首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to obtain information on the nature of the amino acid residues involved in the activity of ribonuclease U1 [EC 3.1.4.8], various chemical modifications of the enzyme were carried out. RNase U1 was inactivated by reaction with iodoacetate at pH 5.5 with concomitant incorporation of 1 carboxymethyl group per molecule of the enzyme. The residue specifically modified by iodoacetate was identified as one of the glutamic acid residues, as in the case of RNase T1. The enzyme was also inactivated extensively by reaction with iodoacetamide at pH 8.0 with the loss of about one residue each of histidine and lysine. When RNase U1 was treated with a large excess of phenylglyoxal, the enzymatic activity and binding ability toward 3'-GMP were lost, with simultaneous modification of about 1 residue of arginine. The reaction of citraconic anhydride with RNase U1 led to the loss of enzymatic activity and modification of about 1 residue of lysine. The inactivated enzyme, however, retained binding ability toward 3'-GMP. These results indicate that there are marked similarities in the active sites of RNases T1 and U1.  相似文献   

2.
The carboxyl group in a ribonuclease from Rhizopus sp. (RNase Rh) was modified by a water-soluble carbodiimide, 1-cyclohexyl-3-(2-morpholinyl-(4)-ethyl)carbodiimide p-toluenesulfonate (CMC). From the relation between the extent of modification and the enzymatic activity, it was concluded that at least the modification of two carboxyl groups seemed to induce the loss in enzymatic activity. In the presence of 1 M cytidine, RNase Rh activity was protected from the CMC-modification. Under conditions in which the enzyme was inactivated to 20% activity, about 70% of the enzymatic activity was retained in the presence of cytidine. The inactivation of the RNase Rh pre-treated with CMC in the presence of cytidine with [14C]CMC indicated that the RNase Rh lost its enzymatic activity with the incorporation of about one [14C]CMC. Therefore, it could be concluded that one carboxyl group is involved in the active site of RNase Rh. The binding of the CMC-modified RNase Rh with 2'-AMP was studied spectrophotometrically. The affinity of the modified RNase Rh towards 2'-AMP decreased markedly upon CMC modification.  相似文献   

3.
An affinity adsorbent, 5'-adenylate-aminohexyl-Sepharose 4B, was prepared by the periodate oxidation of AMp followed by coupling and condensation with amino-hexyl-Sepharose 4B. RNase U2, a purine-specific RNase, was specifically bound to this adsorbent at pH 4.5 and eluted critically at pH 5.9 in the presence of 1 M NaCl, corresponding to the pH dependence of the binding of 2'-AMP to RNase U2. By using this affinity chromatography as a main tool, a simplified and effective purification method for RNase U2 was established with a high yield of 58%. Another form of RNase U2 with low specific activity, named RNase U2-B, was eluted at a slightly higher pH from this adsorbent. RNase U2-B was indistinguishable from the original enzyme (RNase U2-A) in base specificity, affinity for ApA, molecular weight and amino acid composition, but was clearly different in specific activity, molecular activity for ApA, isoelectric point and conformation of molecule. This affinity adsorbent is also effective for the detection or isolation of small amounts of base-specific RNases in crude cell extract.  相似文献   

4.
1. A base-nonspecific ribonuclease from Aspergillus saitoi [RNase Ms, EC 3.1.4.23; molecular weight, 12,500] was modified with phenylglyoxal (PG) and 1,2-cyclohexanedione (CHD) in order to determine whether a single arginine residue was involved in the active site of the enzyme. 2. RNase Ms was inactivated by both PG and CHD with concomitant loss of one arginine residue. A competitive inhibitor of RNase Ms, 2',(3')-AMP, protected the enzyme from inactivation by PG. These findings strongly suggest that one arginine residue is involved in the active site of RNase Ms. 3. Difference CD spectra were measured at pH 5.5 for the binding of 2'-AMP and adenosine to native RNase Ms and the CHD- and PG-modified enzyme derivatives to determine the association constants. The arginine modification brought about a marked decrease in the binding affinity of 2'-AMP for the enzyme, but only a slight decrease for adenosine, suggesting that the arginine residue had interacted with the phosphate groups of the substrate.  相似文献   

