首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
GM2 activator protein (GM2AP) is a cofactor for stimulating the enzymatic hydrolysis of the glycolipid GM2 by -hexosaminidase A to produce GM3. We have examined the conformation of GM2AP before and after its interaction with GM2, GM3, and GA2 using circular dichroism and fluorescence spectroscopy techniques. In the presence of GM2, a blue shift of the fluorescence emission maximum and a strong decrease of molar ellipticity values in circular dichroism spectra were observed only at pH 4.5 and at GM2/GM2AP molar ratio higher than 10:1 (up to 50:1). These results suggest that GM2AP assumed a more organized -helical conformation with the tryptophan residues moving from the polar medium toward the hydrophobic environment of the protein. The conformation of GM2AP in the presence of the downstream reaction product, GM3, or a less favorable substrate, GA2, clearly differed from that in the presence of GM2. The relationships between spectroscopic changes and enzymatic activity, herein discussed, strongly suggest that the specific conformation exhibited by GM2AP in the presence of GM2 is functional to serve as an activator for the enzymatic hydrolysis of GM2.  相似文献   

2.
A series of GM2 analogs in which GM2 epitope was coupled to a variety of glycosyl lipids were designed and synthesized to investigate the mechanism of enzymatic hydrolysis of GM2 ganglioside. The coupling of N-Troc-protected sialic acid and p-methoxyphenyl galactoside acceptor gave the crystalline disaccharide, which was further coupled with galactosamine donor to give the desired GM2 epitope trisaccharide. After conversion into the corresponding glycosyl donor, the trisaccharide was coupled with galactose, glucose and artificial ceramide (B30) to give the final compounds. The result on hydrolysis of GM2 analogs indicates that GM2 activator protein requires one spacer sugar between GM2 epitope and the lipid moiety to assist the hydrolysis of the terminal GalNAc residue. Synthetic studies on sialoglycoconjugates, Part 140. For part 139, see Ref [1].  相似文献   

3.
To elucidate the mechanism underlying the hydrolysis of the GalNAcβ1→4Gal linkage in ganglioside GM2 [GalNAcβ1→4(NeuAcα2→3)Galβ1→4Glcβ1→1′ Cer] by β-hexosaminidase A (Hex A) with GM2 activator protein, we designed and synthesized two kinds of GM2 linkage analogues—6′-NeuAc-GM2 and α-GalNAc-GM2. In this paper, the efficient and systematic synthesis of these GM2 analogues was described. The highlight of our synthesis process is that the key intermediates, newly developed sialyllactose derivatives, were efficiently prepared in sufficient quantities; these derivatives directly served as highly reactive glycosyl acceptors and coupled with GalNTroc donors to furnish the assembly of GM2 tetrasaccharides in large quantities.  相似文献   

4.
The GM2 activator is a hexosaminidase A-specific glycolipid-binding protein required for the lysosomal degradation of ganglioside GM2. Genetic deficiency of GM2 activator leads to a neurological disorder, an atypical form of Tay-Sachs disease (GM2 gangliosidosis variant AB). Here, we describe a G506 to C transversion (Arg169 to Pro) in the mRNA of an infantile patient suffering from GM2-gangliosidosis variant AB. Using the polymerase chain reaction amplification and direct-sequencing technique, we found the patient to be homozygous for the mutation, whereas the parents were, as expected, heterozygous. BHK cells transfected with a construct of mutant cDNA gave no GM2 activator protein detectable by the Western blotting technique, whereas those transfected by a wild-type cDNA construct showed a significant level of human GM2 activator protein. The substitution of proline for the normal Arg169 therefore appears to result in premature degradation of the mutant GM2 activator, either during the post-translational processing steps or after reaching the lysosome. The basis for the phenotype of GM2 gangliosidosis variant AB may therefore be either inactivation of the physiological activator function by the point mutation or instability of the mutant protein.  相似文献   

5.
The interaction between glycosphingolipids and recombinant human GM2-activator was studied in a microwell binding assay. A-series gangliosides like GM3, GM2 and GM1 were strongly bound by the recombinant human GM2 activator. A weak binding was observed to GD1b and sulfatide, while neutral glycolipids were not bound. Optimal binding occurred at pH 4.2 and was inhibited by increasing concentrations of citrate buffer and NaCl. In contrast with these in vitro results the recombinant human GM2-activator is able to restore the degradation of GA2 in fibroblasts from patients with the AB variant of GM2 gangliosidosis in vivo.  相似文献   

