首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Regulator of G protein signaling (RGS) proteins modulate signaling through pathways that use heterotrimeric G proteins as transducing elements. RGS1 is expressed at high levels in certain B cell lines and can be induced in normal B cells by treatment with TNF-alpha. To determine the signaling pathways that RGS1 may regulate, we examined the specificity of RGS1 for various G alpha subunits and assessed its effect on chemokine signaling. G protein binding and GTPase assays revealed that RGS1 is a Gi alpha and Gq alpha GTPase-activating protein and a potential G12 alpha effector antagonist. Functional studies demonstrated that RGS1 impairs platelet activating factor-mediated increases in intracellular Ca+2, stromal-derived factor-1-induced cell migration, and the induction of downstream signaling by a constitutively active form of G12 alpha. Furthermore, germinal center B lymphocytes, which are refractory to stromal-derived factor-1-triggered migration, express high levels of RGS1. These results indicate that RGS proteins can profoundly effect the directed migration of lymphoid cells.  相似文献   

2.
γ-Aminobutyric acid (GABA) release from inhibitory interneurons located within the cerebellar cortex limits the extent of neuronal excitation in part through activation of metabotropic GABA(B) receptors. Stimulation of these receptors triggers a number of downstream signaling events, including activation of GIRK channels by the Gβγ dimer resulting in membrane hyperpolarization and inhibition of neurotransmitter release from presynaptic sites. Here, we identify RGS6, a member of the R7 subfamily of RGS proteins, as a key regulator of GABA(B)R signaling in cerebellum. RGS6 is enriched in the granule cell layer of the cerebellum along with neuronal GIRK channel subunits 1 and 2 where RGS6 forms a complex with known binding partners Gβ(5) and R7BP. Mice lacking RGS6 exhibit abnormal gait and ataxia characterized by impaired rotarod performance improved by treatment with a GABA(B)R antagonist. RGS6(-/-) mice administered baclofen also showed exaggerated motor coordination deficits compared with their wild-type counterparts. Isolated cerebellar neurons natively expressed RGS6, GABA(B)R, and GIRK channel subunits, and cerebellar granule neurons from RGS6(-/-) mice showed a significant delay in the deactivation kinetics of baclofen-induced GIRK channel currents. These results establish RGS6 as a key component of GABA(B)R signaling and represent the first demonstration of an essential role for modulatory actions of RGS proteins in adult cerebellum. Dysregulation of RGS6 expression in human patients could potentially contribute to loss of motor coordination and, thus, pharmacological manipulation of RGS6 levels might represent a viable means to treat patients with ataxias of cerebellar origin.  相似文献   

3.
The regulator of G protein signaling 2 (RGS2) is a potent negative regulator of Gq protein signals including the angiotensin II (AngII)/AngII receptor signal, which plays a critical role in the progression of fibrosis. However, the role of RGS2 on the progression of kidney fibrosis has not been assessed. Here, we investigated the role of RGS2 in kidney fibrosis induced by unilateral ureteral obstruction (UUO) in mice. UUO resulted in increased expression of RGS2 mRNA and protein in the kidney along with increases of AngII and its type 1 receptor (AT1R) signaling and fibrosis. Furthermore, UUO increased the levels of F4/80, Ly6G, myeloperoxidase, and CXCR4 in the kidneys. RGS2 deficiency significantly enhanced these changes in the kidney. RGS2 deletion in the bone marrow-derived cells by transplanting the bone marrow of RGS2 knock-out mice into wild type mice enhanced UUO-induced kidney fibrosis. Overexpression of RGS2 in HEK293 cells, a human embryonic kidney cell line, and RAW264.7 cells, a monocyte/macrophage line, inhibited the AngII-induced activation of ERK and increase of CXCR4 expression. These findings provide the first evidence that RGS2 negatively regulates the progression of kidney fibrosis following UUO, likely by suppressing fibrogenic and inflammatory responses through the inhibition of AngII/AT1R signaling.  相似文献   