5.
6.
(1) RNase Ms was inactivated by iodoacetate. The inactivation was most rapid at pH 6.0, and was inhibited in the presence of a denaturant such as 8 m urea or 6 m guanidine-HCL. (2) Competitive inhibitors protected RNase Ms from inactivation by iodoacetate; the effect was in the order 2',(3')-GTP greater than 2',(3')-AMP, 2',(3')-UMP greater than or equal to 2',(3')-CMP. The order is not consistent with that of the binding constants of the 4 nucleotides towards RNase Ms (A is greater than C greater than G greater than U). (3) RNase Ms was inactivated with the concomitant incorporation of one molar equivalent of carboxymethly group. The following evidence indicated that the carboxymethyl group was incorporated into the carboxyl group of an aspartic acid or glutamic acid residue. (i) The carboxymethyl group incorporated into RNase Ms was liberated by treatment with 0.1 n NaOH or 1 m hydroxylamine. (ii) The amino acid composition of carboxymethylated RNase Ms (CM RNase Ms) after acid hydrolysis is similar to that of RNase Ms. (4) 14C-Labeled CM RNase Ms was digested successively with alkaline protease and amino-peptidase M. The radioactive amino acid released was eluted just before aspartate on an amino acid analyzer. After hydrolysis with 6 n HCL, glutamic acid was produced exclusively from the radioactive amino acid. The specific radioactivity of this amino acid calculated from the radioactivity and glutamic acid formed was practctically the same as that of CM RNase Ms. Thus, it was concluded that a carboxymethyl group was incorporated at the carboxyl group of a glutamic acid residue of RNnase Ms. (5) CM RNase Ms bound with 2'-AMP to the same extent as native RNase Ms, but bound to a lesser extent with 2',(3')-GMP. (6) Although the conformation of CM RNase Ms as judged from the CD spectrum was practically the same as that of native RNase Ms, the reactivity of CM RNase Ms towards dinitrofluorobenzene was different from that of native RNase Ms, indicating some difference in the conformation. (7) These results indicate that one glutamic acid residue is involved in the active of RNase Ms.  相似文献   

7.
RNase U2 was inactivated by incubation with ethoxyformic anhydride at pH 6.0 and pH 4.5. The absorbance of the RNase U2 increased at around 250 nm and decreased at around 280 nm. The inactivation occurred in parallel with the amount of modified histidine and plots of the relationship between the remaining activity and the modified histidine suggested that the modification of one of the two histidine residues totally inactivated the enzyme. The inactivated enzyme RNase U2 was reactivated by a low concentration of hydroxyamine, with removal of the ethoxyformyl group from the modified histidine residue. At pH 4.5, 2'-adenylate and 2'-guanylate protected RNase U2 from inactivation by ethoxyformic anhydride. The difference CD spectra showed that the ability of RNase U2 to form a complex with 2'-adenylate was lost on ethoxyformylation.  相似文献   

8.
The complete amino acid sequence of ribonuclease U1 (RNase U1), a guanine-specific ribonuclease from a fungus, Ustilago sphaerogena, was determined by conventional protein sequencing, using peptide fragments obtained by several enzymatic cleavages of the performic acid-oxidized protein. The oxidized protein was first cleaved by trypsin and the resulting peptides were purified and their amino acid sequences were determined. These tryptic peptides were aligned with the aid of overlapping peptides isolated from a chymotryptic digest of the oxidized protein. The amino acid sequence thus deduced was further confirmed by isolation and analysis of peptides obtained by digestion of the oxidized protein with lysyl endopeptidase. The location of the disulfide bonds was deduced by isolation and analysis of cystine-containing peptides from a chymotryptic digest of heat-denatured RNase U1. These results showed that the protein is composed of a single polypeptide chain of 105 amino acid residues cross-linked by two disulfide bonds, having a molecular weight of 11,235, and that the NH2-terminus is blocked by a pyroglutamate residue. It has an overall homology with other guanine-specific or related ribonucleases, and shows 48% identity with RNase T1 and 38% identity with RNase U2.  相似文献   

