首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sutherland et al. mapped a phr gene in Escherichia coli at 17 min and found that induction of an E. coli strain lysogenic for a lambda phage carrying this gene increased photoreactivating enzyme levels 2,000-fold. Recently, Smith and Youngs and Sancar and Rupert located a phr gene at 15.9 min. We have therefore investigated the properties of photoreactivating enzyme and cellular photoreactivation in cells containing deletions of the gene at 17 min. Cells with this deletion photoreactivated ultraviolet-induced killing at a rate 20% of normal; they also contained approximately 20% of the normal photoreactivating enzyme level. The residual enzyme in these cells was characterized to determine whether the reduced cellular photoreactivation rate and photoreactivating enzyme levels resulted from reduced numbers of normal enzymes or from an altered enzyme. Photoreactivating enzymes from strains carrying a deletion of the region at 17 min had an apparent Km about two- to threefold higher than normal enzyme and showed markedly increased heat lability. The gene at 17 min thus contains information determining the function of the E. coli photoreactivating enzyme rather than the quantity of the enzyme. It is proposed that the gene at 17 min be termed phrA and that located at 15.9 min be termed phrB.  相似文献   

2.
Summary A 2 kb DNA fragment, containing the photoreactivation gene phr1 from Escherichia coli, was inserted at the BamH1 site in the tet gene of the yeast — E. coli shuttle vector pJDB207. Photoreactivation — deficient Saccharomyces cerevisiae cells transformed with this plasmid showed photoreactivation of killing after UV irradiation of the cells, while extracts of transformed cells exhibited photoreactivating activity in vitro. Far more photoreactivating enzyme molecules were found when the gene was inserted in the plasmid in the opposite orientation to the tet gene as compared with a plasmid carrying the inserted gene in the same orientation. Photoreactivating enzyme encoded by the E. coli phr1 gene and produced in transformed yeast cells has characteristics of the E. coli photoreactivating enzyme (flavoprotein) as judged from the influence of ionic strength on photoreactivating activity.  相似文献   

3.
The PHR1 gene of Saccharomyces cerevisiae encodes a DNA photolyase that catalyzes the light-dependent repair of pyrimidine dimers. In the absence of photoreactivating light, this enzyme binds to pyrimidine dimers but is unable to repair them. We have assessed the effect of bound photolyase on the dark survival of yeast cells carrying mutations in genes that eliminate either nucleotide excision repair (RAD2) or mutagenic repair (RAD18). We found that a functional PHR1 gene enhanced dark survival in a rad18 background but failed to do so in a rad2 or rad2 rad18 background and therefore conclude that photolyase stimulates specifically nucleotide excision repair of dimers in S. cerevisiae. This effect is similar to the effect of Escherichia coli photolyase on excision repair in the bacterium. However, despite the functional and structural similarities between yeast photolyase and the E. coli enzyme and complementation of the photoreactivation deficiency of E. coli phr mutants by PHR1, yeast photolyase failed to enhance excision repair in the bacterium. Instead, Phr1 was found to be a potent inhibitor of dark repair in recA strains but had no effect in uvrA strains. The results of in vitro experiments indicate that inhibition of nucleotide excision repair results from competition between yeast photolyase and ABC excision nuclease for binding at pyrimidine dimers. In addition, the A and B subunits of the excision nuclease, when allowed to bind to dimers before photolyase, suppressed photoreactivation by Phr1. We propose that enhancement of nucleotide excision repair by photolyases is a general phenomenon and that photolyase should be considered an accessory protein in this pathway.  相似文献   

