首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Reactive oxygen species (ROS) are formed in photosystem II (PSII) under various types of abiotic and biotic stresses. It is considered that ROS play a role in chloroplast-to-nucleus retrograde signaling, which changes the nuclear gene expression. However, as ROS lifetime and diffusion are restricted due to the high reactivity towards biomolecules (lipids, pigments, and proteins) and the spatial specificity of signal transduction is low, it is not entirely clear how ROS might transduce signal from the chloroplasts to the nucleus. Biomolecule oxidation was formerly connected solely with damage; nevertheless, the evidence appears that oxidatively modified lipids and pigments are be involved in chloroplast-to-nucleus retrograde signaling due to their long diffusion distance. Moreover, oxidatively modified proteins show high spatial specificity; however, their role in signal transduction from chloroplasts to the nucleus has not been proven yet. The review attempts to summarize and evaluate the evidence for the involvement of ROS in oxidative signaling in PSII.

  相似文献   

2.
Oxidative stress is defined as an imbalance between the production of reactive oxygen species (ROS) and the antioxidant capacity of the cell. For long, ROS have been considered as harmful by-products of the normal aerobic metabolism process of the mitochondria, implicated in a large variety of diseases. But there are now growing evidences that controlled ROS production also play physiological roles especially in regulating cell redox homeostasis and cell signaling. Biological ROS effects are now well documented. Data show that living organisms have not only adapted themselves to coexist with free radicals but have also developed mechanisms to use them advantageously. However their main sources and mechanisms of action remain poorly described. This review focuses on the main properties of ROS and their paradoxical effects.  相似文献   

3.
Some herbicides act by binding to the exchangeable quinone site in the photosystem II (PSII) reaction centre, thus blocking electron transfer. In this article, it is hypothesized that the plant is killed by light-induced oxidative stress initiated by damage caused by formation of singlet oxygen in the reaction centre itself. This occurs when light-induced charge pairs in herbicide-inhibited PSII decay by a charge recombination route involving the formation of a chlorophyll triplet state that is able to activate oxygen. The binding of phenolic herbicides favours this pathway, thus increasing the efficiency of photodamage in this class of herbicides.  相似文献   

4.
Objective: The objective of this paper was to link the phytochemical and metabolic research treating quinolinic acid induced oxidative stress in neurodegenerative disorders.

Methods: Quinolinic acid, a metabolite of the kynurenine pathway of tryptophan catabolism, plays a role in the oxidative stress associated with many neurological disorders and is used to simulate disorders such as Parkinson’s disease.

Results: In these models, phytochemicals have been shown to reduce striatal lesion size, reduce inflammation and prevent lipid peroxidation caused by quinolinic acid.

Conclusion: These results suggest that phenolic compounds, a class of phytochemicals, including flavonoids and diarylheptanoids, should be further studied to develop new treatments for oxidative stress related neurological disorders.  相似文献   


5.
Moderate heat stress (40 degrees C for 30 min) on spinach thylakoid membranes induced cleavage of the reaction center-binding D1 protein of photosystem II, aggregation of the D1 protein with the neighboring polypeptides D2 and CP43, and release of three extrinsic proteins, PsbO, -P, and -Q. These heat-induced events were suppressed under anaerobic conditions or by the addition of sodium ascorbate, a general scavenger of reactive oxygen species. In accordance with this, singlet oxygen and hydroxyl radicals were detected in spinach photosystem II membranes incubated at 40 degrees C for 30 min with electron paramagnetic resonance spin-trapping spectroscopy. The moderate heat stress also induced significant lipid peroxidation under aerobic conditions. We suggest that the reactive oxygen species are generated by heat-induced inactivation of a water-oxidizing manganese complex and through lipid peroxidation. Although occurring in the dark, the damages caused by the moderate heat stress to photosystem II are quite similar to those induced by excessive illumination where reactive oxygen species are involved.  相似文献   