9.
《Phytochemistry》1987,26(3):633-636
The effect of chemical modification of histidine, lysine, arginine, tryptophan and methionine residues on the enzymatic activity of calotropin DI has been studied. 1,3-Dibromoacetone inhibited the enzyme completely, indicating that a single histidine residue and a cysteine residue are involved in its catalytic activity. Its second bistidine residue was modified with diethyl pyrocarbonate without loss of activity. Modification of seven of its 13 lysine residues with 2,4,6-trinitrobenzene sulphonic acid led to 90% loss of its activity, but no single lysine residue appears to be essential for its activity. Four of the 12 arginine residues by 1,2-cyclohexanedione can be modified with little loss of activity. Modification of a single tryptophan residue and two methionine residues did not inhibit enzymatic activity. The blocked amino-terminal amino acid residue of calotropin DI has been identified as pyroglutamic acid. Its amino-terminal amino acid sequence to residue 14 has been determined and compared with that of papain. They show an extensive homology in their amino-terminal amino acid sequences.  相似文献   

10.
Cytochrome P-450scc (cholesterol side-chain cleavage enzyme) was purified from porcine adrenocortical mitochondria. 2. The purified cytochrome P-450scc was found to be homogeneous on SDS-polyacrylamide gel electrophoresis. 3. The heme content of the purified enzyme was 20.6 nmol/mg protein. 4. The enzymatic activity of the reconstituted cytochrome P-450scc-linked monooxygenase system amounted to 7.8 nmol of pregnenolone formed per nmole of P-450 per minute, with cholesterol as a substrate. 5. The amino acid sequence of the amino-terminal region of the cytochrome P-450scc and the amino acid residue at the carboxyl terminal were determined and compared with those of other mammalian cytochromes P-450scc.  相似文献   

11.
12.
In order to study the structure-function relationship of an RNase T2 family enzyme, RNase Rh, from Rhizopus niveus, we investigated the roles of three histidine residues by means of site-specific mutagenesis. One of the three histidine residues of RNase RNAP Rh produced in Saccharomyces cerevisiae by recombinant DNA technology was substituted to a phenylalanine or alanine residue. A Phe or Ala mutant enzyme at His46 or His109 showed less than 0.03%, but a mutant enzyme at His104 showed 0.54% of the enzymatic activity of the wild-type enzyme with RNA as a substrate. Similar results were obtained, when ApU was used as a substrate. The binding constant of a Phe mutant enzyme at His46 or His109 towards 2'-AMP decreased twofold, but that at His104 decreased more markedly. Therefore, we assumed that these three histidine residues are components of the active site of RNase Rh, that His104 contributes to some extent to the binding and less to the catalysis, and that the other two histidine residues and one carboxyl group not yet identified are probably involved in the catalysis. We assigned the C-2 proton resonances of His46, His104, and His109 by comparison of the 1H-NMR spectra of the three mutant enzymes containing Phe in place of His with that of the native enzyme, and also determined the individual pKa values for His46 and His104 to be 6.70 and 5.94. His109 was not titrated in a regular way, but the apparent pKa value was estimated to be around 6.3. The fact that addition of 2'-AMP caused a greater effect on the chemical shift of His104 in the 1NMR spectra as compared with those of the other histidine residues, may support the idea described above on the role of His104.  相似文献   

13.
The modes of binding of adenosine 2'-monophosphate (2'-AMP) to the enzyme ribonuclease (RNase) T1 were determined by computer modelling studies. The phosphate moiety of 2'-AMP binds at the primary phosphate binding site. However, adenine can occupy two distinct sites--(1) The primary base binding site where the guanine of 2'-GMP binds and (2) The subsite close to the N1 subsite for the base on the 3'-side of guanine in a guanyl dinucleotide. The minimum energy conformers corresponding to the two modes of binding of 2'-AMP to RNase T1 were found to be of nearly the same energy implying that in solution 2'-AMP binds to the enzyme in both modes. The conformation of the inhibitor and the predicted hydrogen bonding scheme for the RNase T1-2'-AMP complex in the second binding mode (S) agrees well with the reported x-ray crystallographic study. The existence of the first mode of binding explains the experimental observations that RNase T1 catalyses the hydrolysis of phosphodiester bonds adjacent to adenosine at high enzyme concentrations. A comparison of the interactions of 2'-AMP and 2'-GMP with RNase T1 reveals that Glu58 and Asn98 at the phosphate binding site and Glu46 at the base binding site preferentially stabilise the enzyme-2'-GMP complex.  相似文献   

