首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to analyze the possible relationship between metabolic rate and oxidative stress, OF1 female mice were rendered hyper- or hypothyroid for 4–5 weeks by administration of 0.0012%l-thyroxine (T4) or 0.05% 6-n-propyl-2-thiouracil (PTU), respectively, in their drinking water. Treatment with T4 resulted in increased basal metabolic rate measured by oxygen consumption and liver cytochrome oxidase activity without altering the glutathione redox system. Endogenous lipid peroxidation, sensitivity to lipid peroxidation and fatty acid unsaturation were decreased in the hyperthyroid group. Hypothyroidism also decreased phosphatidylcholine and cardiolipin fatty acid unsaturation but not in total lipids, and thus lipid peroxidation was not altered. Cardiolipin, a mainly mitochondrial lipid, was the most profoundly altered fraction by both hyper- and hypothyroidism. It is suggested that the lipid changes observed in hyperthyroid animals can protect them against an increased oxidative attack to tissue lipids due to their increased mitochondrial activities.  相似文献   

2.
d-Penicillamine, a trifunctional aminoacid known for its ability to form metal complexes and for being a radical scavenger, has been investigated in vitro and in vivo in the rat brain cortex. At 50 M the drug facilitate lipid hydroperoxides and TBARS formation in brain cortex homogenates, while at higher concentrations a clear inhibition of the lipid peroxidative process was observed. The activity of thed-penicillamine (25 and 50 mg/Kg i.p) was evaluated in vivo after a 7-day treatment in rats in whose brain cortex a slow process of lipid peroxidation was induced by iron-saccharate injection. Lipid hydroperoxides, lipid soluble fluorescent compounds and the iron content of both iron-injected and contralateral hemicortices showed a significant decrease in comparison to rats untreated withd-penicillamine. The higher dose also induced in normal rats a significant decrease in basal TBARS and iron content of the brain cortex. In the iron-injected cortex the observed Fe2+/Fe3+ ratio was significantly different from that of normal rats. On the contrary ratios obtained formd-penicillamine treated animals were higher in comparison to both normal and iron-injected animals. These results suggest thatd-penicillamine, acting as a reducing agent, inhibits the iron redox system and, as a chelating agents, can remove metal from action sites where lipid peroxidation may occur.  相似文献   

3.
Crude striatum synaptosomes (P2 fraction) from Fisher 344 female rats were incubated in the presence of ADP-chelated Fe3+ (0.5–50 M) and ascorbate (250 M). Intrasynaptosomal conversion of tyrosine to dopamine (DA) was measured by14CO2 evolution froml-[1-14C]tyrosine in the absence of added cofactors and DOPA decarboxylase. Malondialdehyde (MDA) was measured as an index of lipid peroxidation. A concentration-dependent inhibition of DA synthesis by ADP-Fe3+/ascorbate was found with 50% inhibition occurring at 2.5 M Fe3+ concentration. This was accompanied by marked accumulation of MDA. Ascorbate or ADP alone did not affect DA synthesis and ADP-Fe3+ in the absence of exogenous ascorbate was effective only above 25 M. Exogenously added MDA did not inhibit DA synthesis. Purified synaptosomes were isolated from peroxidized and control P2 fractions using sucrose gradients. Membrane microviscosity of the purifled synaptosomes was assessed by nitroxyl spin labels of stearic acid using electron paramagetic resonance techniques. There was a significant increase in membrane microviscosity as a result of ADP-Fe3+/ascorbate induced peroxidation. Maleimide nitroxide spin-label binding to protein sulhydryls was significantly modified by peroxidation of striatum synaptosomes. The weakly immobilized component of the sulhydryl spin-label (w) was drastically decreased whereas the strongly immobilized component (s) was modified less, thus leading to a marked reduction of w/s ratio. The exposure of striatum synaptosomes to the peroxidizing system resulted in a significant increase in total iron and in a 25% decrease in protein sulhydryl content. It is concluded that ironinduced damage to the DA synthetic system is mediated by alterations of the structural properties of nerve ending membranes.  相似文献   