6.
Recipient of the Society Award for Young Scientists 1991.  相似文献   

7.
8.
Photo-generated reactive oxygen species in herbicide-treated photosystem II were investigated by spin-trapping. While the production of .OH and O2-* was herbicide-independent, 1O2 with a phenolic was twice that with a urea herbicide. This correlates with the reported influence of these herbicides on the redox properties of the semiquinone QA-* and fits with the hypothesis that 1O2 is produced by charge recombination reactions that are stimulated by herbicide binding and modulated by the nature of the herbicide. When phenolic herbicides are bound, charge recombination at the level of P+*Pheo-* is thermodynamically favoured forming a chlorophyll triplet and hence 1O2. With urea herbicides this pathway is less favourable.  相似文献   

9.
Planta - Recent investigations have provided important new insights into the structures and functions of the extrinsic proteins of Photosystem II. This review is an update of the last major review...  相似文献   

10.
Reactive oxygen signaling and abiotic stress   总被引:11,自引:0,他引:11  
  相似文献   

11.
Singlet oxygen is formed in the photosystem II reaction center in the quench of P680 triplets, and the yield is dependent on light intensity and the reduction level of plastoquinone. Singlet oxygen in PS II triggers the degradation of the D1 protein. We investigated the participation of tocopherol as a singlet oxygen scavenger in this system. For this purpose, we inhibited tocopherol biosynthesis at the level of the HPP-dioxygenase in the alga Chlamydomonas reinhardtii under conditions in which plastoquinone did not limit the photosynthesis rate. In the presence of the inhibitor and in high light for 2 h, photosynthesis in vivo and photosystem II was inactivated, the D1 protein was degraded, and the tocopherol pool was depleted and fell below its turnover rate/h. The inhibited system could be fully resuscitated upon the addition of a chemical singlet oxygen quencher (diphenylamine), and partly by synthetic cell wall permeable short chain alpha- and gamma-tocopherol derivatives. We conclude that under conditions of photoinhibition and extensive D1 protein turnover tocopherol has a protective function as a singlet oxygen scavenger.  相似文献   

12.
The cellular prion protein (PrP(C)) is critical for the development of prion diseases. However, the physiological role of PrP(C) is less clear, although a role in the cellular resistance to oxidative stress has been proposed. PrP(C) is cleaved at the end of the copper-binding octapeptide repeats through the action of reactive oxygen species (ROS), a process termed beta-cleavage. Here we show that ROS-mediated beta-cleavage of cell surface PrP(C) occurs within minutes and was inhibited by the hydroxyl radical quencher dimethyl sulfoxide and by an antibody against the octapeptide repeats. A construct of PrP lacking the octapeptide repeats, PrPDeltaoct, failed to undergo ROS-mediated beta-cleavage, as did two mutant forms of PrP, PG14 and A116V, associated with human prion diseases. As compared with cells expressing wild type PrP, when challenged with H2O2 and Cu2+, cells expressing PrPdeltaoct, PG14, or A116V had reduced viability and glutathione peroxidase activity and increased intracellular free radicals. Thus, lack of ROS-mediated beta-cleavage of PrP correlated with the sensitivity of the cells to oxidative stress. These data indicate that the beta-cleavage of PrP(C) is an early and critical event in the mechanism by which PrP protects cells against oxidative stress.  相似文献   

13.
Biological photosynthesis utilizes membrane-bound pigment/protein complexes to convert light into chemical energy through a series of electron-transfer events. In the unique photosystem II (PSII) complex these electron-transfer events result in the oxidation of water to molecular oxygen. PSII is an extremely complex enzyme and in order to exploit its unique ability to convert sunlight into chemical energy it will be necessary to make a minimal model. Here we will briefly describe how PSII functions and identify those aspects that are essential in order to catalyze the oxidation of water into O(2), and review previous attempts to design simple photo-catalytic proteins and summarize our current research exploiting the E. coli bacterioferritin protein as a scaffold into which multiple cofactors can be bound, to oxidize a manganese metal center upon illumination. Through the reverse engineering of PSII and light driven water splitting reactions it may be possible to provide a blueprint for catalysts that can produce clean green fuel for human energy needs.  相似文献   