14.
The synthesis and enzymatic characterization of DUPAAA, a novel fluorogenic substrate for RNases of the pancreatic type is described. It consists of the dinucleotide uridylyl-3',5'-deoxyadenosine to which a fluorophore, o-aminobenzoic acid, and a quencher, 2,4-dinitroaniline, have been attached by means of phosphodiester linkages. Due to intramolecular quenching the intact substrate displayed very little fluorescence. Cleavage of the phosphodiester bond at the 3'-side of the uridylyl residue by RNase caused a 60-fold increase in fluorescence. This allowed the continuous and highly sensitive monitoring of enzyme activity. The substrate was turned over efficiently by RNases of the pancreatic type, but no cleavage was observed with the microbial RNase T1. Compared to the dinucleotide substrate UpA, the specificity constant with RNase A, RNase PL3 and RNase U(s) increased 6-, 18-, and 29-fold, respectively. These differences in increased catalytic efficiency most likely reflect differences in the importance of subsites on the enzyme in the binding of elongated substrates. Studies on the interactions of RNase inhibitor with RNase A using DUPAAA as a reporter substrate showed that it was well suited for monitoring this very tight protein-protein interaction using pre-steady-state kinetic methods.  相似文献   

15.
A base-nonspecific and acid ribonuclease (RNase Ok2) was purified from the liver of a salmon (Oncorhnchus keta) to a homogeneous state by SDS-PAGE. The primary structure of RNase Ok2 was determined by protein chemistry and molecular cloning. The RNase Ok2 was a glycoprotein and consisted of 216 amino acid residues. Its molecular mass of protein moiety was 25,198, and its amino acid sequence showed that it belongs to the RNase T2 family of enzymes. The optimal pH of RNase Ok2 was around 5.5. The base preferences at the B1 and B2 sites were estimated from the rates of hydrolysis of 16 dinucleoside phosphates to be G>A>U, C, and G>A>U>C respectively. In this enzyme, one of the three histidine residues which have been thought to be important for catalysis of RNase Rh, a typical RNase of this family of enzymes, His104 was replaced by tyrosine residue. Based on the results, the role of H104, which has been proposed to be a phosphate binding site with a substrate, was reconsidered, and we proposed a revised role of this His residue in the hydrolysis mechanism of RNase T2 family enzymes.  相似文献   

16.
Incubation of Neurospora crassa conidia with ribonuclease (RNase) A reduces transport of L-phenylalanine by those cells. Under similar conditions, oxidized RNase A, RNase T1, and RNase T2 do not have this effect. Incubation of conidia with active RNase covalently attached to polyacrylamide beads reduces L-phenylalanine transport. This indicates that the site of enzymatic action is at the cell surface. At the lower concentration of enzyme used in this study, incubation with RNase A reduces transport of L-phenylalanine by the general (G) amino acid permease. Increasing the enzyme concentration results in reduction of transport by the neutral aromatic (N)-specific permease. The increased transport activity that accompanies onset of conidial germination is also sensitive to incubation with RNase A. Application of the enzyme to actively transporting cells does not release amino acid transported prior to enzyme addition. Cells cultured on media supplemented with [2-14C] uridine release isotopic activity after RNase A incubation. Analogous treatments with Pronase, RNase T1, RNase T2, or deoxyribonuclease I do not release isotope activity. Pronase treatment does reduce L-phenylalanine transport. Incubation of conidia with RNase A also inhibits germination of those conidia.  相似文献   

17.
An extensive screening among microorganisms for the presence of post-proline-specific endopeptidase activity was performed. This activity was found among ordinary bacteria from soil samples but not among fungi and actinomycetes. This result is in contrast to the previous notion that this activity is confined to the genus Flavobacterium. A proline endopeptidase was isolated from a Xanthomonas sp. and characterized with respect to physicochemical and enzymatic properties. The enzyme is composed of a single peptide chain with a molecular weight of 75,000. The isoelectric point is 6.2. It is inhibited by diisopropylfluorophosphate and may therefore be classified as a serine endopeptidase. The activity profile is bell shaped with an optimum at pH 7.5. By using synthetic peptide substrates and intramolecular fluorescence quenching it was possible to study the influence of substrate structure on the rate of hydrolysis. The enzyme specifically hydrolyzed Pro-X peptide bonds. With Glu at position X, low rates of hydrolysis were observed; otherwise the enzyme exhibited little preference for particular amino acid residues at position X. A similar substrate preference was observed with respect to the amino acid residue preceding the prolyl residue in the substrate. The enzyme required a minimum of two amino acid residues toward the N terminus from the scissile bond, but further elongation of the peptide chain by up to six amino acid residues caused only a threefold increase in the rate of hydrolysis. Attempts to cleave at the prolyl residues in oxidized RNase failed, indicating that the enzyme does not hydrolyze long peptides, a peculiar property it shares with other proline-specific endopeptidases.  相似文献   