4.
The effects of the Parkinsonism induced by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) were evaluated in four different monkey brain areas (frontal and occipital cortex, caudate putamen, substantia nigra). The basal and stimulated lipid peroxidation and the reduced glutathione (GSH) concentration were evaluated in three groups of maleMacaca fascicularis monkeys (6 animals/group): (a) controls; (b) MPTP-treated animals; (c) animals treated with MPTP and -dihydroergocryptine (DEK; ergot alkaloid characterized by a dopaminergic agonist action). In MPTP-treated animals the GSH concentration was unchanged or decreased in a non-significant way in the frontal and occipital cortex, and in substantia nigra. The basal thiobabituric acid reactive substance (TBARS) concentrations were significantly higher in the caudate putamen and substantia nigra of MPTP-treated animals. In the MPTP-treated monkeys the DEK administration induced a restoration of basal TBARS values to nearly normal ones. By incubating tissue from different brain areas with FeSO4 plus ascorbic acid, the stimulation of lipid peroxidation decreased the TBARS production in the substantia nigra of the MPTP-treated animals. These results, taken together, may indicate that an increased lipid peroxidation could possibly play a role in producing the Parkinson-line syndrome by MPTP and that a free radical excess could be responsible for the degeneration of the substantia nigra. The treatment with an ergot alkaloid (i.e., -dihydroergocryptine) partially antagonizes the MPTP-induced increase in basal TBARS concentration in caudate putamen.  相似文献   

5.
Chronic treatment of rats with adriamycin has been shown to affect myocardial lysosomes as well as enzyme activities in the serum fraction. In this study, we examined in vitro effects of adriamycin (10–6 to 10–3 M) on the lysosomal fraction isolated from rat ventricular tissue. Morphological examination revealed that the isolated fraction was mainly vesicular in nature. Higher concentrations of adriamycin (10–3 M) caused a significant loss of acid phosphatase and N-acetyl-B-d-glucosaminidase activity from the lyosomal vesicles. The enzyme leakage was not accompanied by any intravesicular localization of lanthanum, an extravesicular electron dense tracer. Preincubation of lysosomal vesicles with 10 g/ml superoxide dismutase did not protect against adriamycin-induced loss of lysosomal enzymes. The study shows that adriamycin induces loss of lysosomal enzymes in vitro and the superoxide radical may not be involved in this change.  相似文献   

6.
The susceptibility of liver microsomes to lipid peroxidation was evaluated in seven species: rat, rabbit, trout, mouse, pig, cow, and horse. Lipid peroxidation was measured as thiobarbituric acid reactive substances formed in the presence of either FeCl3-ADP/ascorbate or FeCl2/H2O2 initiating systems. For rat, rabbit, and trout microsomes, the order of susceptibility to peroxidation was rat > rabbit >> trout. The lack of peroxidation in trout microsomes could be explained by high microsomal vitamin E levels. Membrane fatty acid levels differed between species. Docosahexaenoic acid predominated in the trout, arachidonic acid in the rat, and linoleic acid in the rabbit. The contribution of individual fatty acids to lipid peroxidation reflected the degree of unsaturation with docosahexaenoic > arachidonic >>> linoleic. For all species except trout, the predicted susceptibility to peroxidation, based on the response of individual fatty acids, agreed well with directly measured microsomal peroxidation. With the exception of the trout, vitamin E content ranged from 0.083–0.311 nmol/mg microsomal protein between species, and low levels did not influence susceptibility to peroxidation. Trout microsomes peroxidized only after vitamin E depletion by prolonged incubation. The data indicate that below a vitamin E threshold, species differences in membrane susceptibility to peroxidation can be reasonably predicted based only on content of individual peroxidizable fatty acids.  相似文献   