14.
Giles GI  Jacob C 《Biological chemistry》2002,383(3-4):375-388
The ingredients of oxidative stress include a variety of reactive species such as reactive oxygen and reactive nitrogen species (ROS, RNS). While sulfur is usually considered as part of cellular antioxidant systems there is mounting evidence that reactive sulfur species (RSS) with stressor properties similar to the ones found in ROS are formed under conditions of oxidative stress. Thiols as well as disulfides are easily oxidised to sulfur species with sulfur in higher oxidation states. Such agents include thiyl radicals, disulfides, sulfenic acids and disulfide-S-oxides. They rapidly oxidise and subsequently inhibit thiol-proteins and enzymes and can be considered as a separate class of oxidative stressors providing new antioxidant drug targets.  相似文献   

15.
The linear, four-step oxidation of water to molecular oxygen by photosystem II requires cooperation between redox reactions driven by light and a set of redox reactions involving the S-states within the oxygen-evolving complex. The oxygenevolving complex is a highly ordered structure in which a number of polypeptides interact with one another to provide the appropriate environment for productive binding of cofactors such as manganese, chloride and calcium, as well as for productive electron transfer within the photoact. A number of recent advances in the knowledge of the polypeptide structure of photosystem II has revealed a correlation between primary photochemical events and a core complex of five hydrophobic polypeptides which provide binding sites for chlorophyll a, pheophytin a, the reaction center chlorophyll (P680), and its immediate donor, denoted Z. Although the core complex of photosystem II is photochemically active, it does not possess the capacity to evolve oxygen. A second set of polypeptides, which are water-soluble, have been discovered to be associated with photosystem II; these polypeptides are now proposed to be the structural elements of a special domain which promotes the activities of the loosely-bound cofactors (manganese, chloride, calcium) that participate in oxygen evolution activity. Two of these proteins (whose molecular weights are 23 and 17 kDa) can be released from photosystem II without concurrent loss of functional manganese; studies on these proteins and on the membranes from which they have been removed indicate that the 23 and 17 kDa species from part of the structure which promotes retention of chloride and calcium within the oxygen-evolving complex. A third water-soluble polypeptide of molecular weight 33 kDa is held to the photosystem II core complex by a series of forces which in some circumstances may include ligation to manganese. The 33 kDa protein has been studied in some detail and appears to promote the formation of the environment which is required for optimal participation by manganese in the oxygen evolving reaction. This minireview describes the polypeptides of photosystem II, places an emphasis on the current state of knowledge concerning these species, and discusses current areas of uncertainty concerning these important polypeptides.Abbreviations A 23187 ionophore that exchanges divalent cations with H+ - Chl chlorophyll - cyt cytochrome - DCPIP dichlorophenolindophenol - DPC diphenylcarbazide - EGTA ethyleneglycoltetraacetic acid - P680 the chlorophyll a reaction center of photosystem II - pheo pheophytin - PQ plastoquinone - PS photosystem - QA and QB primary and secondary plastoquinone electron acceptors of photosystem II - Sn (n=0, 1, 2, 3, 4) charge accumulating state of the oxygen evolving system - Signals IIvf, IIf and IIs epr-detectable free radicals associated with the oxidizing side of photosystem II - Z primary electron donor to the photosystem II reaction center The survey of literature for this review ended in September, 1984.  相似文献   