18.
Extracellular RNase Fl1 has been purified from the culture filtrate of Fusarium lateritium. The enzyme has been obtained in the electrophoretically homogeneous state with the yield about 90% and 300 fdd degree of purification. RNase Fl1 is a guanyl specific enzyme (EC 3.1.27.3) with the specific activity on RNA 1420 units/mg of protein. The total primary structure of the RNase has been determined by the automated Edman degradation of two non-fractionated peptide hydrolysates produced by trypsin and Staphylococcus aureus protease and of the hydroxylamine cleavage products of the protein. It was shown that hydroxylamine converts the RNase Fl1 N-terminal residue, pyroglutamic acid, into the hydroxyamic acid derivative sensitive to Edman degradation. RNase Fl1 consists of 105 amino acid residues (Mr 10,852) and is a structural homologue of the Fus. moniliforme RNase F1, differing from the latter by 15 amino acid substitutions outside the enzyme active site.  相似文献   

19.
Dihydrofolate reductase from bovine liver has been purified 5000-fold employing conventional techniques and methotrexate/aminohexyl/Sepharose affinity chromatography. Electrophoresis of the isolated enzyme on polyacrylamide gels resulted in the separation of two enzymatically active protein components which were not interconvertible by treatment with dihydrofolate and/or the coenzyme. The two forms, present in a ratio of 20:1, were found by isoelectric focusing to have isoelectric points of 7.15 and 5.94. They had identical specific activities toward dihydrofolate (26.1-27.0 U/mg) and folate (1.3-2.2 U/mg), and had identical molecular weights (23500) and amino acid compositions. Due to the small quantity of the acidic form and the similarity of the two forms, the amino-terminal sequence (19 residues) was determined on a mixture of carboxymethylated reductase. The single sulfhydryl group of the enzyme can be modified by several sulfhydryl reagents in the native enzyme without loss of activity. Modification of the same residue occurs in the denaturated state and partially inhibits renaturation to the fully acitve enzyme. One disulfide bridge was detected by reduction and alkylation. The cleavage of this bond did not effect the enzymatic activity.  相似文献   

20.
The rnhA gene encoding RNase HI from a psychrotrophic bacterium, Shewanella sp. SIB1, was cloned, sequenced and overexpressed in an rnh mutant strain of Escherichia coli. SIB1 RNase HI is composed of 157 amino acid residues and shows 63% amino acid sequence identity to E.coli RNase HI. Upon induction, the recombinant protein accumulated in the cells in an insoluble form. This protein was solubilized and purified in the presence of 7 M urea and refolded by removing urea. Determination of the enzymatic activity using M13 DNA-RNA hybrid as a substrate revealed that the enzymatic properties of SIB1 RNase HI, such as divalent cation requirement, pH optimum and cleavage mode of a substrate, are similar to those of E.coli RNase HI. However, SIB1 RNase HI was much less stable than E.coli RNase HI and the temperature (T(1/2)) at which the enzyme loses half of its activity upon incubation for 10 min was approximately 25 degrees C for SIB1 RNase HI and approximately 60 degrees C for E.coli RNase HI. The optimum temperature for the SIB1 RNase HI activity was also shifted downward by 20 degrees C compared with that of E.coli RNase HI. Nevertheless, SIB1 RNase HI was less active than E.coli RNase HI even at low temperatures. The specific activity determined at 10 degrees C was 0.29 units/mg for SIB1 RNase HI and 1.3 units/mg for E.coli RNase HI. Site-directed mutagenesis studies suggest that the amino acid substitution in the middle of the alphaI-helix (Pro52 for SIB1 RNase HI and Ala52 for E.coli RNase HI) partly accounts for the difference in the stability and activity between SIB1 and E.coli RNases HI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号