6.
The GM2-activator protein (GM2-AP) is a small lysosomal lipid transfer protein essential for the hydrolytic conversion of ganglioside GM2 to GM3 by beta-hexosaminidase A. The crystal structure of human apo-GM2-AP is known to consist of a novel beta-cup fold with a spacious hydrophobic interior. Here, we present two new structures of GM2-AP with bound lipids, showing two different lipid-binding modes within the apolar pocket. The 1.9A structure with GM2 bound shows the position of the ceramide tail and significant conformational differences among the three molecular copies in the asymmetric unit. The tetrasaccharide head group is not visible and is presumed to be disordered. However, its general position could be established through modeling. The structure of a low-pH crystal, determined at 2.5A resolution, has a significantly enlarged hydrophobic channel that merges with the apolar pocket. Electron density inside the pocket and channel suggests the presence of a trapped phospholipid molecule. Structure alignments among the four crystallographically unique monomers provide information on the potential role for lipid binding of flexible chain segments at the rim of the cavity opening. Two discrete orientations of the S130-T133 loop define an open and a closed configuration of the hydrophobic channel that merges with the apolar pocket. We propose: (i) that the low-pH structure represents an active membrane-binding conformation; (ii) that the mobile S130-T133 loop serves as a gate for passage of ligand into the apolar pocket; and (iii) that this loop and the adjacent apolar V59-W63 loop form a surface patch with two exposed tryptophan residues that could interface with lipid bilayers.  相似文献   

7.
The biochemical basis of a case of GM2 gangliosidosis in a Japanese Spaniel was studied. This dog had a massive accumulation of GM2 ganglioside in the brain. The beta-hexosaminidase activity in this affected dog brain was approximately 12 times higher than that of normal brain. However, the activity toward p-nitrophenyl-6-sulfo-2-acetamido-2-deoxyglucopyranoside was only four times higher in the affected brain than in normal brain. The GM2 activator preparation obtained from the normal dog brain could stimulate the hydrolysis of GM2 ganglioside by beta-hexosaminidase isolated from the affected dog. However, the corresponding activator fraction from the affected dog could not stimulate such a reaction. It was concluded that the biochemical basis of the GM2 gangliosidosis in this Japanese Spaniel was due to the attenuation in the stimulatory activity of GM2 activator. This case represents the first animal form similar to the activator deficiency (or defect) of Type AB GM2 gangliosidosis in humans.  相似文献   

8.
Platelet activating factor (PAF), an endogenous bioactive phospholipid, has been documented as a pivotal mediator in the inflammatory cascade underlying the pathogenesis of many diseases including necrotizing enterocolitis. Much effort has been directed towards finding an effective in vivo inhibitor of PAF signaling. Here, we report that a small, highly stable, lysosomal lipid transport protein, the GM2 activator protein (GM2AP) is able to inhibit the inflammatory processes otherwise initiated by PAF in a rat model of necrotizing enterocolitis. Based on behavioral observations, gross anatomical observations at necropsy, histopathology and immunocytochemistry, the administration of recombinant GM2AP inhibits the devastating gastrointestinal necrosis resulting from the injection of rats with LPS and PAF. Recombinant GM2AP treatment not only markedly decrease tissue destruction, but also helped to maintain tight junction integrity at the gastrointestinal level as judged by contiguous Zonula Occludens-1 staining of the epithelial layer lining the crypts.  相似文献   

