首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transforming growth factor-beta (TGF-beta) has been implicated as having a role in inflammatory responses by inducing cellular infiltration and the release of inflammatory cytokines. In this study, the IEC-6 rat intestinal epithelial cell line was used as a model to assess the effect of TGF-beta 1 on the expression of various plasma membrane determinants. TGF-beta 1 induced a dose-dependent increase in the percentage of cells expressing surface secretory component (SC) and class I major histocompatibility (MHC) antigens. However, the expression of class II MHC was unaffected. In contrast, epidermal growth factor had no effect on any of the surface proteins studied. The TGF-beta 1-enhanced expression of SC was accompanied by an enhanced binding of polymeric, but not monomeric, immunoglobulin A (IgA). Preincubation of the TGF-beta 1-treated cells with an anti-human beta-galactosyltransferase (beta-GT) antiserum did not block the binding of the anti-SC antibody, indicating that the TGF-beta-induced increase in SC staining was due to SC expression and not the polymeric immunoglobulin-binding enzyme, beta-GT. These results indicate that TGF-beta 1 may be important in immune functions involving intestinal epithelial cells by enhancing the expression of surface class I MHC antigens and SC, a protein responsible for the transport of polymeric IgA into the intestinal lumen.  相似文献   

2.
3.
Mammalian intestinal epithelium undergoes continuous cell turn over, with cell proliferation in the crypts and apoptosis in the villus. Both transforming growth factor (TGF)-β and gastrin-releasing peptide (GRP) are involved in the regulation of intestinal epithelial cells for division, differentiation, adhesion, migration and death. Previously, we have shown that TGF-β and bombesin (BBS) synergistically induce cyclooxygenase-2 (COX-2) expression and subsequent prostaglandin E2 (PGE2) production through p38MAPK in rat intestinal epithelial cell line stably transfected with GRP receptor (RIE/GRPR), suggesting the interaction between TGF-β signaling pathway and GRPR. The current study examined the biological responses of RIE/GRPR cells to TGF-β and BBS. Treatment with TGF-β1 (40 pM) and BBS (100 nM) together synergistically inhibited RIE/GRPR growth and induced apoptosis. Pretreatment with SB203580 (10 μM), a specific inhibitor of p38MAPK, partially blocked the synergistic effect of TGF-β and BBS on apoptosis. In conclusion, BBS enhanced TGF-β growth inhibitory effect through apoptosis induction, which is at least partially mediated by p38MAPK.  相似文献   

4.
Goblet cells are secretory epithelial cells of mucosal tissues that confer protection from environmental agents or pathogens via expression and secretion of soluble mucins. Loss of these cells is associated with several chronic inflammatory disorders of the mucosa. Although demonstrated to transfer antigens from the luminal surface to stromal cells in the intestinal mucosa, it is not known if goblet cells contribute to the regulation of an immune response. In this study we report that similar to intestinal and respiratory mucosal epithelia, mouse ocular surface epithelia predominantly express the TGF-ß2 isoform. Specifically, we demonstrate the ability of goblet cells to express TGF-ß2 and increase it in response to Toll-Like Receptor 4 mediated stimulus in cultures. Goblet cells not only express TGF-ß2, but are also able to activate it in a thrombospondin-1 (TSP-1) dependent manner via their cell surface receptor CD36. Furthermore, goblet cell derived soluble factors that possibly include TGF-ß2, alter dendritic cell (DC) phenotype to a tolerogenic type by downregulating DC expression of MHC class II and co-stimulatory molecules CD80, CD86 and CD40. Thus our study demonstrates goblet cells as a cellular source of active TGF-ß2 in ocular mucosa and implicates their immunomodulatory function in maintaining mucosal immune homeostasis.  相似文献   

5.

Aims

In the present study we have investigated the comparative switching propensity of murine peritoneal and splenic B cell subpopulations to IgA in presence of retinoic acid (RA) and TGF-β.