4.
5.
Regulator of G protein signaling 6 (RGS6) is a member of a family of proteins called RGS proteins, which function as GTPase-activating proteins (GAPs) for Gα subunits. Given the role of RGS6 as a G protein GAP, the link between G protein activation and cancer, and a reduction of cancer risk in humans expressing a RGS6 SNP leading to its increased translation, we hypothesized that RGS6 might function to inhibit growth of cancer cells. Here, we show a marked down-regulation of RGS6 in human mammary ductal epithelial cells that correlates with the progression of their transformation. RGS6 exhibited impressive antiproliferative actions in breast cancer cells, including inhibition of cell growth and colony formation and induction of cell cycle arrest and apoptosis by mechanisms independent of p53. RGS6 activated the intrinsic pathway of apoptosis involving regulation of Bax/Bcl-2, mitochondrial outer membrane permeabilization (MOMP), cytochrome c release, activation of caspases-3 and -9, and poly(ADP-ribose) polymerase cleavage. RGS6 promoted loss of mitochondrial membrane potential (ΔΨ(m)) and increases in reactive oxygen species (ROS). RGS6-induced caspase activation and loss of ΔΨ(m) was mediated by ROS, suggesting an amplification loop in which ROS provided a feed forward signal to induce MOMP, caspase activation, and cell death. Loss of RGS6 in mouse embryonic fibroblasts dramatically impaired doxorubicin-induced growth suppression and apoptosis. Surprisingly, RGS6-induced apoptosis in both breast cancer cells and mouse embryonic fibroblasts does not require its GAP activity toward G proteins. This work demonstrates a novel signaling action of RGS6 in cell death pathways and identifies it as a possible therapeutic target for treatment of breast cancer.  相似文献   

6.
7.
RGS3 belongs to a family of the regulators of G protein signaling (RGS). We previously demonstrated that cytosolic RGS3 translocates to the membrane to inhibit G(q/11) signaling (Dulin, N. O., Sorokin, A., Reed, E., Elliott, S., Kehrl, J., and Dunn, M. J. (1999) Mol. Cell. Biol. 19, 714-723). This study examines the properties of a recently identified truncated variant termed RGS3T. Both RGS3 and RGS3T bound to endogenous Galpha(q/11) and inhibited endothelin-1-stimulated calcium mobilization and mitogen-activated protein kinase activity to a similar extent. However, unlike cytosolically localized RGS3, RGS3T was found predominantly in the nucleus and partially in the plasma membrane. Furthermore, RGS3T, but not RGS3, caused cell rounding and membrane blebbing. Finally, 44% of RGS3T-transfected cells underwent apoptosis after serum withdrawal, which was significantly higher than that of RGS3-transfected cells (7%). Peptide sequence analysis revealed two potential nuclear localization signal (NLS) sequences in RGS3T. Further truncation of the RGS3T N terminus containing putative NLSs resulted in a significant reduction of nuclear versus cytoplasmic staining of the protein. Moreover, this truncated RGS3T no longer induced apoptosis. In summary, RGS3 and its truncated variant RGS3T are similar in their ability to inhibit G(q/11) signaling but are different in their intracellular distribution. These data suggest that, in addition to being a GTPase-activating protein, RGS3T has other distinct functions in the nucleus of the cell.  相似文献   

8.
Functional roles of the NH(2)-terminal region of RGS (regulators of G protein signaling) 8 in G protein signaling were studied. The deletion of the NH(2)-terminal region of RGS8 (DeltaNRGS8) resulted in a partial loss of the inhibitory function in pheromone response of yeasts, although Galpha binding was not affected. To examine roles in subcellular distribution, we coexpressed two fusion proteins of RGS8-RFP and DeltaNRGS8-GFP in DDT1MF2 cells. RGS8-RFP was highly concentrated in nuclei of unstimulated cells. Coexpression of constitutively active Galpha(o) resulted in translocation of RGS8 protein to the plasma membrane. In contrast, DeltaNRGS8-GFP was distributed diffusely through the cytoplasm in the presence or absence of active Galpha(o). When coexpressed with G protein-gated inwardly rectifying K(+) channels, DeltaNRGS8 accelerated both turning on and off similar to RGS8. Acute desensitization of G protein-gated inwardly rectifying K(+) current observed in the presence of RGS8, however, was not induced by DeltaNRGS8. Thus, we, for the first time, showed that the NH(2) terminus of RGS8 contributes to the subcellular localization and to the desensitization of the G protein-coupled response.  相似文献   

9.
Proteins that serve as regulator of G protein signaling (RGS) primarily function as GTPase accelerators that promote GTP hydrolysis by the Gα subunits, thereby inactivating the G protein and rapidly switching off G protein-coupled signaling pathways. Since the first RGS protein was identified from the budding yeast Saccharomyces cerevisiae, more than 30 RGS and RGS-like proteins have been characterized from several model fungi, such as Aspergillus nidulans, Beauveria bassiana, Candida albicans, Fusarium verticillioides, Magnaporthe oryzae, and Metarhizium anisopliae. In this review, the partial biochemical properties and functional domains of RGS and RGS-like proteins were predicted and compared, and the roles of RGS and RGS-like proteins in different fungi were summarized. Moreover, the phylogenetic relationship among RGS and RGS-like proteins from various fungi was analyzed and discussed.  相似文献   

