP-deficient mice, compared with controls with normal plasma PLTP activity. Moreover, PLTP deficiency produced a dramatic delay in generation of conjugated dienes in oxidized apoB-containing lipoproteins as well as markedly lower titers of plasma IgG autoantibodies to oxidized LDL. The addition of purified PLTP to deficient plasma lowered the vitamin E content of VLDL plus LDL and normalized the generation of conjugated dienes. The data show that PLTP regulates the bioavailability of vitamin E in atherogenic lipoproteins and suggest a novel strategy for achieving more effective concentrations of anti-oxidants in lipoproteins, independent of dietary supplementation.  相似文献   

17.
Apolipoprotein M (apoM) is a novel apolipoprotein present mostly in high-density lipoprotein (HDL) in human plasma. In the present study, we demonstrate that insulin, insulin-like growth factor I (IGF-I), and IGF-I potential peptide (IGF-IPP) significantly inhibits apoM expression, in a dose- and a time-dependent manner, in the human hepatoma cell line, HepG2 cells. Insulin-induced down-regulation of apoM was blocked by AG1024 (a specific insulin receptor inhibitor) and LY294002 (a phosphatidylinositol 3-kinase (PI3K) inhibitor), which indicates that it is mediated via the activation of PI3K pathway. In contrast, PD98059 (a MAP kinase inhibitor) did not influence insulin-induced down-regulation of apoM expression, and activation of neither PPAR-alpha agonist (GW7647) nor PPAR-gamma agonist (GW1929) influences apoM expression in HepG2 cells, which indicates that regulation of apoM expression is not related to the activation of PPAR-alpha and PPAR-gamma in hepatic cells, whereas, both PPAR-alpha and PPAR-gamma agonists could inhibit apoB expression. Moreover, in the present study, we demonstrated that PPAR beta/delta agonist (GW501516) could inhibit both apoM and apoB expression in the HepG2 cells. In conclusion, this study shows that apoM expression is regulated by PI3-kinase in HepG2-cells.  相似文献   

18.
We have devised a combined in vivo, ex vivo, and in vitro approach to elucidate the mechanism(s) responsible for the hypoalphalipoproteinemia in heterozygous carriers of a naturally occurring apolipoprotein A-I (apoA-I) variant (Leu(159) to Arg) known as apoA-I Finland (apoA-I(FIN)). Adenovirus-mediated expression of apoA-I(FIN) decreased apoA-I and high density lipoprotein cholesterol concentrations in both wild-type C57BL/6J mice and in apoA-I-deficient mice expressing native human apoA-I (hapoA-I). Interestingly, apoA-I(FIN) was degraded in the plasma, and the extent of proteolysis correlated with the most significant reductions in murine apoA-I concentrations. ApoA-I(FIN) had impaired activation of lecithin:cholesterol acyltransferase in vitro compared with hapoA-I, but in a mixed lipoprotein preparation consisting of both hapoA-I and apoA-I(FIN) there was only a moderate reduction in the activation of this enzyme. Importantly, secretion of apoA-I was also decreased from primary apoA-I-deficient hepatocytes when hapoA-I was co-expressed with apoA-I(FIN) following infection with recombinant adenoviruses, a condition that mimics secretion in heterozygotes. Thus, this is the first demonstration of an apoA-I point mutation that decreases LCAT activation, impairs hepatocyte secretion of apoA-I, and makes apoA-I susceptible to proteolysis leading to dominantly inherited hypoalphalipoproteinemia.  相似文献   

19.
Sphingosine 1‐phosphate (S1P) is an important regulator of vascular integrity and immune cell migration, carried in plasma by high‐density lipoprotein (HDL)‐associated apolipoprotein M (apoM) and by albumin. In sepsis, the protein and lipid composition of HDL changes dramatically. The aim of this study was to evaluate changes in S1P and its carrier protein apoM during sepsis. For this purpose, plasma samples from both human sepsis patients and from an experimental Escherichia coli sepsis model in baboons were used. In the human sepsis cohort, previously studied for apoM, plasma demonstrated disease‐severity correlated decreased S1P levels, the profile mimicking that of plasma apoM. In the baboons, a similar disease‐severity dependent decrease in plasma levels of S1P and apoM was observed. In the lethal E. coli baboon sepsis, S1P decreased already within 6–8 hrs, whereas the apoM decrease was seen later at 12–24 hrs. Gel filtration chromatography of plasma from severe human or baboon sepsis on Superose 6 demonstrated an almost complete loss of S1P and apoM in the HDL fractions. S1P plasma concentrations correlated with the platelet count but not with erythrocytes or white blood cells. The liver mRNA levels of apoM and apoA1 decreased strongly upon sepsis induction and after 12 hr both were almost completely lost. In conclusion, during septic challenge, the plasma levels of S1P drop to very low levels. Moreover, the liver synthesis of apoM decreases severely and the plasma levels of apoM are reduced. Possibly, the decrease in S1P contributes to the decreased endothelial barrier function observed in sepsis.  相似文献   

20.
We have previously reported that the lack of apolipoprotein (apo) E expression by macrophages promotes foam cell formation in vivo. Because transgenic mice overexpressing human apoA-I from the liver (h-apoA-I TgN) are protected from the atherogenesis induced by apoE deficiency, we hypothesized that the presence of apoA-I in the vessel wall could reduce the negative effect of apoE deficiency on lesion growth. To address this issue, we used both retroviral transduction and transgenic approaches to produce in vivo systems where apoA-I is expressed from macrophages. In the retroviral transduction study, apoA-I-deficient (apoA-I(-/-)) mice reconstituted with apoE-deficient (apoE(-/-)) bone marrow cells that were infected with a retroviral vector expressing human apoA-I (MFG-HAI) had 95% lower atherosclerotic lesion area than that of recipients of apoE(-/-) bone marrow cells infected with the parental virus (MFG). To determine whether the protective effect of locally produced apoA-I was due to the lack of systemic apoA-I, we conducted a different experiment using h-apoA-I TgN mice as recipients of apoE(-/-) bone marrow with or without human apoA-I (driven by a macrophage-specific transgene defined as mphi-AI). Aortic lesion area in apoE(-/-)/mphi-AI --> h-apoA-I TgN mice was decreased by 85% compared with apoE(-/-) --> h-apoA-I TgN mice. These data demonstrate that expression of apoA-I from macrophages protects against atherogenesis without affecting plasma apoA-I and high density lipoprotein cholesterol levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号