首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Production of serpins using yeast expression systems   总被引:2,自引:0,他引:2  
Serpins occupy a unique niche in the field of biology. As more of them are discovered, the need to produce sufficient quantities of each to aid experimental and therapeutic research increases. Yeast expression systems are well suited for the production of recombinant serpins. The genetics of many yeast species is well understood and readily manipulated to induce the targeted over-production of many different serpins. In addition, protease-deficient strains of certain species are available and a few species carry out post-translational modifications resembling those of humans. Yeasts are easy to grow and multiply readily in simple culture media hence the cost of production is low, while the scale of production can be small or large. The disadvantages are the inability of most yeast(s) to perform complex post-translational modifications and a lower product yield of secreted protein compared to intracellular protein production. However, for the intracellular production of serpins, in particular the clade B serpins that do not have complex post-translational modifications, yeast expression systems should be among the first systems considered.  相似文献   

2.
3.
Penicillin G amidase (PGA) is a key enzyme for the industrial production of penicillin G derivatives used in therapeutics. Escherichia coli ATCC 11105 is the more commonly used strain for PGA production. To improve enzyme yield, we constructed various recombinant E. coli HB101 and ATCC 11105 strains. For each strain, PGA production was determined for various concentrations of glucose and phenylacetic and (PAA) in the medium. The E. coli strain, G271, was identified as the best performer (800 U NIPAB/L). This strain was obtained as follows: an E. coli ATCC 11105 mutant (E. coli G133) was first selected based on a low negative effect of glucose on PGA production. This mutant was then transformed with a pBR322 derivative containing the PGA gene. Various experiments were made to try to understand the reason for the high productivity of E. coli G271. The host strain, E. coli G133, was found to be mutated in one (or more) gene(s) whose product(s) act(s) in trans on the PGA gene expression. Its growth is not inhibited by high glucose concentration in the medium. Interestingly, whereas glucose still exerts some negative effect on the PGA production by E. coli G133, PGA production by its transformant (E. coli G271) is stimulated by glucose. The reason for this stimulation is discussed. Transformation of E. coli G133 with a pBR322 derivative containing the Hindlll fragment of the PGA gene, showed that the performance of E. coli G271 depends both upon the host strain properties and the plasmid structure. Study of the production by the less efficient E. coli HB101 derivatives brought some light on the mechanism of regulation of the PGA gene. (c) 1993 John Wiley & Sons, Inc.  相似文献   

4.
The serpins are unique among the families of serine proteinase inhibitors in having a reactive centre that is situated on a mobile loop. The structures of three alternative conformations are now known, and it can be deduced that the active form involves the partial insertion of the loop into the A sheet of the molecule. The ability of the loop to move in and out of this sheet has been adapted by evolution to allow the modulation of inhibitory activity. Manipulation of the structure of the loop and of other functional domains in the serpin superfamily enables the production of serpins with tailor-made activities. The ability of the loop to lock in latent conformations or to take part in intermolecular polymerization has implications for the production and stabilization of recombinant serpins. This review has been adapted from Current Opinion in Structural Biology 1992, 2:438-446.  相似文献   

5.
Colilert (Colilert), Readycult Coliforms 100 (Readycult), Chromocult Coliform agar ES (Chromocult), and MI agar (MI) are beta-galactosidase and beta-glucuronidase-based commercial culture methods used to assess water quality. Their analytical performance, in terms of their respective ability to detect different strains of Escherichia coli and total coliforms, had never been systematically compared with pure cultures. Here, their ability to detect beta-glucuronidase production from E. coli isolates was evaluated by using 74 E. coli strains of different geographic origins and serotypes encountered in fecal and environmental settings. Their ability to detect beta-galactosidase production was studied by testing the 74 E. coli strains as well as 33 reference and environmental non-E. coli total coliform strains. Chromocult, MI, Readycult, and Colilert detected beta-glucuronidase production from respectively 79.9, 79.9, 81.1, and 51.4% of the 74 E. coli strains tested. These 4 methods detected beta-galactosidase production from respectively 85.1, 73.8, 84.1, and 84.1% of the total coliform strains tested. The results of the present study suggest that Colilert is the weakest method tested to detect beta-glucuronidase production and MI the weakest to detect beta-galactosidase production. Furthermore, the high level of false-negative results for E. coli recognition obtained by all four methods suggests that they may not be appropriate for identification of presumptive E. coli strains.  相似文献   