7.
Summary The effect of oxygen free radicals, generated by xanthine and xanthine oxidase, was studied on the release of lysosomal hydrolase from rat liver lysosomes in vitro. A lysosomal enriched subcellular fraction was prepared, using differential centrifugation technique, from the homogenate of rat liver. The biochemical purity of the lysosomal fraction was established by using the markers of different cellular organelles. Oxygen free radicals were generated in vitro by the addition of xanthine and xanthine oxidase. The release of lysosomal hydrolase (-glucuronidase) from the lysosomal fraction was measured. There was a 3 to 4 fold increase in the release of -glucuronidase activity in the presence of xanthine and xanthine oxidase when compared to that in the absence of xanthine and xanthine oxidase. In the presence of superoxide dismutase (SOD), a scavenger of oxygen free radicals, the xanthine and xanthine oxidase system was unable to induce the release of -glucuronidase activity from the lysosomes. Sonication (2 bursts for 15 sec each) and Lubrol (2 mg/10 mg lysosomal protein) treatment, which are known to cause membrane disruption, also induced the release of -glucuronidase from lysosomal fraction. This release of -glucuronidase by sonication and lubrol treatment was not prevented by SOD. These data indicate that lysosomal disruption is a consequence of oxygen free radicals, generated by xanthine and xanthine oxidase.Abbreviations HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - EGTA Ethylene Glycol Bis-(-aminoethyl ether)N,N,-N,N-tetracetic acid - Tris Tris (hydroxymethyl) aminomethane - SOD Superoxide Dismutase  相似文献   

8.
Summary We have used highly purified lysosomes to investigate three models of hydrolytic injury by lysosomal phospholipases. Lysosomes, enriched up to 70-fold in marker enzyme activities, can be isolated from homogenized hepatic tissue by differential centrifugation and subsequent free flow electrophoresis. These organelles remain latent and can also be utilized to obtain lysosol, the soluble fraction of the lysosomes tissue containing acid active phospholipases. The first model investigated the effect of lysosol on non-lysosomal membranes. When this soluble fraction was incubated with plasmalemma (sarcolemma) from cardiac cells, selective hydrolysis of the phospholipids was observed: phosphatidylcholine, phosphatidylethanolamine, and sphingomyelin were the preferred substrates, and only lysophosphatidylcholine and lysophosphatidylethanolamine accumulated in significant amounts. Hydrolysis of sphingomyelin was enhanced significantly by Triton-X-100. In the second model, when intact lysosomes were incubated at acid pH, hydrolysis of phospholipids by the endogenous lipases was observed. Once again this lipolysis was specific for phosphatidylcholine, phosphatidylethanolamine, and sphingomyelin: significant amounts of lysophospholipids also accumulated in this model. Concurrent with these lipid changes, an increase in lysosomal permeability also occurred and pH 5.0 was optimal for this lipolytic activity. However, no phospholipase activity was detected when lysosomes were incubated at pH ranges found in acidotic tissue (pH 6.0 or higher). In the third model, lysosomes were incubated at pH 6.0 in the presence of exogenously generated free radicals (dihydroxyfumarate-FeADP). A rapid loss of membrane phospholipids was observed, and most of this loss could be contributed to peroxidation of membrane phospholipids; the production of malondialdehyde preceded loss of N-acetylglucosaminidase from the lysosome. However, significant accumulation of lysophospholipids, from 2% at control time to 6.6 and 8.7% at 10 and 20 minutes, suggested that lysosomal phospholipase were hydrolyzing lysosomal phospholipids. Thus, we hypothesize that this free radical-induced lipolysis is a result of peroxidized phospholipids serving as preferred substrate for phospholipases at pH 6.0.  相似文献   

9.
Summary The pattern of fatty acid release from rat synaptic membranes in the presence of phospholipase A2 (Vipera russelli) was compared to that from liposomes comprised of phospholipids. Phospholipase A2 more readily attacked myelin and synaptic membranes than liposomes prepared from total phospholipids derived from myelin. Although hydrolysis of liposomal phospholipids occurred in the absence of added calcium, the presence of 2mm CaCl2 or 2% bovine serum albumin significantly enhanced the phospholipase attack of liposomes, but not synaptic membranes or myelin. Phospholipase exhibited a marked preference for phospholipids containing docosahexaenoic acid (226) in the synaptic membranes, while with liposomes the pattern of released fatty acid reflected the fatty acid composition in the two-position of the phospholipids. Although either calcium or albumin markedly increased the phospholipase hydrolysis of liposomes, neither affected the hydrolysis of synaptic membranes or the pattern of fatty acid release from liposomes. It was concluded that the nonlipid constituents, particularly the proteins, of biomembranes were responsible for the organization of the phospholipids and accounted for the observed differences between liposomes and synaptic membranes with respect to enzymic accessibility.  相似文献   