Methods and Results

To study the influence of RA and TGF-β on switching of B cell subpopulations to IgA, peritoneal (B1a, B1b and B2 cells) and splenic (B1a, marginal zone, and B2) B cells from normal BALB/c mice were FACS purified, cultured for 4 days in presence of RA and TGF-β and the number of IgA producing cells was determined by ELISPOT assay or FACS analysis. In presence of TGF-β, peritoneal B1b cells switched to IgA more potently than other peritoneal B cell subpopulations. When TGF-β was combined with retinoic acid (RA), switching to IgA was even more pronounced. Under these conditions, “innate” B cells like peritoneal and splenic B1 cells and MZ B cells produced IgA more readily than B2 cells. Additionally, high frequency of nucleotide exchanges indicating somatic hypermutation in VH regions was observed. Besides IgA induction, RA treatment of sorted PEC and splenic B cells led to expression of gut homing molecules - α4β7 and CCR9. Intraperitoneal transfer of RA-treated B1 cells into Rag1-/- recipients resulted in IgA in serum and gut lavage, most efficiently amongst B1b cell recipients.

Conclusion

Present study demonstrates the differential and synergistic effect of RA and TGF-β on switching of different B cell subpopulations to IgA and establishes the prominence of peritoneal B1b cells in switching to IgA under the influence of these two factors. Our study extends our knowledge about the existing differences among B cell subpopulations with regards to IgA production and indicates towards their differential contribution to gut associated humoral immunity.  相似文献   

6.
7.
Transforming growth factor β (TGF-β) is a potent growth regulator and tumor suppressor in normal intestinal epithelium. Likewise, epithelial cell growth is controlled by rapid decay of growth-related mRNAs mediated through 3′ untranslated region (UTR) AU-rich element (ARE) motifs. We demonstrate that treatment of nontransformed intestinal epithelial cells with TGF-β inhibited ARE-mRNA expression. This effect of TGF-β was promoted through increased assembly of cytoplasmic RNA processing (P) bodies where ARE-mRNA localization was observed. P-body formation was dependent on TGF-β/Smad signaling, as Smad3 deletion abrogated P-body formation. In concert with increased P-body formation, TGF-β induced expression of the ARE-binding protein tristetraprolin (TTP), which colocalized to P bodies. TTP expression was necessary for TGF-β-dependent P-body formation and promoted growth inhibition by TGF-β. The significance of this was observed in vivo, where colonic epithelium deficient in TGF-β/Smad signaling or TTP expression showed attenuated P-body levels. These results provide new insight into TGF-β''s antiproliferative properties and identify TGF-β as a novel mRNA stability regulator in intestinal epithelium through its ability to promote TTP expression and subsequent P-body formation.  相似文献   

8.
Integrin β4subunit is present in association with α6chain on both normal and transformed epithelial cells. Recently α6β4heterodimer was found on the endothelium of medium-sized blood vessels and on immature thymocytes. In this report we show, by Northern blotting, indirect immunofluorescence, immunoprecipitation, and Western blotting, that β4subunit is expressed also on cells of mesenchymal origin such as fibroblasts, myoblasts, and myotubes. Increased expression of α6β4has been related to the aggressive metastatic phenotype of human and murine carcinomas. The transforming growth factor β1(TGF-β1) has been found to modulate the expression of several integrins and intracellular matrix proteins, as well as to stimulate cell invasion and metastatic potential. To evaluate whether α6β4expression is modulated by TGF-β1, we transfected 3T3 fibroblasts with an expression vector carrying the human TGF-β1cDNA driven by the SV40 early promoter. We observed by indirect immunofluorescence a modification in the subcellular distribution of β4subunit, which acquires a perinuclear localization. This finding suggests this integrin subunit correlates with the cytoskeletal reorganization induced by TGF-β1.  相似文献   

9.
In mammals, the adhesion and fusion of the palatal shelves are essential mechanisms in the development of the secondary palate. Failure of any of these processes leads to the formation of cleft palate. The mechanisms underlying palatal shelf adhesion are poorly understood, although the presence of filopodia on the apical surfaces of the superficial medial edge epithelial (MEE) cells seems to play an important role in the adhesion of the opposing MEE. We demonstrate here the appearance of chondroitin sulphate proteoglycan (CSPG) on the apical surface of MEE cells only immediately prior to contact between the palatal shelves. This apical CSPG has a functional role in palatal shelf adhesion, as either the alteration of CSPG synthesis by β-d-Xyloside or its specific digestion by chondroitinase AC strikingly alters the in vitro adhesion of palatal shelves. We also demonstrate the absence of this apical CSPG in the clefted palates of transforming growth factor beta 3 (TGF-β3) null mutant mice, and its induction, together with palatal shelf adhesion, when TGF-β3 is added to TGF-β3 null mutant palatal shelves in culture. When chick palatal shelves (that do not adherein vivo nor express TGF-β3, nor CSPG in the MEE) are cultured in vitro, they do not express CSPG and partially adhere, but when TGF-β3 is added to the media, they express CSPG and their adhesion increases strikingly. We therefore conclude that the expression of CSPG on the apical surface of MEE cells is a key factor in palatal shelf adhesion and that this expression is regulated by TGF-β3.  相似文献   