6.
Verocytotoxin-producing Escherichia coli O157 (VTEC) is an important food-borne pathogen of humans. The serious complications of VTEC infection and the established reservoir of VTEC in cattle used for mass food production are a public health concern. In this study 500 samples of hamburger and minced meat were examined for presence of E. coli O157. For E. coli detection, Tryptic Soy Broth supplemented (with novobiocin and bile salts) and Sorbitol Mc Conkey agar were used; an automated rapid enzyme linked fluorescent immunoassay (VIDAS E. coli O157) was also evaluated. E. coli O157 was found in 5 samples of hamburger, 2 strains were found to be positive for verocytotoxin production on Vero cells.  相似文献   

7.
Serine protease inhibitors (serpins) constitute a still expanding superfamily of structural similar proteins, which are localized extracellularly and intracellularly. Serpins play a central role in the regulation of a wide variety of (patho) physiological processes including coagulation, fibrinolysis, inflammation, development, tumor invasion, and apoptosis. Serpins have a unique mechanism of inhibition that involves a profound change in conformational state upon interaction with their protease. This conformational change enables the production of monoclonal antibodies specific for native, complexed, and inactivated serpins. Antibodies, and assays based on these antibodies, have been helpful in elucidating the (patho) physiological function of serpins in the last decade. Serpin-specific antibodies can be used for: (1) structure-function studies such as detection of conformational changes; (2) identification of target-proteases; (3) the detection and quantification of serpin and serpin-protease complexes in bodily fluids by immunoassays such as ELISA, RIA or FACS; (4) detection of serpins in tissues by immunohistochemistry; and (5) possible therapeutical interventions. This review summarizes the techniques we have used to obtain and screen antibodies against extra- and intracellular serpins, as well as the use of these antibodies for some of the above-mentioned purposes.  相似文献   

8.
对氨基苯甲酸是一种重要的有机合成中间体,广泛应用于医药、染料等行业。近年来对氨基苯甲酸作为一种潜在的高强度共聚物单体越来越受到重视。对氨基苯甲酸作为叶酸合成的前体之一,其合成在大肠杆菌体内由叶酸合成途径的pabA、pabB和pabC三个基因负责,催化分支酸合成对氨基苯甲酸。本研究以实验室构建的酪氨酸高产工程菌TYR002作为出发菌株,首先弱化双功能分支酸突变酶/预苯酸脱氢酶TyrA的表达,以减少酪氨酸积累,然后利用3种不同强度的组成型启动子分别调控pabA、pabB和pabC的表达。摇瓶发酵表明不同的组合调控模式下大肠杆菌发酵培养基中的对氨基苯甲酸积累量存在显著差异,最高可获得0.67 g/L的摇瓶发酵产量。进一步通过发酵条件优化和分批补料发酵,在5L发酵罐中获得了6.4g/L的对氨基苯甲酸产量。本研究为改善对氨基苯甲酸生物合成效率提供了重要理论参考。  相似文献   

9.
Abstract Escherichia coli isolated from faeces, urine, wounds and pus were examined for the production of carbohydrases, i.e., maltase, lactase and invertase. Two of the carbohydrases, lactase and maltase, have been detected in E. coli of faecal origin (100 strains) whereas these enzymes were not detected in non-faecal E. coli (146 strains). These inductive enzymes were produced optimally in synthetic medium, pH 7.2, at 37°C for 10 h.
The presence of maltase and lactase in the faecal E. coli may be used as a complementary test for differentiating faecal E. coli from non-faecal E. coli .  相似文献   

10.
Fluorogenic assays for immediate confirmation of Escherichia coli.   总被引:50,自引:23,他引:27       下载免费PDF全文
Rapid assays for Escherichia coli were developed by using the compound 4-methylumbelliferone glucuronide (MUG), which is hydrolyzed by glucuronidase to yield a fluorogenic product. The production of glucuronidase was limited to strains of E. coli and some Salmonella and Shigella strains in the family Enterobacteriaceae. For immediate confirmation of the presence of E. coli in most-probable-number tubes, MUG was incorporated into lauryl tryptose broth at a final concentration of 100 micrograms/ml. Results of both the presumptive test (gas production) and the confirmed test (fluorescence) for E. coli were obtained from a variety of food, water, and milk samples after incubation for only 24 h at 35 degrees C. Approximately 90% of the tubes showing both gas production and fluorescence contained fecal coliforms (they were positive in EC broth incubated at 45 degrees C). Few false-positive reactions were observed. The lauryl tryptose broth-MUG-most-probable-number assay was superior to violet red bile agar for the detection of heat- and chlorine-injured E. coli cells. Anaerogenic strains produced positive reactions, and small numbers of E. coli could be detected in the presence of large numbers of competing bacteria. The fluorogenic assay was sensitive and rapid; the presence of one viable cell was detected within 20 h. E. coli colonies could be distinguished from other coliforms on membrane filters and plates of violet red bile agar if MUG was incorporated into the culture media. A rapid confirmatory test for E. coli that is amenable to automation was developed by using microtitration plates filled with a nonselective medium containing MUG. Pure or mixed cultures containing E. coli produced fluorescence within 4 h (most strains) to 24 h (a few weakly positive strains).  相似文献   

