首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stages in the direct penetration of adenovirus through the cell membrane are illustrated. Phagocytosis with rupture of the vacuole and release of virus into the cytoplasm may also account for entry of some particles. Uncoating by digestion within phagosomes was not observed. Rather, alteration of capsid and core occurred to virions free in the cytoplasm. Nucleoprotein released from virus close to the nucleus was transported to the nuclear matrix by a unique mechanism. These events were not prevented by puromycin and hence were not dependent upon the synthesis of new enzymes. They were, however, energy-dependent.  相似文献   

2.
Assembly of gag-beta-galactosidase proteins into retrovirus particles.   总被引:33,自引:28,他引:5       下载免费PDF全文
T A Jones  G Blaug  M Hansen    E Barklis 《Journal of virology》1990,64(5):2265-2279
We studied the expression of beta-galactosidase (beta-gal) and 15 gag-beta-gal fusion proteins in the presence of Moloney murine leukemia virus wild-type core (gag) proteins. Analysis indicated that proteins retaining the amino-terminal portion of gag through the capsid protein-coding region were incorporated into retrovirus particles. Proteins which deleted portions of the capsid protein were assembled into virions at low efficiency, indicating the importance of capsid protein interactions in retrovirus assembly. Fusion proteins which retained the amino-terminal matrix protein of the gag polyprotein but which lacked the capsid protein were released efficiently from cells in a nonviral form. The nonviral form was characterized by a high sedimentation coefficient and a low density, suggestive of membrane vesicles. While beta-gal was present in the cytoplasm of expressing cells, all fusion constructs were associated with cellular membranes. gag-beta-gal proteins which were capable of release from cells demonstrated a two-component immunofluorescence staining pattern consisting of a circle of fluorescence around the nucleus and a punctate pattern of staining throughout the remainder of the cell. Interestingly, fusions within the matrix protein were trapped intracellularly and yielded distinct perinuclear staining patterns, possibly localizing to the rough endoplasmic reticulum and/or Golgi. This observation suggests that Moloney murine leukemia virus gag proteins travel to the plasma membrane by vesicular transport associated with the cytoplasmic face of intracellular vesicles.  相似文献   

3.
Like other enveloped viruses, vesicular stomatitis virus infects cells through endosomes. There, the viral envelope undergoes fusion with endosomal membranes, thereby releasing the nucleocapsid into the cytoplasm and allowing infection to proceed. Previously, we reported that the viral envelope fuses preferentially with the membrane of vesicles present within multivesicular endosomes. Then, these intra-endosomal vesicles (containing nucleocapsids) are transported to late endosomes, where back-fusion with the endosome limiting membrane delivers the nucleocapsid into the cytoplasm. In this study, we show that the tumor susceptibility gene 101 (Tsg101) subunit of the endosomal sorting complexes required for transport (ESCRT)-I complex, which mediates receptor sorting into multivesicular endosomes, is dispensable for viral envelope fusion with endosomal membranes and viral RNA transport to late endosomes but is necessary for infection. Our data indicate that Tsg101, in contrast to the ESCRT-0 component Hrs, plays a direct role in nucleocapsid release from within multivesicular endosomes to the cytoplasm, presumably by controlling the back-fusion process. We conclude that Tsg101, through selective interactions with its partners including Hrs and Alix, may link receptor sorting and lysosome targeting to the back-fusion process involved in viral capsid release.  相似文献   

4.
M Hansen  L Jelinek  S Whiting    E Barklis 《Journal of virology》1990,64(11):5306-5316
We have studied the process of Moloney murine leukemia virus (M-MuLV) assembly by characterization of core (gag) protein mutants and analysis of wild-type (wt) gag proteins produced by cells in the presence of the ionophore monensin. Our genetic studies involved examination of linker insertion mutants of a Gag-beta-galactosidase (Gag-beta-gal) fusion protein, GBG2051, which is incorporated into virus particles when expressed in the presence of wt viral proteins. Analysis indicated that the amino-terminal two-thirds of the gag matrix domain is essential for targeting of proteins to the plasma membrane; mutant proteins localized to the cytoplasm or were trapped on intracellular membranes. Mutations through most of the coding region of the gag capsid domain generated proteins which were released from cells in membrane vesicles but not in virions. In contrast, linker insertions into p12gag or carboxy-terminal portions of the matrix or capsid coding regions did not affect assembly of fusion proteins into virus particles. Monensin, which blocks vesicular transport, inhibited gag protein intracellular transport and release from cells. Our results suggest that a significant proportion of M-MuLV myristylated gag proteins travel via vesicles to the cell surface. Specific matrix protein polypeptide regions and myristic acid modification are both necessary for appropriate gag protein transport, while capsid protein interactions appear to mediate the final phase of virion formation.  相似文献   