10.
11.
Transforming growth factor β1 (TGF-β1) is the pivotal pro-fibrogenic cytokine in hepatic fibrosis. Reducing the over-produced expression of TGF-β1 or blocking its signaling pathways is considered to be a promising therapeutic strategy for hepatic fibrosis. In this study, we evaluated the feasibility of attenuating hepatic fibrosis by vaccination against TGF-β1 with TGF-β1 kinoids. Two TGF-β1 kinoid vaccines were prepared by cross-linking TGF-β1-derived polypeptides (TGF-β125–[41-65] and TGF-β130–[83-112]) to keyhole limpet hemocyanin (KLH). Immunization with the two TGF-β1 kinoids efficiently elicited the production of high-levels of TGF-β1-specific antibodies against in BALB/c mice as tested by enzyme-linked immunosorbent assay (ELISA) and Western blotting. The antisera neutralized TGF-β1-induced growth-inhibition on mink lung epithelial cells (Mv1Lu) and attenuated TGF-β1-induced Smad2/3 phosphorylation, α-SMA, collagen type 1 alpha 2 (COL1A2), plasminogen activator inhibitor-1 (PAI-1) and tissue inhibitor of metalloproteinase-1 (TIMP-1) expression in the rat hepatic stellate cell (HSC) line, HSC-T6. Vaccination against TGF-β1 with the kinoids significantly suppressed CCl4-induced collagen deposition and the expression of α-SMA and desmin, attenuated hepatocyte apoptosis and accelerated hepatocyte proliferation in BALB/c mice. These results demonstrated that immunization with the TGF-β1 kinoids efficiently attenuated CCl4-induced hepatic fibrosis and liver injury. Our study suggests that vaccination against TGF-β1 might be developed into a feasible therapeutic approach for the treatment of chronic fibrotic liver diseases.  相似文献   

12.
In addition to being an important mediator of migration and invasion of tumor cells, β3 integrin can also enhance TGF-β1 signaling. However, it is not known whether β3 might influence the induction of metastatic phenotype of tumor cells, especially non-metastatic tumor cells which express low level of β3. Here we report that H2O2 and HOCl, the reactive oxygen species produced by neutrophils, could cooperate with TGF-β1 to induce metastatic phenotype of non-metastatic hepatocellular carcinoma (HCC) cells. TGF-β1/H2O2/HOCl, but not TGF-β1 or H2O2/HOCl, induced β3 expression by triggering the enhanced activation of p38 MAPK. Intriguingly, β3 in turn promoted TGF-β1/H2O2/HOCl-mediated induction of metastatic phenotype of HCC cells by enhancing TGF-β1 signaling. β3 promoted TGF-β1/H2O2/HOCl-induced expression of itself via positive feed-back effect on p38 MAPK activation, and also promoted TGF-β1/H2O2/HOCl-induced expression of α3 and SNAI2 by enhancing the activation of ERK pathway, thus resulting in higher invasive capacity of HCC cells. By enhancing MAPK activation, β3 enabled TGF-β1 to augment the promoting effect of H2O2/HOCl on anoikis-resistance of HCC cells. TGF-β1/H2O2/HOCl-induced metastatic phenotype was sufficient for HCC cells to extravasate from circulation and form metastatic foci in an experimental metastasis model in nude mice. Inhibiting the function of β3 could suppress or abrogate the promoting effects of TGF-β1/H2O2/HOCl on invasive capacity, anoikis-resistance, and extravasation of HCC cells. These results suggest that β3 could function as a modulator to promote TGF-β1/H2O2/HOCl-mediated induction of metastatic phenotype of non-metastatic tumor cells, and that targeting β3 might be a potential approach in preventing the induction of metastatic phenotype of non-metastatic tumor cells.  相似文献   