10.
Although Gaucher's disease occurs in three distinct forms with greatly varying degrees of severity, there is no correlation between the clinical course of the disease and levels of residual glucocerebrosidase, the fundamental enzymatic deficiency. In an effort to study secondary changes which might contribute to the pathology of Gaucher's disease, homogenates of spleen, liver, and brain tissue, as well as serum from patients with Gaucher's disease were analyzed for their content of a number of lysosomal enzymes. Extracts of 8 Gaucher spleens contained 3- to 4-fold increases in acid phosphatase activity as well as 5-to 10-fold increases in galactocerebrosidase5 activity. The marked elevation in galactocerebrosidase activity in Gaucher spleen was documented using various [3H]galactose labeled galactocerebrosides as substrates and with [3H]galactose labeled lactocerebroside under the “lactosylceramidase I”5 assay conditions established by Suzuki (Tanaka, H., and Suzuki, K., 1975, J. Biol. Chem., 250, 2324–2332) that measure galactocerebrosidase activity specifically in the presence of Gmi-ganglioside β-galactosidase. Acid phosphatase determinations using extracts of liver from a case of infantile, neuropathic Gaucher's disease revealed a 2-fold elevation in this activity, whereas brain acid phosphatase activity in this case was similar to that of control tissue. Separation of hexosaminidase A and B activities on DEAE-Sephadex columns indicated increases in both forms of the enzyme in Gaucher tissue with the major increase occurring in the hexosaminidase B component. Glucuronidase and nonspecific esterase were observed to be elevated approximately 2-fold. However, not all lysosomal enzyme activities were increased. Levels of splenic arylsulfatase A and B, α-arabinosidase, sphingomyelinase, α-mannosidase, and Gmi-ganglioside β-galactosidase activities in Gaucher spleen were unremarkable. Gmi-ganglioside β-galactosidase was measured using 4-methylumbelliferyl-β-d-galactopyranoside and [3H]galactose labeled lactocerebroside under the specific assay conditions described by Suzuki for the determination of “lactosylceramidase II” activity. Although levels of arylsulfatase A and B in Gaucher spleen were similar to those of control tissue, arylsulfatase A activity was markedly reduced (20% of control) in homogenates of brain from the case of infantile (type 2) Gaucher's disease. The metabolic and pathologic consequences of these changes in lysosomal enzymes in Gaucher's disease are discussed.  相似文献   

11.
The fatty acid compositions of the lipids and the lipid peroxide concentrations and rates of lipid peroxidation were determined in suspensions of liver endoplasmic reticulum isolated from rats fed on synthetic diets in which the fatty acid composition had been varied but the remaining constituents (protein, carbohydrate, vitamins and minerals) kept constant. Stock diet and synthetic diets containing no fat, 10% corn oil, herring oil, coconut oil or lard were used. The fatty acid composition of the liver endoplasmic reticulum lipid was markedly dependent on the fatty acid composition of the dietary lipid. Feeding a herring-oil diet caused incorporation of 8.7% eicosapentaenoic acid (C20:5) and 17% docosahexaenoic acid (C22:6), but only 5.1% linoleic acid (C18:2) and 6.4% arachidonic acid (C20:4), feeding a corn-oil diet caused incorporation of 25.1% C18:2, 17.8% C20:4 and 2.5% C22:6 fatty acids, and feeding a lard diet caused incorporation of 10.3% C18:2, 13.5% C20:4 and 4.3% C22:6 fatty acids into the liver endoplasmic-reticulum lipids. Phenobarbitone injection (100mg/kg) decreased the incorporation of C20:4 and C22:6 fatty acids into the liver endoplasmic reticulum of rats fed on a lard, corn-oil or herring-oil diet. Microsomal lipid peroxide concentrations and rates of peroxidation in the presence of ascorbate depended on the nature and quantity of the polyunsaturated fatty acids in the diet. The lipid peroxide content was 1.82±0.30nmol of malonaldehyde/mg of protein and the rate of peroxidation was 0.60±0.08nmol of malonaldehyde/min per mg of protein after feeding a fat-free diet, and the values were increased to 20.80nmol of malonaldehyde/mg of protein and 3.73nmol of malonaldehyde/min per mg of protein after feeding a 10% herring-oil diet in which polyunsaturated fatty acids formed 24% of the total fatty acids. Addition of α-tocopherol to the diets (120mg/kg of diet) caused a very large decrease in the lipid peroxide concentration and rate of lipid peroxidation in the endoplasmic reticulum, but addition of the synthetic anti-oxidant 2,6-di-t-butyl-4-methylphenol to the diet (100mg/kg of diet) was ineffective. Treatment of the animals with phenobarbitone (1mg/ml of drinking water) caused a sharp fall in the rate of lipid peroxidation. It is concluded that the polyunsaturated fatty acid composition of the diet regulates the fatty acid composition of the liver endoplasmic reticulum, and this in turn is an important factor controlling the rate and extent of lipid peroxidation in vitro and possibly in vivo.  相似文献   