5.
Meckes DG  Wills JW 《Journal of virology》2007,81(23):13028-13036
The UL16 tegument protein of herpes simplex virus is conserved throughout the herpesvirus family. It has been reported to be capsid associated and may be involved in budding by providing an interaction with the membrane-bound UL11 protein. UL16 has been shown to be present in all the major locations that capsids are found (i.e., the nucleus, cytoplasm, and virions), but whether it is actually capsid associated in each of these has not been reported. Therefore, capsids were purified from each compartment, and it was found that UL16 was present on cytoplasmic but not nuclear capsids. In extracellular virions, the majority of UL16 (87%) was once again not capsid associated, which suggests that the interaction is transient during egress. Because herpes simplex virus (HSV) buds into the acidic compartment of the trans-Golgi network (TGN), the effect of pH on the interaction was examined. The amount of capsid-associated UL16 dramatically increased when extracellular virions were exposed to mildly acidic medium (pH 5.0 to 5.5), and this association was fully reversible. After budding into the TGN, capsid and tegument proteins also encounter an oxidizing environment, which is conducive to disulfide bond formation. UL16 contains 20 cysteines, including five that are conserved within a putative zinc finger. Any free cysteines that are involved in the capsid interaction or release mechanism of UL16 would be expected to be modified by N-ethylmaleimide, and, consistent with this, the amount of capsid-associated UL16 dramatically increased when virions were incubated with this compound. Taken together, these data suggest a transient interaction between UL16 and capsids, possibly modified in the acidic compartment of secretory vesicles and requiring a release mechanism that involves cysteines.  相似文献   

6.
I Singh  A Helenius 《Journal of virology》1992,66(12):7049-7058
The mechanism by which Semliki Forest virus nucleocapsids are uncoated was analyzed in living cells and in vitro. In BHK-21 cells, uncoating occurred with virtually complete efficiency within 1 to 2 min after the nucleocapsids entered the cytoplasm. It was inhibited by monensin, which blocks nucleocapsid penetration from endosomes. As previously shown for Sindbis virus (G. Wengler and G. Wengler, Virology 134:435-442, 1984), the capsid proteins from incoming nucleocapsids became associated with ribosomes. The ribosome-bound capsid proteins were distributed throughout the cytoplasm, while the viral RNA remained associated with vacuolar membranes. Using purified nucleocapsids and ribosomes in vitro, we established that ribosomes alone were sufficient for uncoating. Their role was to release the capsid proteins from nucleocapsids and irreversibly sequester them, in a process independent of energy and translation. The process was stoichiometric rather than catalytic, with a maximum of three to six capsid proteins bound to each ribosome. More than 80% of the capsid proteins could thus be removed from the viral RNA, resulting in the formation of nucleocapsid remnants whose sedimentation coefficients progressively decreased from 140S to 80S as uncoating proceeded.  相似文献   

7.
Functional aspects of the capsid structure of Mengo virus   总被引:1,自引:0,他引:1  
The three-dimensional structure of the Mengo virus capsid has been determined at a resolution of 3.0 A. This achievement is discussed in an historical context, and the general features of picornavirus capsid design are presented. The dynamic functional aspects of the Mengo virus capsid--namely its ability to interact with specific receptors on host cells, to dissociate and release the viral genomic RNA into the cellular cytoplasm, to assemble with progeny RNA molecules and form new virions, and to alter its external surface in order to evade neutralization by circulating antibodies--are discussed. Comparisons with other picornaviruses whose capsid structures have also been elucidated (poliovirus serotype 1 and 3, human rhinovirus types 14 and 1A, and foot-and-mouth disease virus type O) illustrate both the similarities and the distinctive features of capsid design found within this family of mammalian viruses.  相似文献   

8.
9.
Cells of differing culture types were inoculated with poliovirus at 37 C, sampled at intervals during the replicative cycle, and examined in thin sections by electron microscopy. The earliest samples, taken at 2 and 5 min postinoculation, showed virus particles adjacent to the exterior of the plasma membrane and others that had apparently penetrated it directly; later samples showed fewer such particles or none. Particles lying in the peripheral cytoplasm frequently appeared swollen and distorted in shape. No sign of virus entry by a pinocytotic process was found at any time. At 3 hr, and subsequently during the replication cycle, particles of progeny virus appeared in the cytoplasm. They were found free in the cytoplasmic matrix, aligned along the elements of filamentous complexes, and enclosed within vesicles. Some of the vesicles were found to be open to the extracellular space, indicating a likely mechanism of virus release.  相似文献   