16.
Protein quality control plays an important role in the photosynthetic apparatus because its components receive excess light energy and are susceptible to photooxidative damage. In chloroplasts, photodamage is targeted to the D1 protein of Photosystem II (PSII). The coordinated PSII repair cycle (PSII disassembly, D1 degradation and synthesis, and PSII reassembly) is necessary to mitigate photoinhibition. A thylakoid protease FtsH, which is formed predominantly as a heteromeric complex with two isoforms of FtsH2 and FtsH5 in Arabidopsis, is the major protease involved in PSII repair. A mutant lacking FtsH2 (termed var2) shows compromised D1 degradation. Furthermore, var2 accumulates high levels of chloroplastic reactive oxygen species (cpROS), reflecting photooxidative stress without functional PSII repair. To examine if the cpROS produced in var2 are connected to a ROS signaling pathway mediated by plasma membrane NADPH oxidase (encoded by AtRbohD or AtRbohF), we generated mutants in which either Rboh gene was inactivated under var2 background. Lack of NADPH oxidases had little or no impact on cpROS accumulation. It seems unlikely that cpROS in var2 activate plasma membrane NADPH oxidases to enhance ROS production and the signaling pathway. Mutants that are defective in PSII repair might be valuable for investigating cpROS and their physiological roles.Key words: reactive oxygen species (ROS), photosystem II repair cycle, chloroplast, FtsH, NADPH oxidase, D1 protein, protein turnoverPhotosynthetic apparatus components receive excess light energy that can ultimately engender photoinhibition.1,2 Chloroplasts are therefore equipped with molecular systems to minimize accumulation of photodamaged proteins.3 Photosystem II, a large pigment-protein complex located in the thylakoid membrane, transfers electrons to plastoquinone and drives oxidation of water molecules using light energy.4,5 Because PSII is an initial and rate-limiting step of electron flow, photosynthetic organisms have evolved a unique mechanism of protein quality control (PSII repair cycle), in which the damage is centralized into the reaction center D1 protein, and in which PSII is recycled efficiently.6,7 Several lines of evidence from genetic and biochemical studies indicate that a prokaryotic ATP-dependent metalloprotease FtsH plays a critical role in D1 turnover of the PSII repair.812In chloroplasts, FtsH forms a heteromeric complex with two major isoforms.13,14 Mutants lacking either major isoform (var2 lacking FtsH2 or var1 lacking FtsH5) show leaf variegation forming white sectors that contain cells with aberrant plastids.8,9,11,15 The variegated phenotype implies that FtsH is involved not only in D1 degradation but also in thylakoid development.16,17 We conducted in vivo D1 degradation assays using “non-variegated” var1 and var2 mutants (owing to a trans-acting suppressor mutation fug1).18,19 Results showed that both D1 degradation and PSII electron transport rates were impaired in these non-variegated lines.19 Collectively, our results corroborate the important role of chloroplast FtsH in the PSII repair cycle. We also infer that the variegation phenotype in var mutants is separable from the defect in the PSII repair.Two important observations concomitant with impaired D1 degradation were made in our recent study.19 One is the accumulation of PSII partial complexes in var2. Two-dimensional blue-native SDS-PAGE analysis demonstrated that thylakoid-membrane fractions from var2 chloroplasts contained fewer PSII supercomplexes (representing functional PSII) and more partial PSII complexes (representing disassembled intermediates in the PSII repair cycle). These results indicate, although indirectly, that the impaired D1 degradation affects the disassembly/ reassembly step of the PSII repair cycle. The other important observation is the accumulation of reactive oxygen species (ROS), such as superoxide radical (O2) and hydrogen peroxide (H2O2) in var2. Results of NBT staining indicated that O2 is specially localized in chloroplasts of var2 green sectors in a light-dependent manner. No NBT staining was detected in wild type under identical conditions. Similarly, DAB staining indicated that H2O2 is detectable in var2 green sectors. High ROS in var2 therefore demonstrates that chloroplasts suffer from photooxidative stress without a functional PSII repair system. Where these ROS are generated within chloroplasts remains unclear. We raise one possibility: that PSII partial complexes in var2 contribute to ROS production because they potentially accumulate excitation energy that might not be used for water oxidation.A considerable amount of chloroplastic O2 in var2 might be converted rapidly to H2O2, which can then be exported to cytosol or to other organelles for detoxification. Simultaneously, H2O2 in cytosol might act as a signaling molecule and consequently affect responses to environmental stress.20 We raised one possibility: cpROS in var2 are influenced by an apoplastic oxidative burst that is mediated by plasma membrane-bound NADPH oxidases and which further activates downstream signaling cascades. For example, cpROS produced in guard cells of ozonetreated Arabidopsis were shown to activate certain NAPDH oxidases through the action of heterotrimeric G protein signaling. 21 Although Gα subunit activated by cpROS is primarily involved in oxidative bursts, Gβγ complexes appear to act on further production of cpROS.21 These observations led us to examine whether high cpROS in var2 are regulated by NADPH oxidases.Ten genes for NADPH oxidases (AtRbohA to AtRbohJ) are reported in Arabidopsis.22 Among these, AtRbohD and AtRbohF are expressed in mesophylls and are involved in cpROS signaling in guard cells.2224 To investigate the effect of these NADPH oxidases on cpROS accumulation in var2, we generated double mutants (var2/atrbohD and var2/atrbohF). The degrees of leaf variegation were similar in var2 and the double mutants. Single atrbohD and atrbohF mutants did not accumulate detectable ROS (not shown). We observed strong signals in var2/ atrbohD and var2/atrbohF double mutants both in NBT and DAB stains (Fig. 1). Overall, results showed no significant difference in the accumulation of cpROS between var2 and the double mutants. Furthermore, results of our microarray analyses demonstrated that expression levels of AtRbohD and AtrbohF are similar between var2 green sectors and wild type (unpublished data). Taken together, these results suggest that no apparent NADPH oxidase activities in plasma membranes contribute to cpROS detected in var2.Open in a separate windowFigure 1ROS accumulation in var2 and var2/atrboh mutants. (A) In situ detection of superoxide by staining with NBT (blue, bottom panels) in four-week-old wild type (Columbia), var2, var2/atrbohD, var2/atrbohF leaves. Bar = 1 mm. (B) In situ detection of hydrogen peroxide by DA B staining (dark brown, bottom panels) in four-week-old wild type (Columbia), var2, var2/rbohD, var2/rbohF leaves. Bar = 1 mm.Actually, ROS transiently generated by apoplastic NADPH oxidases are known to regulate a cell-death signaling pathway such as a hypersensitive response against pathogen infection.25 Based on results of our current genetic and microarray analyses, we reason that, in var2, constitutive cpROS do not activate the ROS-mediated signaling pathway. Nevertheless, involvement of cpROS in signaling cascades has been suggested in other experimental systems. The mutants described in this report might be valuable for use in future studies.  相似文献   