10.
Control of chondrocyte differentiation is attained, in part, through G-protein signaling, but the functions of the RGS family of genes, well known to control G-protein signaling at the Galpha subunit, have not been studied extensively in chondrogenesis. Recently, we have identified the Rgs2 gene as a regulator of chondrocyte differentiation. Here we extend these studies to additional Rgs genes. We demonstrate that the Rgs4, Rgs5, Rgs7, and Rgs10 genes are differentially regulated during chondrogenic differentiation in vitro and in vivo. To investigate the roles of RGS proteins during cartilage development, we overexpressed RGS4, RGS5, RGS7, and RGS10 in the chondrogenic cell line ATDC5. We found unique and overlapping effects of individual Rgs genes on numerous parameters of chondrocyte differentiation. In particular, RGS5, RGS7, and RGS10 promote and RGS4 inhibits chondrogenic differentiation. The identification of Rgs genes as novel regulators of chondrogenesis will contribute to a better understanding of both normal cartilage development and the etiology of chondrodysplasias and osteoarthritis.  相似文献   

11.
Many drugs of abuse signal through receptors that couple to G proteins (GPCRs), so the factors that control GPCR signaling are likely to be important to the understanding of drug abuse. Contributions by the recently identified protein family, regulators of G protein signaling (RGS) to the control of GPCR function are just beginning to be understood. RGS proteins can accelerate the deactivation of G proteins by 1000-fold and in cell systems they profoundly inhibit signaling by many receptors, including mu-opioid receptors. Coupled with the known dynamic regulation of RGS protein expression and function, they are of obvious interest in understanding tolerance and dependence mechanisms. Furthermore, drugs that could inhibit their activity could be useful in preventing the development of or in treating drug dependence.  相似文献   

12.
It has long been known that animal heterotrimeric Gαβγ proteins are activated by cell-surface receptors that promote GTP binding to the Gα subunit and dissociation of the heterotrimer. In contrast, the Gα protein from Arabidopsis thaliana (AtGPA1) can activate itself without a receptor or other exchange factor. It is unknown how AtGPA1 is regulated by Gβγ and the RGS (regulator of G protein signaling) protein AtRGS1, which is comprised of an RGS domain fused to a receptor-like domain. To better understand the cycle of G protein activation and inactivation in plants, we purified and reconstituted AtGPA1, full-length AtRGS1, and two putative Gβγ dimers. We show that the Arabidopsis Gα protein binds to its cognate Gβγ dimer directly and in a nucleotide-dependent manner. Although animal Gβγ dimers inhibit GTP binding to the Gα subunit, AtGPA1 retains fast activation in the presence of its cognate Gβγ dimer. We show further that the full-length AtRGS1 protein accelerates GTP hydrolysis and thereby counteracts the fast nucleotide exchange rate of AtGPA1. Finally, we show that AtGPA1 is less stable in complex with GDP than in complex with GTP or the Gβγ dimer. Molecular dynamics simulations and biophysical studies reveal that altered stability is likely due to increased dynamic motion in the N-terminal α-helix and Switch II of AtGPA1. Thus, despite profound differences in the mechanisms of activation, the Arabidopsis G protein is readily inactivated by its cognate RGS protein and forms a stable, GDP-bound, heterotrimeric complex similar to that found in animals.  相似文献   

13.
Regulators of G protein signaling (RGS) are key regulators of G protein signaling. RGS proteins of the R4 RGS group are composed of a mere RGS domain and are mainly involved in immune response modulation. In both human and mouse, most genes encoding the R4 RGS proteins are located in the same region of chromosome 1. We show here that the RGS1/RGS16 neighborhood constitutes a synteny group well conserved across tetrapods and closely linked to the MHC paralogon of chromosome 1. Genes located in the RGS1/RGS16 region have paralogs close to the MHC on chromosome 6 or close to the other MHC paralogons. In amphioxus, a cephalochordate, these genes possess orthologs that are located in the same scaffolds as a number of markers defining the proto-MHC in this species (Abi-Rached et al., Nat Genet 31:100–115, 2002). We therefore propose that the RGS1/RGS16 region provides useful markers to investigate the origins and the evolution of the MHC. In addition, we show that some genes of the region appear to have immune functions not only in human, but also in Xenopus.  相似文献   