9.
Undec-10-enyl, undec-10-ynyl and 11-azidoundecyl glycoside analogues corresponding to the oligosaccharides of human gangliosides GM3, GM2 and GM1 were synthesized in high yields using glycosyltransferases from Campylobacter jejuni. Due to poor water solubility of the substrates, the reactions were carried out in methanol-water media, which for the first time were shown to be compatible with the C. jejuni α-(2→3)-sialyltransferase (CST-06) and β-(1→4)-N-acetylgalactosaminyltransferase (CJL-30). Bioequivalence of our synthetic analogues and natural gangliosides was examined by binding to Vibrio cholerae toxin and to the B subunit of Escherichia coli heat-labile enterotoxin. This bioequivalence was confirmed by binding mouse and human monoclonal antibodies to GM1 and acute phase sera containing IgM and IgG antibodies to GM1 from patients with the immune-mediated polyneuropathy Guillain-Barré syndrome. The synthesized compounds were analyzed by 1D and 2D 900 MHz NMR spectroscopy. TOCSY and DQF-COSY experiments in combination with 13C-1H correlation measurements (HSQC, HMBC) were carried out for primary structural characterization, and a complete assignment of all 1H and 13C chemical shifts is presented.  相似文献   

10.
Lysosomal degradation of ganglioside GM2 by hexosaminidase A requires the presence of a small, non-enzymatic cofactor, the GM2-activator protein (GM2AP). Lack of functional protein leads to the AB variant of GM2-gangliosidosis, a fatal lysosomal storage disease. Although its possible mode of action and functional domains have been discussed frequently in the past, no structural information about GM2AP is available so far. Here, we determine the complete disulfide bond pattern of the protein. Two of the four disulfide bonds present in the protein were open to classical determination by enzymatic cleavage and mass spectrometry. The direct localization of the remaining two bonds was impeded by the close vicinity of cysteines 136 and 138. We determined the arrangement of these disulfide bonds by MALDI-PSD analysis of disulfide linked peptides and by partial reduction, cyanylation and fragmentation in basic solution, as described recently (Wu F, Watson JT, 1997, Protein Sci 6:391-398).  相似文献   

11.
On the basis of confirming the antagonistic effects of GM1 and GM3 on the activity of Ca2+-ATPase, we further demonstrated that some of the components of these two gangliosides, including sialic acid (NeuNAc), asialo-GM1, asialo-GM3 and ceramide, failed to show any effects on the activity of Ca2+-ATPase. Thus it is apparent that the intact molecules of these two gangliosides with their specific conformations were needed to perform their effects on Ca2+-ATPase. From the fluorescence resonance energy transfer measurements, the energy transfer between Cys 670/674 and Lys 515 was decreased by GM1 and increased by GM3, indicating GM1 induced the conformation of the hydrophilic region of Ca2+-ATPase to be less compact, while GM3 induced it to be more compact. From the CD spectra measurements, GM1 and GM3 both reduced the content of -helical structures of Ca2+-ATPase, but GM1 caused a stronger decrease than that of GM3. Using DPH as the probe, we found that the membrane lipid fluidity of the proteoliposomes containing Ca2+-ATPase was decreased by GM1 and tend to increase by GM3.  相似文献   

12.
13.
Isolation of a cDNA encoding the human GM2 activator protein   总被引:3,自引:0,他引:3  
The GM2 activator protein is a glycolipid-binding protein required for the lysosomal degradation of ganglioside GM2. A human fibroblast cDNA library was screened with mixtures of oligonucleotide probes corresponding to four different areas of the amino acid sequence. A putative clone (821 bp) which gave positive signals to all four probe mixtures was purified and sequenced. The sequence was colinear with the sequence of 160 amino acids of the mature GM2 activator protein. Availability of the cDNA clone should facilitate investigation into function of the GM2 activator protein and also into genetic abnormalities underlying GM2 gangliosidosis AB variant.  相似文献   

14.
Abstract: In order to understand the etiology of Type AB GM2 gangliosidosis, we have purified and characterized the activator protein (GM2 activator) specific for the enzymic hydrolysis of GM2 ganglioside from normal human brain. The purified activator from human brain moved as one major protein band in various electrophoretic systems. We have also prepared the antiserum against this activator. The levels and the nature of GM2 activator and β-hexosaminidase A were examined in the brains of five cases of GM2. gangliosidosis—one Type B, two Type O, and two Type AB. We found that the levels of GM2 activator in both Type B and Type O cases were markedly elevated, and that the two Type AB cases were the results of different causes. One case had a defective β hexosaminidase A and an elevated level of GM2 activator. Although this defective β-hexosaminidase A could hydrolyze synthetic substrates, it was inactive in the cleavage of natural glycosphingolipids in the presence of the GM2 activator. It could, however, hydrolyze asialo-GM2 and GbOse4Cer in the presence of sodium taurodeoxycholate. The other case had normal β-hexosaminidase A, but had a very low level of GM2 activator when analyzed by in vitro assay, suggesting the deficiency of this activator. By immunoelectrophoresis, this case was found to be completely devoid of the protein that cross-reacts with the antiserum against the GM2 activator.  相似文献   