4.
We replaced an Escherichia coli phr gene by a 1.4-kb fragment of DNA coding for resistance to chloramphenicol. Characterization of 2 deletions (phr-19 and phr-36) and 1 insertion (phr-34) in the phr gene revealed no photoreactivation. Photoreactivation-deficient strains of either recA56 or lexA1(ind-) were more sensitive to UV radiation in the dark than phr-proficient counterparts. The presence of the phr defect in uvrA6 strains increased by 1.5-2-fold his-4(Ochre) to His+ mutation induced by ultraviolet light compared to uvrA6 phr+ strains, although there was no difference in UV sensitivity between uvrA6 phr+ and uvrA6 phr- strains. 30-35% of the His+ mutations thus induced were suppressor mutations in uvrA6 phr+ and 49-55% in uvrA6 phr- strains. The UV mutagenesis results are consistent with the previous observations that suppressor mutations targeted by a thymine-cytosine pyrimidine dimer are reduced in the dark in cells with amplified DNA photolyase.  相似文献   

5.
An Escherichia coli recA phr+ purA strain was more resistant to ultraviolet radiation than its isogenic derivative recA phr+ purA+ in the absence of photoreactivating light, whereas their nearly isogenic derivative recA phr showed most UV-induced lethality. The amounts of photoreactivating enzyme (PRE) per cell in the recA phr+ purA was higher than in the recA phr+ purA+. The recA phr is defective for photoreactivation. Thus, in the recA strain, UV resistance in the dark increased in proportion to the amounts of PRE per cell, suggesting that PRE participates in the process of dark repair of UV-damaged DNA.  相似文献   

6.
It has been previously reported that the ultraviolet sensitivity of recA strains of Escherichia coli in the dark is suppressed by a plasmid pKY1 which carries the phr gene, suggesting that this is due to a novel effect of photoreactivating enzyme (PRE) of E. coli in the dark (Yamamoto et al., 1983a). In this work, we observed that an increase of UV-resistance by pKY1 in the dark is not apparent in strains with a mutation in either uvrA, uvrB, uvrC, lexA, recBC or recF. The sensitivity of recA lexA and recA recBC multiple mutants to UV is suppressed by the plasmid but that of recA uvrA, recA uvrB and recA uvrC is not. Host-cell reactivation of UV-irradiated lambda phage is slightly more efficient in the recA/pKY1 strain compared with the parental recA strain. On the other hand, the recA and recA/pKY1 strains do not differ significantly in the following properties: Hfr recombination, induction of lambda by UV, and mutagenesis. We suggest that dark repair of PRE is correlated with its capacity of excision repair.  相似文献   

7.
8.
The important issue of photoreactivation DNA repair in plants has become even more interesting in recent years because a family of genes that are highly homologous to photoreactivating DNA repair enzymes but that function as blue light photoreceptors has been isolated. Here, we report the isolation of a novel photolyase-like sequence from Arabidopsis designated PHR1 (for photoreactivating enzyme). It shares little sequence similarity with either type I photolyases or the cryptochrome family of blue light photoreceptors. Instead, the PHR1 gene encodes an amino acid sequence with significant homology to the recently characterized type II photolyases identified in a number of prokaryotic and animal systems. PHR1 is a single-copy gene and is not expressed in dark-grown etiolated seedlings: the message is light inducible, which is similar to the expression profile for photoreactivation activity in plants. The PHR1 protein complements a photolyase-deficient mutant of Escherichia coli and thus confers photoreactivation activity. In addition, an Arabidopsis mutant that is entirely lacking in photolyase activity has been found to contain a lesion within this Arabidopsis type II photolyase sequence. We conclude that PHR1 represents a genuine plant photolyase gene and that the plant genes with homology to type I photolyases (the cryptochrome family of blue light photoreceptors) do not contribute to photoreactivation repair, at least in the case of Arabidopsis.  相似文献   