10.
Mason-Pfizer monkey virus (M-PMV) capsids that have assembled in the cytoplasm must be transported to and associate with the plasma membrane prior to being enveloped by a lipid bilayer during viral release. Structural studies have identified a positive-charge density on the membrane-proximal surface of the matrix (MA) protein component of the Gag polyprotein. To investigate if basic amino acids in MA play a role in intracellular transport and capsid-membrane interactions, mutants were constructed in which lysine and arginine residues (R10, K16, K20, R22, K25, K27, K33, and K39) potentially exposed on the capsid surface were replaced singly and in pairs by alanine. A majority of the charge substitution mutants were released less efficiently than the wild type. Electron microscopy of mutant Gag-expressing cells revealed four distinct phenotypes: K16A and K20A immature capsids accumulated on and budded into intracellular vesicles; R10A, K27A, and R22A capsid transport was arrested at the cellular cortical actin network, while K25A immature capsids were dispersed throughout the cytoplasm and appeared to be defective at an earlier stage of intracellular transport; and the remaining mutant (K33A and K39A) capsids accumulated at the inner surface of the plasma membrane. All mutants that released virions exhibited near-wild-type infectivity in a single-round assay. Thus, basic amino acids in the M-PMV MA define both cellular location and efficiency of virus release.  相似文献   

11.
The structure of Red clover necrotic mosaic virus (RCNMV), an icosahedral plant virus, was resolved to 8.5 A by cryoelectron microscopy. The virion capsid has prominent surface protrusions and subunits with a clearly defined shell and protruding domains. The structures of both the individual capsid protein (CP) subunits and the entire virion capsid are consistent with other species in the Tombusviridae family. Within the RCNMV capsid, there is a clearly defined inner cage formed by complexes of genomic RNA and the amino termini of CP subunits. An RCNMV virion has approximately 390 +/- 30 Ca2+ ions bound to the capsid and 420 +/- 25 Mg2+ ions thought to be in the interior of the capsid. Depletion of both Ca2+ and Mg2+ ions from RCNMV leads to significant structural changes, including (i) formation of 11- to 13-A-diameter channels that extend through the capsid and (ii) significant reorganization within the interior of the capsid. Genomic RNA within native capsids containing both Ca2+ and Mg2+ ions is extremely resistant to nucleases, but depletion of both of these cations results in nuclease sensitivity, as measured by a significant reduction in RCNMV infectivity. These results indicate that divalent cations play a central role in capsid dynamics and suggest a mechanism for the release of viral RNA in low-divalent-cation environments such as those found within the cytoplasm of a cell.  相似文献   

12.
The functional roles of the matrix (MA) protein in the assembly and maturation of retroviruses was investigated with a series of MA mutants of Mason-Pfizer monkey virus (M-PMV), an immunosuppressive type D retrovirus. The mutants we describe here were generated by the introduction of random point mutations within the MA coding domain by use of sodium bisulphite mutagenesis. Studies of these mutants show that the MA protein plays a critical role in three different, sequential events in the final stages of type D retrovirus replication: (i) folding of the gag gene-encoded precursor poly-proteins into a stable conformation for capsid assembly in the cytoplasm of infected cells; (ii) capsid transport from the site of assembly to the plasma membrane; and (iii) capsid association with, and extrusion of the membrane during virus budding. The mutants described here interfere with or block M-PMV replication at each of these stages. Large numbers of preassembled capsids accumulate within the cytoplasm of transport-defective mutant-infected cells, suggesting that transport of M-PMV capsids to the plasma membrane is an active and specific intracellular targeting process. The initial association of the capsid with the membrane may depend upon this intracytoplasmic transport process but additional protein-lipid interactions that involve the MA protein are required for membrane extrusion around the preformed capsids; in cells infected with the budding-defective mutant, assembled capsids accumulate under the inner surface of the cell plasma membrane, and are retarded in their release from the infected cell.  相似文献   