12.
Brain ischemia was produced in gerbils (Meriones unguiculatus) by the bilateral ligation of the carotid arteries. Definite changes in the energy status of brain demonstrated that carotid occlusion was effective. Five minutes before ligation, an intraventricular injection of either saline or cytidine diphosphate choline (CDP-choline, 0.6 mol/brain, 3l) was given to groups of animals. Control animals, with and without CDP-choline, together with the ischemic groups, were decapitated directly into liquid nitrogen; 10 min after arterial ligation. Brain free fatty acids, neutral lipids and phospholipids, which were labeled in vivo by the intraventricular injection of [1-14C] arachidonic acid (0.4–0.6 Ci, 6–9 nmol) 2 hr prior to ligation, were extracted, purified, and separated by thin-layer chromatographic procedures. The CDP-choline treatment noticeably corrected the increase of total and individual fatty acids due to ischemia and the increase of their radioactivity content. The changes in neutral lipids, particularly in the diacyl glycerol fraction, were also corrected by the injection of the nucleotide. CDP-choline partially reversed the decrease of brain phosphatidylcholine and of its labeling, which was due to ischemia. All the data indicate that the prior injection of CDP-choline stimulates the choline phosphotransferase reaction of brain towards synthesis of phosphatidylcholine and prevents the release of free fatty acids, particularly of arachidonic acid, associated with ischemia.  相似文献   

13.
Paraquat and iron-dependent lipid peroxidation   总被引:3,自引:0,他引:3  
The aim of this work was to study the effect of paraquat (P2+) on NADPH iron-dependent lipid peroxidation (basal peroxidation) either in the presence of NADPH or in the presence of NADPH-generating systems. When NADPH is present, P2+ potentiates NADPH iron-dependent lipid peroxidation, but use of NADPH-generating systems cancels this effect. This may be attributed to certain components in NADPH-generating systems such as glucose-6-phosphate and sodium isocitrate, which act as iron chelators. The binding of iron by these molecules facilitates its reduction and enhances its reactivity toward dioxygen molecules, leading to the formation of reactive species capable of initiating lipid peroxidation, such as Fe3+-O 2 . Under these conditions of rapid basal peroxidation, any additional reduction of iron(III) by a reduced form of P2+ (P+.) has no apparent effect on the peroxidation itself, probably because the initial reaction between iron(II) and O2 followed by initiation of the peroxidation are both rate-limiting steps in the process. Consequently, any alteration of the composition of the reacting mixture (e.g., buffers or the generating system) must be taken into consideration because the formation of new iron chelates can change the rate of basal peroxidation and will modify the effect of redoxcycling molecules.  相似文献   