9.
10.
The Escherichia coli dnaZ gene, a deoxyribonucleic acid (DNA) polymerization gene, is located 1.2 min counterclockwise from purE, at approximately min 10.5 on the E. coli map. From a lysogen with lamdacI857 integrated at a secondary attachment site near purE, transducing phages (lambdadnaS+) that transduced a dnaZts (lambda+) recipient to temperature insensitivity (TS+) were discovered. Three different plaque-forming transducing phages were isolated from seven primary heterogenotes. Genetic tests and heteroduplex mapping were used to determine the length and position of E. coli DNA within the lambda DNA. Complementation tests demonstrated that the deletions in all three strains removed both att P and the int gene, i,e., DNA from both prophage ends. Heteroduplex mapping confirmed this result by demonstrating that all three strains had deletions of lambda DNA that covered the b2 to red region, thereby removing both prophage ends. Specifically, the deletions removed lambda DNA between the points 39.3 to 66.5% of lambda length (measured in percent length from the left and of lambda phage DNA) in all three strains. The three strains are distinct, however, because they had differing lengths of host DNA insertions. These phages must have been formed by an anomalous procedure, because standard lambda transducing phages are deleted for one prophage end only. In lambdagal and lambdabio strains, the deletions of lambda DNA begin at the union of prophage ends (i.e., position 57.3% of lambda length) and extend leftward or rightward, respectively (Davidson and Szybalski, in A, D. Hershey [ed.], The Bacteriophage Lambda, p. 45-82, 1971). Models for formation of the lambdadnaZ+ phages are discussed.  相似文献   

11.
Based on nucleotide sequence homology with the Escherichia coli photolyase gene (phr), the phr sequence of Pseudomonas aeruginosa PAO1 was identified from the genome sequence, amplified by PCR, cloned, and shown to complement a known phr mutation following expression in Escherichia coli SY2. Stable, insertional phr mutants containing a tetracycline resistance gene cassette were constructed in P. aeruginosa PAO1 and P. syringae pv. syringae FF5 by homologous recombination and sucrose-mediated counterselection. These mutants showed a decrease in survival compared to the wild type of as much as 19-fold after irradiation at UV-B doses of 1,000 to 1,550 J m(-2) followed by a recovery period under photoreactivating conditions. A phr uvrA mutant of P. aeruginosa PAO1 was markedly sensitive to UV-B irradiation exhibiting a decrease in survival of 6 orders of magnitude following a UV-B dose of 250 J m(-2). Complementation of the phr mutations in P. aeruginosa PAO1 and P. syringae pv. syringae FF5 using the cloned phr gene from strain PAO1 resulted in a restoration of survival following UV-B irradiation and recovery under photoreactivating conditions. The UV-B survival of the phr mutants could also be complemented by the P. syringae mutagenic DNA repair determinant rulAB. Assays for increases in the frequency of spontaneous rifampin-resistant mutants in UV-B-irradiated strains containing rulAB indicated that significant UV-B mutability (up to a 51-fold increase compared to a nonirradiated control strain) occurred even in the wild-type PAO1 background in which rulAB only enhanced the UV-B survival by 2-fold under photoreactivating conditions. The frequency of occurrence of spontaneous nalidixic acid-resistant mutants in the PAO1 uvrA and uvrA phr backgrounds complemented with rulAB were 3.8 x 10(-5) and 2.1 x 10(-3), respectively, following a UV-B dose of 1,550 J m(-2). The construction and characterization of phr mutants in the present study will facilitate the determination of the roles of light and dark repair systems in organisms exposed to solar radiation in their natural habitats.  相似文献   

12.
Photoproducts formed in the DNA of human cells irradiated with ultraviolet light (uv) were identified as cyclobuytl pyrimidine dimers by their chromatographic mobility, reversibility to monomers upon short wavelength uv irradiation, and comparison of the kinetics of this monomerization with that of authentic cis-syn thymine-thymine dimers prepared by irradiation of thymine in ice. The level of cellular photoreactivation of these dimers reflects the level of photoreactivating enzyme measured in cell extracts. Action spectra for cellular dimer photoreactivation in the xeroderma pigmentosum line XP12BE agree in range (300 nm to at least 577 nm) and maximum (near 400 nm) with that for photoreactivation by purified human photoreactivating enzyme. Normal human cells can also photoreactivate dimers in their DNA. The action spectrum for the cellular monomerization of dimers is similar to that for photoreactivation by the photoreactivating enzyme in extracts of normal human fibroblasts.  相似文献   