11.
Many clostridial proteins are poorly produced in Escherichia coli. It has been suggested that this phenomena is due to the fact that several types of codons common in clostridial coding sequences are rarely used in E. coli and the quantities of the corresponding tRNAs in E. coli are not sufficient to ensure efficient translation of the corresponding clostridial sequences. To address this issue, we amplified three E. coli genes, ileX, argU, and leuW, in E. coli; these genes encode tRNAs that are rarely used in E. coli (the tRNAs for the ATA, AGA, and CTA codons, respectively). Our data demonstrate that amplification of ileX dramatically increased the level of production of most of the clostridial proteins tested, while amplification of argU had a moderate effect and amplification of leuW had no effect. Thus, amplification of certain tRNA genes for rare codons in E. coli improves the expression of clostridial genes in E. coli, while amplification of other tRNAs for rare codons might not be needed for improved expression. We also show that amplification of a particular tRNA gene might have different effects on the level of protein production depending on the prevalence and relative positions of the corresponding codons in the coding sequence. Finally, we describe a novel approach for improving expression of recombinant clostridial proteins that are usually expressed at a very low level in E. coli.  相似文献   

12.
13.
Most reported efforts to enhance production of the industrially valuable specialty chemical succinate have been done under anaerobic conditions, where E. coli undergoes mixed-acid fermentation. These efforts have often been hampered by the limitations of NADH availability, poor cell growth, and slow production. An aerobic succinate production system was strategically designed that allows E. coli to produce and accumulate succinate efficiently and substantially as a product under absolute aerobic conditions. Mutations in the tricarboxylic acid cycle (sdhAB, icd, iclR) and acetate pathways (poxB, ackA-pta) of E. coli were created to construct the glyoxylate cycle for aerobic succinate production. Experiments in flask studies showed that 14.28 mM of succinate could be produced aerobically with a yield of 0.344 mole/mole using 55 mM glucose. In aerobic batch reactor studies, succinate production rate was faster, reaching 0.5 mole/mole in 24 h with a concentration of 22.12 mM; further cultivation showed that succinate production reached 43 mM with a yield of 0.7. There was also substantial pyruvate and TCA cycle C(6) intermediate accumulation in the mutant. The results suggest that more metabolic engineering improvements can be made to this system to make aerobic succinate production more efficient. Nevertheless, this aerobic succinate production system provides the first platform for enhancing succinate production aerobically in E. coli based on the creation of a new aerobic central metabolic network.  相似文献   

14.
Synechocystis sp. strain PCC 6803 GTP cyclohydrolase I and human 6-pyruvoyltetrahydropterin synthase were coexpressed in Escherichia coli. The E. coli transformant produced sepiapterin, which was identified by high-performance liquid chromatography and enzymatically converted to dihydrobiopterin by sepiapterin reductase. Aldose reductase, another indispensable enzyme for sepiapterin production, may be endogenous in E. coli.  相似文献   

15.
16.
In order to rationally manipulate the cellular metabolism of Escherichia coli for D: -lactate production, single-gene and multiple-gene deletions with mutations in acetate kinase (ackA), phosphotransacetylase (pta), phosphoenolpyruvate synthase (pps), pyruvate formate lyase (pflB), FAD-binding D-lactate dehydrogenase (dld), pyruvate oxidase (poxB), alcohol dehydrogenase (adhE), and fumarate reductase (frdA) were tested for their effects in two-phase fermentations (aerobic growth and oxygen-limited production). Lactate yield and productivity could be improved by single-gene deletions of ackA, pta, pflB, dld, poxB, and frdA in the wild type E. coli strain but were unfavorably affected by deletions of pps and adhE. However, fermentation experiments with multiple-gene mutant strains showed that deletion of pps in addition to ackA-pta deletions had no effect on lactate production, whereas the additional deletion of adhE in E. coli B0013-050 (ackA-pta pps pflB dld poxB) increased lactate yield. Deletion of all eight genes in E. coli B0013 to produce B0013-070 (ackA-pta pps pflB dld poxB adhE frdA) increased lactate yield and productivity by twofold and reduced yields of acetate, succinate, formate, and ethanol by 95, 89, 100, and 93%, respectively. When tested in a bioreactor, E. coli B0013-070 produced 125 g/l D-lactate with an increased oxygen-limited lactate productivity of 0.61 g/g h (2.1-fold greater than E. coli B0013). These kinetic properties of D-lactate production are among the highest reported and the results have revealed which genetic manipulations improved D-lactate production by E. coli.  相似文献   