15.
16.
According to our hypothesis (Fürst, W., and Sandhoff, K. (1992) Biochim. Biophys. Acta 1126, 1-16) glycosphingolipids of the plasma membrane are digested after endocytosis as components of intraendosomal and intralysosomal vesicles and membrane structures. The lysosomal degradation of glycosphingolipids with short oligosaccharide chains by acid exohydrolases requires small, non-enzymatic cofactors, called sphingolipid activator proteins (SAPs). A total of five activator proteins have been identified as follows: namely the saposins SAP-A, -B, -C, and -D, which are derived from the single chain SAP-precursor protein (prosaposin), and the GM2 activator protein. A deficiency of prosaposin results in the storage of ceramide and sphingolipids with short oligosaccharide head groups. The loss of the GM2 activator protein blocks the degradation of the ganglioside GM2. The enzymatic hydrolysis of the ganglioside GM1 is catalyzed by beta-galactosidase, a water-soluble acid exohydrolase. The lack of ganglioside GM1 accumulation in patients suffering from either prosaposin or GM2 activator protein deficiency has led to the hypothesis that SAPs are not needed for the hydrolysis of the ganglioside GM1 in vivo. In this study we demonstrate that an activator protein is required for the enzymatic degradation of membrane-bound ganglioside GM1 and that both SAP-B and the GM2 activator protein significantly enhance the degradation of the ganglioside GM1 by acid beta-galactosidase in a liposomal, detergent-free assay system. These findings offer a possible explanation for the observation that no storage of the ganglioside GM1 has been observed in patients with either isolated prosaposin or isolated GM2 activator deficiency. We also demonstrate that anionic phospholipids such as bis(monoacylglycero)phosphate and phosphatidylinositol, which specifically occur in inner membranes of endosomes and in lysosomes, are essential for the activator-stimulated hydrolysis of the ganglioside GM1. Assays utilizing surface plasmon resonance spectroscopy showed that bis(monoacylglycero)phosphate increases the binding of both beta-galactosidase and activator proteins to substrate-carrying membranes.  相似文献   

17.
Tay-Sachs disease is an inborn lysosomal disease characterized by excessive cerebral accumulation of GM2. The catabolism of GM2 to GM3 in man requires beta-hexosaminidase A (HexA) and a protein cofactor, the GM2 activator. Thus, Tay-Sachs disease can be caused by the deficiency of either HexA or the GM2 activator. The same cofactor found in mouse shares 74.1% amino acid identity (67% nucleotide identity) with the human counterpart. Between the two activators, the mouse GM2 activator can effectively stimulate the hydrolysis of both GM2 and asialo-GM2 (GA2) by HexA and, to a lesser extent, also stimulate HexB to hydrolyze GA2, whereas the human activator is ineffective in stimulating the hydrolysis of GA2 (Yuziuk, J. A., Bertoni, C., Beccari, T., Orlacchio, A., Wu, Y.-Y., Li, S.-C., and Li, Y.-T. (1998) J. Biol. Chem. 273, 66-72). To understand the role of these two activators in stimulating the hydrolyses of GM2 and GA2, we have constructed human/mouse chimeric GM2 activators and studied their specificities. We have identified a narrow region (Asn(106)-Tyr(114)) in the mouse cDNA sequence that might be responsible for stimulating the hydrolysis of GA2. Replacement of the corresponding site in the human sequence with the specific mouse sequence converted the ineffective human activator into an effective chimeric protein for stimulating the hydrolysis of GA2. This chimeric activator protein, like the mouse protein, is also able to stimulate the hydrolysis of GA2 by HexB. The mouse model of human type B Tay-Sachs disease recently engineered by the targeted disruption of the Hexa gene showed less severe clinical manifestation than found in human patients. This has been considered to be the result of the catabolism of GM2 via converting it to GA2 and further hydrolysis of GA2 to lactosylceramide by HexB with the assistance of mouse GM2 activator protein. The chimeric activator protein that bears the characteristics of the mouse GM2 activator may therefore be able to induce an alternative catabolic pathway for GM2 in human type B Tay-Sachs patients.  相似文献   