14.
Cerebral insult is associated with a rapid increase in free fatty acids (FFA) and arachidonic acid release has been linked to the increase in eicosanoid biosynthesis. In transient focal cerebral ischemia induced by middle cerebral artery (MCA) occlusion, there is an inverse relationship between the increase in FFA and the decrease in ATP, both during the ischemia period and at later time periods after reperfusion. In this study, the focal cerebral ischemia model was used to examine incorporation of [14C]arachidonic acid into the glycerolipids in rat MCA cortex at different reperfusion times after a 60 min ischemia. The label was injected intracerebrally into left and right MCA cortex 1 hr prior to decapitation. Labeled arachidonic acid was incorporated into phosphatidylcholine, phosphatidylethanolamine and neutral glycerides. With increasing time (4–16 hr) after a 60 min ischemia, an inhibition of labeled arachidonate uptake could be found in the right ischemic MCA cortex, whereas the distribution of radioactivity among the major phospholipids was not altered. When compared to labeled PC, there was a 3–4 fold increase in incorporation of label into phosphatidic acid and triacylglycerols (TG) in the right MCA cortex, suggesting of an increase in de novo biosynthesis of TG. In an in vitro assay system, synaptosomal membranes isolated from MCA cortex 8 and 16 hr after a 60 min ischemia showed a significant decrease in arachidonoyl transfer to lysophospholipids, due mainly to a decrease in lysophospholipid:acylCoA acyltransferase activity. Assay of phospholipase A2 activity with both syaptosomes and cytosol, however, did not show differences between left and right MCA cortex or with time after reperfusion. These results suggest that besides ATP availability, the decrease in acyltransferase activity may also contribute to the increase in FFA in cerebral ischemia-reperfusion.Abbreviations PC phosphatidylcholine - PE phosphatidylethanolamine - PEpl ethanolamine plasmalogen - PI phosphatidylinositol - PS phosphatidylserine - poly-PI polyphosphoinsoitide - DG diacylglycerol - TG triacylglycerol - FFA free fatty acids - PUFA polyunsaturated fatty acids - MCA middle cerebral artery - CCAs common carotid arteries - HPTLC high performance thin layer chromatography - GLC gas-liquid chromatography - PLA2 phospholipase A2 Special issue dedicated to Dr. Leon S. Wolfe.  相似文献   

15.
In this paper we demonstrate that ascorbic acid specifically prevents NADPH-initiated cytochrome P450 (P450)-mediated microsomal lipid peroxidation in the absence of free iron. Lipid peroxidation has been evidenced by the formations of conjugated dienes, lipid hydroperoxide and malondialdehyde. Other scavengers of reactive oxygen species including superoxide dismutase, catalase, glutathione, -tocopherol, uric acid, thiourea, mannitol, histidine, -carotene and probucol are ineffective to prevent the NADPH-initiated P450-mediated free iron-independent microsomal lipid peroxidation. Using a reconstituted system comprised of purified NADPH-P450 reductase, P450 and isolated microsomal lipid or pure L--phosphatidylcholine diarachidoyl, a mechanism has been proposed for the iron-independent microsomal lipid peroxidation and its prevention by ascorbic acid. It is proposed that the perferryl moiety P450 Fe3+. O2 initiates lipid peroxidation by abstracting methylene hydrogen from polyunsaturated lipid to form lipid radical, which then combines with oxygen to produce the chain propagating peroxyl radical for subsequent formation of lipid peroxides. Apparently, ascorbic acid prevents initiation of lipid peroxidation by interacting with P450 Fe3+. O2. (Mol Cell Biochem 166: 35-44, 1997)  相似文献   

16.
The present paper reports the in vitro release of lysosomal enzymes in the supernatant of cultures of rat peritoneal macrophages, with the addition of Candida albicans cells. Macrophages were taken from the rat peritoneal cavity 72 hr after non-specific activation with Brain-Heart-Infusion (B.H.I.) broth containing 10% proteose-peptone No. 3. They were then cultured in Parker medium No. 199 (TC 199). After 24 hr a suspension of Candida albicans cells, in a determined concentration, was added to the peritoneal macrophage cultures. At that time, and during pre-determined periods, the following enzymes in the culture supernatants were studied using colorimetric methods: -glucuronidase, -galactosidase and acid phosphatase. It is concluded that, under identical conditions, the release of -galactosidase and acid phosphatase is higher than for -glucuronidase. The release rate of all three enzymes is the highest at a 6 hr incubation period, after which, a gradual decrease leads the rate down to 50% at 24 hr.  相似文献   