13.
14.
15.
16.
Vascular endothelial growth factor (VEGF)-D, a member of the VEGF family, induces both angiogenesis and lymphangiogenesis by activating VEGF receptor-2 (VEGFR-2) and VEGFR-3 on the surface of endothelial cells. Transforming growth factor (TGF)-β1 has been shown to stimulate VEGF-A expression in human lung fibroblast via the Smad3 signaling pathway and to induce VEGF-C in human proximal tubular epithelial cells. However, the effects of TGF-β1 on VEGF-D regulation are unknown. To investigate the regulation of VEGF-D, human lung fibroblasts were studied under pro-fibrotic conditions in vitro and in idiopathic pulmonary fibrosis (IPF) lung tissue. We demonstrate that TGF-β1 downregulates VEGF-D expression in a dose- and time-dependent manner in human lung fibroblasts. This TGF-β1 effect can be abolished by inhibitors of TGF-β type I receptor kinase and Jun NH2-terminal kinase (JNK), but not by Smad3 knockdown. In addition, VEGF-D knockdown in human lung fibroblasts induces G1/S transition and promotes cell proliferation. Importantly, VEGF-D protein expression is decreased in lung homogenates from IPF patients compared with control lung. In IPF lung sections, fibroblastic foci show very weak VEGF-D immunoreactivity, whereas VEGF-D is abundantly expressed within alveolar interstitial cells in control lung. Taken together, our data identify a novel mechanism for downstream signal transduction induced by TGF-β1 in lung fibroblasts, through which they may mediate tissue remodeling in IPF.  相似文献   

17.
Epstein-Barr virus (EBV) is a human herpesvirus that persists as a largely subclinical infection in the vast majority of adults worldwide. Recent evidence indicates that an important component of the persistence strategy involves active interference with the MHC class I antigen processing pathway during the lytic replication cycle. We have now identified a novel role for the lytic cycle gene, BILF1, which encodes a glycoprotein with the properties of a constitutive signaling G-protein-coupled receptor (GPCR). BILF1 reduced the levels of MHC class I at the cell surface and inhibited CD8+ T cell recognition of endogenous target antigens. The underlying mechanism involves physical association of BILF1 with MHC class I molecules, an increased turnover from the cell surface, and enhanced degradation via lysosomal proteases. The BILF1 protein of the closely related CeHV15 γ1-herpesvirus of the Rhesus Old World primate (80% amino acid sequence identity) downregulated surface MHC class I similarly to EBV BILF1. Amongst the human herpesviruses, the GPCR encoded by the ORF74 of the KSHV γ2-herpesvirus is most closely related to EBV BILF1 (15% amino acid sequence identity) but did not affect levels of surface MHC class I. An engineered mutant of BILF1 that was unable to activate G protein signaling pathways retained the ability to downregulate MHC class I, indicating that the immune-modulating and GPCR-signaling properties are two distinct functions of BILF1. These findings extend our understanding of the normal biology of an important human pathogen. The discovery of a third EBV lytic cycle gene that cooperates to interfere with MHC class I antigen processing underscores the importance of the need for EBV to be able to evade CD8+ T cell responses during the lytic replication cycle, at a time when such a large number of potential viral targets are expressed.  相似文献   

18.
The mouse intestinal helminth Heligmosomoides polygyrus modulates host immune responses by secreting a transforming growth factor (TGF)-β mimic (TGM), to expand the population of Foxp3+ Tregs. TGM comprises five complement control protein (CCP)-like domains, designated D1-D5. Though lacking homology to TGF-β, TGM binds directly to the TGF-β receptors TβRI and TβRII and stimulates the differentiation of naïve T-cells into Tregs. However, the molecular determinants of binding are unclear. Here, we used surface plasmon resonance, isothermal calorimetry, NMR spectroscopy, and mutagenesis to investigate how TGM binds the TGF-β receptors. We demonstrate that binding is modular, with D1-D2 binding to TβRI and D3 binding to TβRII. D1-D2 and D3 were further shown to compete with TGF-β(TβRII)2 and TGF-β for binding to TβRI and TβRII, respectively. The solution structure of TGM-D3 revealed that TGM adopts a CCP-like fold but is also modified to allow the C-terminal strand to diverge, leading to an expansion of the domain and opening potential interaction surfaces. TGM-D3 also incorporates a long structurally ordered hypervariable loop, adding further potential interaction sites. Through NMR shift perturbations and binding studies of TGM-D3 and TβRII variants, TGM-D3 was shown to occupy the same site of TβRII as bound by TGF-β using both a novel interaction surface and the hypervariable loop. These results, together with the identification of other secreted CCP-like proteins with immunomodulatory activity in H. polygyrus, suggest that TGM is part of a larger family of evolutionarily plastic parasite effector molecules that mediate novel interactions with their host.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号