18.
Since exogenous gangliosides are known to promote neuritogenesis, the incorporation of exogenous GM1 into neuroblastoma membranes was examined. Neuro-2A cells, synchronized in the G1/G0 phase, were suspended in HEPES buffered saline containing 10–4 M [3H]GM1, and membrane incorporation was measured as radioactivity remaining with the cell pellet following incubation with serum-containing medium and trypsin. Calcium ion (0.01 to 10 mM) reduced incorporation of exogenous GM1, due to its interaction with GM1 micelles in solution. When cells were treated with proteases prior to incubation with GM1, the inhibitory effect of Ca2+ was lost and total incorporation into membranes was lowered by approximately one order of magnitude. Pretreatment of cells with 0.05% trypsin resulted in an inhibition of GM1 incorporation within 5 minutes. When trypsinized cells were resuspended in complete growth medium, the cells recovered the ability to incorporate GM1 with time, and this paralleled labeling of cellular protein with [3H]leucine. The role of membrane protein in the incorporation of exogenous GM1 could not be explained by the lytic release of cytosolic transfer proteins nor the artifactual coating of the cell surface by serum proteins. These results suggest that the incorporation of exogenous gangliosides into cellular membrane lipid bilayers cannot be fully explained by considerations of lipophilicity alone, and leads us to propose that initial recognition by membrane protein(s) is necessary.Abbreviations used GM1 H3NeuAc-GgOse4Cer - HBS HEPES buffered saline - DMEM Dulbecco's modified Eagle's medium - FCS fetal calf serum  相似文献   

19.
GM2 gangliosidoses are autosomal recessive lysosomal storage diseases (LSDs) caused by mutations in the HEXA, HEXB and GM2A genes, which encode the human lysosomal β-hexosaminidase (Hex) α- and β-subunits, and GM2 activator protein (GM2A), respectively. These diseases are associated with excessive accumulation of GM2 ganglioside (GM2) in the brains of patients with neurological symptoms. Here we established a CHO cell line overexpressing human GM2A, and purified GM2A from the conditioned medium, which was taken up by fibroblasts derived from a patient with GM2A deficiency, and had the therapeutic effects of reducing the GM2 accumulated in fibroblasts when added to the culture medium. We also demonstrated for the first time that recombinant GM2A could enhance the replacement effect of human modified HexB (modB) with GM2-degrading activity, which is composed of homodimeric altered β-subunits containing a partial amino acid sequence of the α-subunit, including the GSEP loop necessary for binding to GM2A, on reduction of the GM2 accumulated in fibroblasts derived from a patient with Tay-Sachs disease, a HexA (αβ heterodimer) deficiency, caused by HEXA mutations. We predicted the same manner of binding of GM2A to the GSEP loop located in the modified HexB β-subunit to that in the native HexA α-subunit on the basis of the x-ray crystal structures. These findings suggest the effectiveness of combinational replacement therapy involving the human modified HexB and GM2A for GM2 gangliosidoses.  相似文献   

20.
The alpha- and/or beta-subunits of human beta-hexosaminidase A (alphabeta) and B (betabeta) are approximately 60% identical. In vivo only beta-hexosaminidase A can utilize GM2 ganglioside as a substrate, but requires the GM2 activator protein to bind GM2 ganglioside and then interact with the enzyme, placing the terminal GalNAc residue in the active site of the alpha-subunit. A model for this interaction suggests that two loop structures, present only in the alpha-subunit, may be critical to this binding. Three amino acids in one of these loops are not encoded in the HEXB gene, while four from the other are removed posttranslationally from the pro-beta-subunit. Natural substrate assays with forms of hexosaminidase A containing mutant alpha-subunits demonstrate that only the site that is removed from the beta-subunit during its maturation is critical for the interaction. Our data suggest an unexpected biological role for such proteolytic processing events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号