17.
High-light illumination of photosynthetic organisms stimulates the production of singlet oxygen by photosystem II (PSII) and causes photo-oxidative stress. In the PSII reaction centre, singlet oxygen is generated by the interaction of molecular oxygen with the excited triplet state of chlorophyll (Chl). The triplet Chl is formed via charge recombination of the light-induced charge pair. Changes in the midpoint potential of the primary electron donor P(680) of the primary acceptor pheophytin or of the quinone acceptor Q(A), modulate the pathway of charge recombination in PSII and influence the yield of singlet oxygen formation. The involvement of singlet oxygen in the process of photoinhibition is discussed. Singlet oxygen is efficiently quenched by beta-carotene, tocopherol or plastoquinone. If not quenched, it can trigger the up-regulation of genes, which are involved in the molecular defence response of photosynthetic organisms against photo-oxidative stress.  相似文献   

18.
Jerzy Kruk  Achim Trebst 《BBA》2008,1777(2):154-162
It has been found that in Chlamydomonas reinhardtii cells, under high-light stress, the level of reduced plastoquinone considerably increases while in the presence of pyrazolate, an inhibitor of plastoquinone and tocopherol biosynthesis, the content of reduced plastoquinone quickly decreases, similarly to α-tocopherol. In relation to chlorophyll, after 18 h of growth under low light with the inhibitor, the content of α-tocopherol was 22.2 mol/1000 mol chlorophyll and that of total plastoquinone (oxidized and reduced) was 19 mol/1000 mol chlorophyll, while after 2 h of high-light stress the corresponding amounts dropped to 6.4 and 6.2 mol/1000 mol chlorophyll for α-tocopherol and total plastoquinone, respectively. The degradation of both prenyllipids was partially reversed by diphenylamine, a singlet oxygen scavenger. It was concluded that plastoquinol, as well as α-tocopherol is decomposed under high-light stress as a result of a scavenging reaction of singlet oxygen generated in photosystem II. The levels of both α-tocopherol and of the reduced plastoquinone are not affected significantly in the absence of the inhibitor due to a high turnover rate of both prenyllipids, i.e., their degradation is compensated by fast biosynthesis. The calculated turnover rates under high-light conditions were twofold higher for total plastoquinone (0.23 nmol/h/ml of cell culture) than for α-tocopherol (0.11 nmol/h/ml). We have also found that the level of α-tocopherolquinone, an oxidation product of α-tocopherol, increases as the α-tocopherol is consumed. The same correlation was also observed for γ-tocopherol and its quinone form. Moreover, in the presence of pyrazolate under low-light growth conditions, the synthesis of plastoquinone-C, a hydroxylated plastoquinone derivative, was stimulated in contrast to plastoquinone, indicating for the first time a functional role for plastoquinone-C. The presented data also suggest that the two plastoquinones may have different biosynthetic pathways in C. reinhardtii.  相似文献   

19.
20.
Plastoquinol as a singlet oxygen scavenger in photosystem II   总被引:2,自引:0,他引:2  
It has been found that in Chlamydomonas reinhardtii cells, under high-light stress, the level of reduced plastoquinone considerably increases while in the presence of pyrazolate, an inhibitor of plastoquinone and tocopherol biosynthesis, the content of reduced plastoquinone quickly decreases, similarly to alpha-tocopherol. In relation to chlorophyll, after 18 h of growth under low light with the inhibitor, the content of alpha-tocopherol was 22.2 mol/1000 mol chlorophyll and that of total plastoquinone (oxidized and reduced) was 19 mol/1000 mol chlorophyll, while after 2 h of high-light stress the corresponding amounts dropped to 6.4 and 6.2 mol/1000 mol chlorophyll for alpha-tocopherol and total plastoquinone, respectively. The degradation of both prenyllipids was partially reversed by diphenylamine, a singlet oxygen scavenger. It was concluded that plastoquinol, as well as alpha-tocopherol is decomposed under high-light stress as a result of a scavenging reaction of singlet oxygen generated in photosystem II. The levels of both alpha-tocopherol and of the reduced plastoquinone are not affected significantly in the absence of the inhibitor due to a high turnover rate of both prenyllipids, i.e., their degradation is compensated by fast biosynthesis. The calculated turnover rates under high-light conditions were twofold higher for total plastoquinone (0.23 nmol/h/ml of cell culture) than for alpha-tocopherol (0.11 nmol/h/ml). We have also found that the level of alpha-tocopherolquinone, an oxidation product of alpha-tocopherol, increases as the alpha-tocopherol is consumed. The same correlation was also observed for gamma-tocopherol and its quinone form. Moreover, in the presence of pyrazolate under low-light growth conditions, the synthesis of plastoquinone-C, a hydroxylated plastoquinone derivative, was stimulated in contrast to plastoquinone, indicating for the first time a functional role for plastoquinone-C. The presented data also suggest that the two plastoquinones may have different biosynthetic pathways in C. reinhardtii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号