17.
We have measured the rate of hydrolysis of liposomes made of DL--dipalmitoylphosphatidylcholine (DPPC) and L--dimyristoylphosphatidylcholine by a soluble fraction of highly purified lysosomes isolated from rat liver. Phospholipids are hydrolyzed into lysophospho-lipids and fatty acids at a rate which is maximal near the temperature characteristic of the gel to liquid crystalline phase transition of the lipid bilayer. This strong influence of the physical properties of the substrate on the enzyme activity suggests a structural analogy between the lysosomal phospholipases of the A type (EC 3.1.1.32 and EC 3.1.1.4) and the pancreatic phospholipase A2.  相似文献   

18.
Lipid peroxidation and basal adenylate cyclase activity have been examined in neuroblastoma cultured with a variety of exogenous fatty acids. Formation of cyclic AMP depended upon fatty acid type, with supplementation affecting activities in the order: linoleate greater than cis-vaccenate = linolenate greater than control (132.7, 72.6, 71.9 and 36.0 pmol cAMP formed/mg protein, respectively). Lipid peroxidation, measured by formation of malondialdehyde (MDA), also varied with fatty acid; however, there was little correlation between MDA production and basal cyclase activity. Inclusion of alpha-tocopherol in culture-medium blocked MDA formation without affecting cAMP accumulation. Fe2+-dependent induction of peroxidation was accompanied by a time-dependent inhibition of cyclase activity.  相似文献   

19.
It has recently been indicated that in the absence of free iron, NADPH initiates oxidative damage of proteins in guinea pig liver microsomes and also lipid peroxidation and protein damage in cardiac microsomes and that ascorbic acid specifically inhibits both the lipid peroxidation and protein damage [Mukhopadhyay CK, Chatterjee IB: J Biol Chem 269: 13390–13397, 1994; Mukhopadhyay Met al.: Mol Cell Biochem 126: 69–75, 1993]. In this paper we demonstrate that Fe(III)-independent NADPH-initiated lipid peroxidation and oxidative damage of proteins occur in the microsomes of all the extrahepatic tissues including lung, kidney, adrenal gland and brain and that both the lipid peroxidation and protein damage are specifically prevented by ascorbic acid. We further demonstrate that when NADPH is replaced by as the electron donor, the lipid peroxidation and protein damage are also inhibited by ascorbic acid.Abbreviations AH2 ascorbic acid - SOD bovine erythrocyte superoxide dismutase - GSH glutathione - XOD xanthine oxidase - cyt P450 cytochrome P450 - DFO desferrioxamine  相似文献   

20.
The effects ofD,L--chlorophenylalanine methyl ester (PCPA-methyl ester) and two of its metabolites, 2-(-chlorophenyl)-ethylamine (PCPEA) and -chlorophenylacetic acid (PCPAA), on the metabolism of serotonin (5-HT) fromD,L-5-hydroxytryptophan (5-HTP) ware studied in vitro and in vivo using the telencephalon and brainstem of the rat. For in vivo studies and some in vitro experiments, rats were injected with either 100 mg/kg PCPA-methyl ester or saline alone on days 1, 2, and 3, and were killed on day 15. When the in vivo metabolism of 5-HT was to be studied, the saline group and the PCPA group of animals were injected with 75 g/kg [3H]D,L-5-HTP 20 min before sacrificing. With respect to the values found for the saline-injected animals, the specific activity (S.A.; dpm/nmol) of 5-HIAA was significantly greater in the telencephanol and brainstem of the animals injected with PCPA-methyl ester. The S.A. of 5-HTP was the same in both groups; the S.A. of 5-HT was lower in the telencephalon of the PCPA group than in the saline group; in the brainstem, there was no difference. In both the saline- and PCPA-injected animals, the S.A. of 5-HIAA was greater than the S.A. of 5-HT. There was no difference between the saline- and PCPA-injected animals with regard to: (1)L-5-HTP decarboxylase activity; (2)L-5-HTP-induced release of [3H]5-HT in vitro from crude nerve ending fractions (P2); or (3) in vitro uptake of [3H]D,L-5-HTP and its conversion to [3H]5-HT using the P2 fraction. In vitro studies demonstrated that the PCPEA could directly cause a large increase in the release of [3H]5-HT from the P2 fraction, whereas PCPA and PCPAA had little or no apparent effect. The data were interpreted to suggest that in the telencephalon of the animals treated with PCPA-methyl ester, there was a higher turnover of 5-HT than was found in the saline-treated group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号