13.
To begin a successful infection, viruses must first cross the host cell plasma membrane, either by direct fusion with the membrane or by receptor-mediated endocytosis. After release into the cytoplasm those viruses that replicate in the nucleus must target their genome to that location. We examined the role of cytoplasmic transport of the canine parvovirus (CPV) capsid in productive infection by microinjecting two antibodies that recognize the intact CPV capsid into the cytoplasm of cells and also by using intracellular expression of variable domains of a neutralizing antibody fused to green fluorescence protein. The two antibodies tested and the expressed scFv all efficiently blocked virus infection, probably by binding to virus particles while they were in the cytoplasm and before entering the nucleus. The injected antibodies were able to block most infections even when injected 8 h after virus inoculation. In control studies, microinjected capsid antibodies did not interfere with CPV replication when they were coinjected with an infectious plasmid clone of CPV. Cytoplasmically injected full and empty capsids were able to move through the cytosol towards the nuclear membrane in a process that could be blocked by nocodazole treatment of the cells. Nuclear transport of the capsids was slow, with significant amounts being found in the nucleus only 3 to 6 h after injection.  相似文献   

14.
Sindbis virus is an enveloped positive-sense RNA virus in the alphavirus genus. The nucleocapsid core contains the genomic RNA surrounded by 240 copies of a single capsid protein. The capsid protein is multifunctional, and its roles include acting as a protease, controlling the specificity of RNA that is encapsidated into nucleocapsid cores, and interacting with viral glycoproteins to promote the budding of mature virus and the release of the genomic RNA into the newly infected cell. The region comprising amino acids 81 to 113 was previously implicated in two processes, the encapsidation of the viral genomic RNA and the stable accumulation of nucleocapsid cores in the cytoplasm of infected cells. In the present study, specific amino acids within this region responsible for the encapsidation of the genomic RNA have been identified. The region that is responsible for nucleocapsid core accumulation has considerable overlap with the region that controls encapsidation specificity.  相似文献   

15.
Human cytomegalovirus (HCMV) replicates in the nuclei of infected cells. Successful replication therefore depends on particle movements between the cell cortex and nucleus during entry and egress. To visualize HCMV particles in living cells, we have generated a recombinant HCMV expressing enhanced green fluorescent protein (EGFP) fused to the C terminus of the capsid-associated tegument protein pUL32 (pp150). The resulting UL32-EGFP-HCMV was analyzed by immunofluorescence, electron microscopy, immunoblotting, confocal microscopy, and time-lapse microscopy to evaluate the growth properties of this virus and the dynamics of particle movements. UL32-EGFP-HCMV replicated similarly to wild-type virus in fibroblast cultures. Green fluorescent virus particles were released from infected cells. The fluorescence stayed associated with particles during viral entry, and fluorescent progeny particles appeared in the nucleus at 44 h after infection. Surprisingly, strict colocalization of pUL32 and the major capsid protein pUL86 within nuclear inclusions indicated that incorporation of pUL32 into nascent HCMV particles occurred simultaneously with or immediately after assembly of the capsid. A slow transport of nuclear particles towards the nuclear margin was demonstrated. Within the cytoplasm, most particles performed irregular short-distance movements, while a smaller fraction of particles performed centripetal and centrifugal long-distance movements. Although numerous particles accumulated in the cytoplasm, release of particles from infected cells was a rare event, consistent with a release rate of about 1 infectious unit per h per cell in HCMV-infected fibroblasts as calculated from single-step growth curves. UL32-EGFP-HCMV will be useful for further investigations into the entry, maturation, and release of this virus.  相似文献   

16.
Human immunodeficiency virus (HIV) Gag precursor protein is cleaved by viral protease (PR) within GagPol precursor protein to produce the mature matrix (MA), capsid, nucleocapsid, and p6 domains. This processing is termed maturation and required for HIV infectivity. In order to understand the intracellular sites and mechanisms of HIV maturation, HIV molecular clones in which Gag and GagPol were tagged with FLAG and hemagglutinin epitope sequences at the C-termini, respectively were made. When coexpressed, both Gag and GagPol were incorporated into virus particles. Temporal analysis by confocal microscopy showed that Gag and GagPol were relocated from the cytoplasm to the plasma membrane. Mature cleaved MA was observed only at sites on the plasma membrane where both Gag and GagPol had accumulated, indicating that Gag processing occurs during Gag/GagPol assembly at the plasma membrane, but not during membrane trafficking. Fluorescence resonance energy transfer imaging suggested that these were the primary sites of GagPol dimerization. In contrast, with overexpression of GagPol alone an absence of particle release was observed, and this was associated with diffuse distribution of mature cleaved MA throughout the cytoplasm. Alteration of the Gag-to-GagPol ratio similarly impaired virus particle release with aberrant distributions of mature MA in the cytoplasm. However, when PR was inactive, it seemed that the Gag-to-GagPol ratio was not critical for virus particle release but virus particles encasing unusually large numbers of GagPol molecules were produced, these particles displaying aberrant virion morphology. Taken together, it was concluded that the Gag-to-GagPol ratio has significant impacts on either intracellular distributions of mature cleaved MA or the morphology of virus particles produced.  相似文献   