17.
Plasmid DNA (pDNA) is an emerging experimental vaccine, produced in E. coli, initially targeted for viral diseases. Unlike traditional protein vaccines whose average dose is micrograms, the average dose of pDNA is on the scale of milligrams. Production yields are, therefore, important for the future development of this vaccine. The E. coli strains currently used for pDNA production, JM109 and DH5alpha, are both suitable for production of stable pDNA due to the deletion of recA and endA, however, these two E. coli K strains are sensitive to growth conditions such as high glucose concentration. On the other hand E. coli BL21 is less sensitive to growth conditions than E. coli JM109 or DH5alpha, this strain grows to higher densities and due to its active glyoxylate shunt and anaplerotic pathways is not sensitive to high glucose concentration. This strain is used for recombinant protein production but not for pDNA production because of its inability to produce stable pDNA. To adapt E. coli BL21 for stable pDNA production, the strain was mutated by deleting both recA and endA, and a proper growth and production strategy was developed. Production values, reaching 2 g/L were obtained using glucose as a carbon source. The produced plasmid, which was constructed for HIV clinical study, was found to have identical properties to the plasmid currently produced by E. coli DH5alpha.  相似文献   

18.
19.
Recombinant Escherichia coli harboring the medium-chain-length (MCL) polyhydroxyalkanoate (PHA) synthase gene has been shown to accumulate MCL-PHAs from fatty acids when FadB is inactive. However, the enzymes in fadB mutant E. coli responsible for channeling the beta-oxidation intermediates to PHA biosynthesis have not been fully elucidated. Only recently, two enzymes encoded by yfcX and maoC have been found to be partially responsible for this. In this study, we identified five new FadB homologous enzymes in E. coli: PaaG, PaaF, BhbD, SceH, and YdbU, by protein database search, and examined their roles in the biosynthesis of MCL-PHAs in an fadB mutant E. coli strain. Coexpression of each of these genes along with the Pseudomonas sp. 61-3 phaC2 gene did not allow synthesis of MCL-PHA from fatty acid in recombinant E. coli W3110, which has a fully functional beta-oxidation pathway, but allowed MCL-PHA accumulation in an fadB mutant E. coli WB101. In particular, coexpression of the paaG, paaF, and ydbU genes resulted in a MCL-PHA production up to 0.37, 0.25, and 0.33 g/L, respectively, from 2 g/L of sodium decanoate, which is more than twice higher than that obtained with E. coli WB101 expressing only the phaC2 gene (0.16 g/L). These results suggest that the newly found FadB homologous enzymes, or at least the paaG, paaF, and ydbU genes, are involved in MCL-PHA biosynthesis in an fadB mutant E. coli strain and can be employed for the enhanced production of MCL-PHA.  相似文献   

20.
Recently lactose mediated auto-induction in Escherichia coli has gained a lot of interest because higher protein titer could be achieved without the need to monitor growth and add inducer at the proper time. In this study a high level therapeutic protein production by auto-induction was observed in E. coli BL21 using either T7 or tac promoters in the modified Luria Bertani (mLB) medium containing soy peptone instead of tryptone in Luria Bertani (LB) medium. Based on medium analysis and spiking experiments it was found that 0.4 mM galactose from the soy peptone caused the auto-induction. E. coli cultures induced by galactose can saturate at considerably higher density than cultures induced by IPTG. Galactose is not consumed by E. coli BL21. Finally it has been demonstrated that auto-induction can be effectively used in fed-batch fermentation for the industrial production of a therapeutic protein. The principle of galactose mediated auto-induction should be able to apply to high throughput microplates, shake flasks and fed-batch fermentors for clone screening and therapeutic protein expression in E. coli gal(-) strains such as most commonly used BL21.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号