13.
We produced a photolyase-deficient mutant by repeat induced point mutation using the Neurospora crassa photolyase gene cloned previously. This mutation identified a new gene, phr, which was mapped on the right arm of linkage group I by both RFLP mapping and conventional mapping. To investigate the relationship between photoreactivation and dark repair processes, especially excision repair, double mutants of phr with representative repair-defective mutants of different types were constructed and tested for UV sensitivity and photoreactivation. The results show that the phr mutation has no influence on dark repair. Tests with CPD and TC(6-4) photoproduct-specific antibodies demonstrated that the phr mutant is defective in CPD photolyase and confirmed that there is no TC(6-4) photolyase activity in N. crassa. Furthermore, N. crassa photolyase is not a blue light receptor in the signal transduction that induces carotenoid biosynthesis.  相似文献   

14.
Survival of irradiated spores from Fusarium oxysporum with ultraviolet radiation (UV) was increased following exposition to visible light, indicating that this phytopathogenic fungus has a mechanism of photoreactivation able to counteract the lethal effects of UV. A genomic sequence containing the complete photolyase gene (phr1) from F. oxysporum was isolated by heterologous hybridisation with the Neurospora crassa photolyase gene. The F. oxysporum phr1 cDNA was isolated and expressed in a photolyase deficient Escherichia coli strain. The complementation of the photoreactivation deficiency of this E. coli mutant by phr1 cDNA demonstrated that the photolyase gene from F. oxysporum encodes a functional protein. The F. oxysporum PHR1 protein has a domain characteristic of photolyases from fungi (Trichoderma harziaium, N. crassa, Magnaporthe grisea, Saccharomyces cerevisiae) to bacteria (E. coli), and clusters in the photolyases phylogenetic tree with fungal photolyases. The F. oxysporum phr1 gene was inducible by visible light. The phr1 expression was also detected in presence of alpha-tomatine, a glycoalkaloid from tomato damaging cell membranes, suggesting that phr1 is induced by this cellular stress.  相似文献   

15.
DNA photolyases use two noncovalently bound chromophores to catalyze photoreactivation, the blue light-dependent repair of DNA that has been damaged by ultraviolet light. FAD is the catalytic chromophore for all photolyases and is essential for photoreactivation. The identity of the second chromophore is often 7,8-didemethyl-8-hydroxy-5-deazariboflavin (FO). Under standard light conditions, the second chromophore is considered nonessential for photoreactivation because DNA photolyase bound to only FAD is sufficient to catalyze the repair of UV-damaged DNA. phr1 is a photoreactivation-deficient strain of Chlamydomonas. In this work, the PHR1 gene of Chlamydomonas was cloned through molecular mapping and shown to encode a protein similar to known FO synthases. Additional results revealed that the phr1 strain was deficient in an FO-like molecule and that this deficiency, as well as the phr1 photoreactivation deficiency, could be rescued by transformation with DNA constructs containing the PHR1 gene. Furthermore, expression of a PHR1 cDNA in Escherichia coli produced a protein that generated a molecule with characteristics similar to FO. Together, these results indicate that the Chlamydomonas PHR1 gene encodes an FO synthase and that optimal photoreactivation in Chlamydomonas requires FO, a molecule known to serve as a second chromophore for DNA photolyases.  相似文献   

16.
Repair of ultraviolet-induced pyrimidine dimers by photoreactivation is catalyzed by a single enzyme, DNA photolyase. However, the process of photoreactivation is difficult to detect reproducibly in cultured mammalian cells. We have used clones containing yeast and Escherichia coli DNA photolyase genes to determine whether their sequences are conserved and whether there is homology between either cloned sequence and chick or human genomic DNA and mRNA sequences. The cloned sequences failed to hybridize to each other even under nonstringent conditions, indicating little conservation of sequence between the yeast and E. coli genes. Furthermore, only weak hybridization under nonstringent conditions was found between the cloned photoreactivating genes and human or chick genomic DNA or mRNA. This indicates that there is negligible homology between the cloned probes and mammalian DNA, but we are unable to conclude whether this indicates sequence divergence for prokaryotic and eukaryotic photoreactivation genes or the absence of such genes from the mammalian genome.  相似文献   