14.
RGS4 and RGS10 expressed in Sf9 cells are palmitoylated at a conserved Cys residue (Cys(95) in RGS4, Cys(66) in RGS10) in the regulator of G protein signaling (RGS) domain that is also autopalmitoylated when the purified proteins are incubated with palmitoyl-CoA. RGS4 also autopalmitoylates at a previously identified cellular palmitoylation site, either Cys(2) or Cys(12). The C2A/C12A mutation essentially eliminates both autopalmitoylation and cellular [(3)H]palmitate labeling of Cys(95). Membrane-bound RGS4 is palmitoylated both at Cys(95) and Cys(2/12), but cytosolic RGS4 is not palmitoylated. RGS4 and RGS10 are GTPase-activating proteins (GAPs) for the G(i) and G(q) families of G proteins. Palmitoylation of Cys(95) on RGS4 or Cys(66) on RGS10 inhibits GAP activity 80-100% toward either Galpha(i) or Galpha(z) in a single-turnover, solution-based assay. In contrast, when GAP activity was assayed as acceleration of steady-state GTPase in receptor-G protein proteoliposomes, palmitoylation of RGS10 potentiated GAP activity >/=20-fold. Palmitoylation near the N terminus of C95V RGS4 did not alter GAP activity toward soluble Galpha(z) and increased G(z) GAP activity about 2-fold in the vesicle-based assay. Dual palmitoylation of wild-type RGS4 remained inhibitory. RGS protein palmitoylation is thus multi-site, complex in its control, and either inhibitory or stimulatory depending on the RGS protein and its sites of palmitoylation.  相似文献   

15.
The R7 family of regulators of G protein signaling (RGS) proteins, comprising RGS6, RGS7, RGS9, and RGS11, regulate neuronal G protein signaling pathways. All members of the R7 RGS form trimeric complexes with the atypical G protein β subunit, Gβ5, and membrane anchor R7BP or R9AP. Association with Gβ5 and membrane anchors has been shown to be critical for maintaining proteolytic stability of the R7 RGS proteins. However, despite its functional importance, the mechanism of how R7 RGS forms complexes with Gβ5 and membrane anchors remains poorly understood. Here, we used protein-protein interaction, co-localization, and protein stability assays to show that association of RGS9 with membrane anchors requires Gβ5. We further establish that the recruitment of R7BP to the complex requires an intact interface between the N-terminal lobe of RGS9 and protein interaction surface of Gβ5. Site-directed mutational analysis reveals that distinct molecular determinants in the interface between Gβ5 and N-terminal Dishevelled, EGL-10, Pleckstrin/DEP Helical Extension (DEP/DHEY) domains are differentially involved in R7BP binding and proteolytic stabilization. On the basis of these findings, we conclude that Gβ5 contributes to the formation of the binding site to the membrane anchors and thus is playing a central role in the assembly of the proteolytically stable trimeric complex and its correct localization in the cell.  相似文献   

16.
Heterotrimeric G proteins are involved in the transduction of hormonal and sensory signals across plasma membranes of eukaryotic cells. Hence, they are a critical point of control for a variety of agents that modulate cellular function. Activation of these proteins is dependent on GTP binding to their alpha (Galpha) subunits. Regulators of G protein signaling (RGS) bind specifically to activated Galpha proteins, potentiating the intrinsic GTPase activity of the Galpha proteins and thus expediting the termination of Galpha signaling. Although there are several points in most G protein controlled signaling pathways that are affected by reversible covalent modification, little evidence has been shown addressing whether or not the functions of RGS proteins are themselves regulated by such modifications. We report in this study the acute functional regulation of RGS10 thru the specific and inducible phosphorylation of RGS10 protein at serine 168 by cAMP-dependent kinase A. This phosphorylation nullifies the RGS10 activity at the plasma membrane, which controls the G protein-dependent activation of the inwardly rectifying potassium channel. Surprisingly, the phosphorylation-mediated attenuation of RGS10 activity was not manifested in an alteration of its ability to accelerate GTPase activity of Galpha. Rather, the phosphorylation event correlates with translocation of RGS10 from the plasma membrane and cytosol into the nucleus.  相似文献   