17.
Some isolates of Trichomonas vaginalis, the number one, non-viral sexually transmitted disease agent, are infected with one or several distinct double stranded (ds)-RNA virus. Immune rabbit anti-capsid serum (IRS) reacted with the capsid protein of purified dsRNA virus of a subset of the virus-infected T. vaginalis isolates. A monoclonal antibody (mAb) that recognized the capsid protein reactive with the IRS was generated. Analysis of the virus capsid protein of virus-infected isolates by probing nitrocellulose blots with mAb revealed diversity among immunoreactivity and in the size of the reactive capsid protein. Despite difficulties in visualizing virus within parasites by cross-section electron microscopy, gold-conjugated mAb readily labeled the cytoplasm of virus-positive trichomonads. Finally and importantly, isolates infecting patients attending an STD clinic, 75% of which were virus-positive isolates, had capsid protein of the same size detected by mAb present in all dsRNA viruses.  相似文献   

18.
Silva MC  Yu QC  Enquist L  Shenk T 《Journal of virology》2003,77(19):10594-10605
The human cytomegalovirus UL99-encoded pp28 is a myristylated phosphoprotein that is a constituent of the virion. The pp28 protein is positioned within the tegument of the virus particle, a protein structure that resides between the capsid and envelope. In the infected cell, pp28 is found in a cytoplasmic compartment derived from the Golgi apparatus, where the virus buds into vesicles to acquire its final membrane. We have constructed two mutants of human cytomegalovirus that fail to produce the pp28 protein, a substitution mutant (BADsubUL99) and a point mutant (BADpmUL99), and we have propagated them by complementation in pp28-expressing fibroblasts. Both mutant viruses are profoundly defective for growth in normal fibroblasts; no infectious virus could be detected after infection. Whereas normal levels of viral DNA and late proteins were observed in mutant virus-infected cells, large numbers of tegument-associated capsids accumulated in the cytoplasm that failed to acquire an envelope. We conclude that pp28 is required for the final envelopment of the human cytomegalovirus virion in the cytoplasm.  相似文献   

19.
Assembly and disassembly of viral capsids are essential steps in the viral life cycle. Studies on their kinetics are mostly performed in vitro, allowing application of biochemical, biophysical and visualizing techniques. In vivo kinetics are poorly understood and the transferability of the in vitro models to the cellular environment remains speculative. We analyzed capsid disassembly of the hepatitis B virus in digitonin-permeabilized cells which support nuclear capsid entry and subsequent genome release. Using gradient centrifugation, size exclusion chromatography and immune fluorescence microscopy of digitonin-permeabilized cells, we showed that capsids open and close reversibly. In the absence of RNA, capsid re-assembly slows down; the capsids remain disintegrated and enter the nucleus as protein dimers or irregular polymers. Upon the presence of cellular RNA, capsids re-assemble in the nucleus. We conclude that reversible genome release from hepatitis B virus capsids is a unique strategy different from that of other viruses, which employs irreversible capsid destruction for genome release. The results allowed us to propose a model of HBV genome release in which the unique environment of the nuclear pore favors HBV capsid disassembly reaction, while both cytoplasm and nucleus favor capsid assembly.  相似文献   

20.
Retroviral capsid assembly can occur by either of two distinct morphogenic processes: in type C viruses, the capsid assembles and buds at the plasma membrane, while in type B and D viruses, the capsid assembles within the cytoplasm and is then transported to the plasma membrane for budding. We have previously reported that a single-amino-acid substitution of a tryptophan for an arginine in the matrix protein (MA) of Mason-Pfizer monkey virus (MPMV) converts its capsid assembly from that of a type D retrovirus to that of the type C viruses (S. S. Rhee and E. Hunter, Cell 63:77-86, 1990). Here we identify a region of 18 amino acids within the MA of MPMV that is responsible for type D-specific morphogenesis. Insertion of these 18 amino acids into the MA of type C Moloney murine leukemia virus causes it to assemble an immature capsid in the cytoplasm. Furthermore, fusion of the MPMV MA to the green fluorescent protein resulted in altered intracellular targeting and a punctate accumulation of the fusion protein in the cytoplasm. These 18 amino acids, which are necessary and sufficient to target retroviral Gag polyproteins to defined sites in the cytoplasm, appear to define a novel mammalian cytoplasmic targeting/retention signal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号