17.
Escherichia coli K-12 strains have deletions for the normal lambda integration site were lysogenized with bacteriophage lambda at a site within the L-fucose utilization system (fuc). The frequency of lambda integration at this site is approximately 2 X 10(-8) to 5 X 10(-7). Studies of the lytic properties of these strains indicated very infrequent cell lysis with a relatively low phage burst size. Transductional ability of the phage lysates was found to be normal, comparable to that found in conventional low-frequency transducing lysates. Two major classes of transducing phage were found. One carried the markers argA and fucA (a fucose utilization gene of unknown function previously referred to as fuc-1) and the gene for D-arabinose utilization (dar+). The other carried only fucC, the gene specifying L-fuculose-1-phosphate aldolase. A minor class of phage was found that carried fucA, but not argA or dar+. Upon consideration of the transductional nature of these phage classes, we are proposing that the gene order for the L-fucose utilization system is dar, fucA, (lambda), fucC.  相似文献   

18.
N G Koretskaia  E S Piruzian 《Genetika》1978,14(11):1908-1912
Escherichia coli strains with deletions in att lambda region were obtained. The comparison of the extent of deletions with the sensitivity of the corresponding mutant clones to phage Mu showed that the gene controlling the sensitivity of E. coli K-12 to the phage Mu is located in nad A-gal region of the bacterial chromosome. It is shown that the resistance of E. coli strains which had lost the region of bacterial chromosome between nad A gene and genes of gal-operon have adsorption character. Deletion of the nad A-gal region does not affect the adsorption of other phages (lambda, P1 and T4). Thus, the gene, located in this region, is responsible for the specific adsorption of the phage Mu.  相似文献   

19.
The yeast Saccharomyces cerevisiae, like most organisms, is able to directly repair pyrimidine dimers by using a photoreactivating enzyme and visible light. Cells carrying the phr1 mutation were shown previously to be unable to photoreactivate dimers, but neither the map position nor the primary gene product of the PHR1 gene has been determined. We have cloned this gene and determined its map position. A plasmid containing a 6.4-kilobase yeast DNA insert has been isolated and shown to restore photoreactivation in a phr1 strain. A 3.1-kilobase subclone has also been shown to complement phr1. The original plasmid was targeted to integrate into chromosomal DNA at a site homologous to the insert by cutting within the insert. Two of these integrants have been mapped on the right arm of chromosome XV; the integrants have been further mapped at ca. 13 centimorgans from prt1. It has also been independently determined that phr1 maps at this location. Thus, we have determined the map position of PHR1 and also have shown that the plasmid contains PHR1 rather than a suppressor of the phr1 mutation.  相似文献   

20.
Experiments were performed to examine the role of cyclobutyl pyrimidine dimers in the process of mutagenesis by ultraviolet (u.v.) light. Lambda phage DNA was irradiated with u.v. and then incubated with an Escherichia coli photoreactivating enzyme, which monomerizes cyclobutyl pyrimidine dimers upon exposure to visible light. The photoreactivated DNA was packaged into lambda phage particles, which were used to infect E. coli uvr- host cells that had been induced for SOS functions by ultraviolet irradiation. Photoreactivation removed most toxic lesions from irradiated phage, but did not change the frequency of induction of mutations to the clear-plaque phenotype. This implies that cyclobutyl pyrimidine dimers can be lethal, but usually do not serve as sites of mutations in the phage. The DNA sequences of mutants derived from photoreactivated DNA showed that almost two-thirds (16/28) were transitions, the same fraction found for u.v. mutagenesis without photoreactivation. These results show that in this system, the lesion inducing transitions (the major type of u.v.-induced mutation) is not the cyclobutyl pyrimidine dimer; a strong candidate for a mutagenic lesion is the Pyr(6-4)Pyo photoproduct. On the other hand, photoreactivation of SOS-induced host cells before infection with u.v.-irradiated phage reduced mutagenesis substantially. In this case, photoreversal of cyclobutyl dimers serves to reduce expression of the SOS functions that are required in the process of targeted u.v. mutagenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号