17.
The G protein–coupled receptor (GPCR) kinases (GRKs) phosphorylate activated GPCRs at the plasma membrane (PM). Here GRK5/GRK4 chimeras and point mutations in GRK5 identify a short sequence within the regulator of G protein signaling (RGS) domain in GRK5 that is critical for GRK5 PM localization. This region of the RGS domain of GRK5 coincides with a region of GRK6 and GRK1 shown to form a hydrophobic dimeric interface (HDI) in crystal structures. Coimmunoprecipitation (coIP) and acceptor photobleaching fluorescence resonance energy transfer assays show that expressed GRK5 self-associates in cells, whereas GRK5-M165E/F166E (GRK5-EE), containing hydrophilic mutations in the HDI region of the RGS domain, displays greatly decreased coIP interactions. Both forcing dimerization of GRK5-EE, via fusion to leucine zipper motifs, and appending an extra C-terminal membrane-binding region to GRK5-EE (GRK5-EE-CT) recover PM localization. In addition, GRK5-EE displays a decreased ability to inhibit PAR1-induced calcium release compared with GRK5 wild type (wt). In contrast, PM-localized GRK5-EE-CaaX (appending a C-terminal prenylation and polybasic motif from K-ras) or GRK5-EE-CT shows comparable ability to GRK5 wt to inhibit PAR1-induced calcium release. The results suggest a novel model in which GRK5 dimerization is important for its plasma membrane localization and function.  相似文献   

18.
Protease-activated receptor 1 (PAR1) is a G-protein coupled receptor (GPCR) that is activated by natural proteases to regulate many physiological actions. We previously reported that PAR1 couples to Gi, Gq and G12 to activate linked signaling pathways. Regulators of G protein signaling (RGS) proteins serve as GTPase activating proteins to inhibit GPCR/G protein signaling. Some RGS proteins interact directly with certain GPCRs to modulate their signals, though cellular mechanisms dictating selective RGS/GPCR coupling are poorly understood. Here, using bioluminescence resonance energy transfer (BRET), we tested whether RGS2 and RGS4 bind to PAR1 in live COS-7 cells to regulate PAR1/Gα-mediated signaling. We report that PAR1 selectively interacts with either RGS2 or RGS4 in a G protein-dependent manner. Very little BRET activity is observed between PAR1-Venus (PAR1-Ven) and either RGS2-Luciferase (RGS2-Luc) or RGS4-Luc in the absence of Gα. However, in the presence of specific Gα subunits, BRET activity was markedly enhanced between PAR1-RGS2 by Gαq/11, and PAR1-RGS4 by Gαo, but not by other Gα subunits. Gαq/11-YFP/RGS2-Luc BRET activity is promoted by PAR1 and is markedly enhanced by agonist (TFLLR) stimulation. However, PAR1-Ven/RGS-Luc BRET activity was blocked by a PAR1 mutant (R205A) that eliminates PAR1-Gq/11 coupling. The purified intracellular third loop of PAR1 binds directly to purified His-RGS2 or His-RGS4. In cells, RGS2 and RGS4 inhibited PAR1/Gα-mediated calcium and MAPK/ERK signaling, respectively, but not RhoA signaling. Our findings indicate that RGS2 and RGS4 interact directly with PAR1 in Gα-dependent manner to modulate PAR1/Gα-mediated signaling, and highlight a cellular mechanism for selective GPCR/G protein/RGS coupling.  相似文献   

19.
J H Yu  J Wieser    T H Adams 《The EMBO journal》1996,15(19):5184-5190
flbA encodes an Aspergillus nidulans RGS (regulator of G protein signaling) domain protein that is required for control of mycelial proliferation and activation of asexual sporulation. We identified a dominant mutation in a second gene, fadA, that resulted in a very similar phenotype to flbA loss-of-function mutants. Analysis of fadA showed that it encodes the alpha-subunit of a heterotrimeric G protein, and the dominant phenotype resulted from conversion of glycine 42 to arginine (fadA(G42R)). This mutation is predicted to result in a loss of intrinsic GTPase activity leading to constitutive signaling, indicating that activation of this pathway leads to proliferation and blocks sporulation. By contrast, a fadA deletion and a fadA dominant-interfering mutation (fadA(G203R)) resulted in reduced growth without impairing sporulation. In fact, the fadA(G203R) mutant was a hyperactive asexual sporulator and produced elaborate sporulation structures, called conidiophores, under environmental conditions that blocked wild-type sporulation. Both the fadA(G203R) and the fadA deletion mutations suppressed the flbA mutant phenotype as predicted if the primary role of FlbA in sporulation is in blocking activation of FadA signaling. Because overexpression of flbA could not suppress the fadA(G42R) mutant phenotype, we propose that FlbA's role in modulating the FadA proliferation signal is dependent upon the intrinsic GTPase activity of wild-type FadA.  相似文献   

20.
In this paper the qualitative dynamic behavior of reaction kinetic models of G protein signaling is examined. A simplified basic G protein signaling structure is defined, which is extended to be able to take the effect of slow transmission, RGS mediated feedback regulation and ERK-phosphatase mediated feedback regulation into account. The resulting model gives rise to an acceptable qualitative approximation of the G protein dependent and independent ERK activation dynamics that is in good agreement with the experimentally observed behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号