首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The pTiC58 plasmid noc genes of Agrobacterium tumefaciens C58 code for nopaline oxidase (nocC), nopaline permease (nocP), the inducible periplasmic protein n1 (nocB), and a function(s) required for ornithine catabolism (nocA). In addition, strains C58 and Ach-5 of A. tumefaciens have chromosomal ornithine catabolism genes. The chromosomal orc gene codes for ornithine dehydrogenase. Strain C58 is normally orc, but orc+ mutants can be selected. We have characterized both chromosomal orc and pTiC58 nocA plasmid genes. Complementation of most chromosomal orc mutants by pTiC58 restored growth on both nopaline and L-ornithine but did not restore ornithine dehydrogenase activity. We conclude that ornithine is an intermediate of nopaline degradation and that the Ti plasmid and chromosome both code for ornithine-degradative enzymes. A model for nopaline catabolism is presented.  相似文献   

3.
We have isolated and characterized Tn3HoHo1- and Tn5-induced mutants of a cosmid clone, pYDH208, which encodes the mannopine (MOP) cyclase-associated catabolism of MOP and agropine (AGR). Characterization of the transposon-induced lacZ fusion mutants by beta-galactosidase activity and mannityl opine utilization patterns identified at least 6 genetic units associated with the catabolism of these opines. Functions for the catabolism of MOP and mannopinic acid are encoded by a 16.4-kb region, whereas those for AGR are encoded by a 9.4-kb region located within the MOP catabolic locus. The induction pattern of catabolism shown by transposon insertion derivatives suggests that the catabolism of MOP, AGR, and mannopinic acid encoded by pYDH208 is regulated by at least two independent control elements. Kinetic uptake assays indicate that the clone encodes two transport systems for MOP and AGR, one constitutive and slow and the other inducible and rapid. Analysis of beta-galactosidase activities from lacZ reporter gene fusions indicated that expression of mannityl opine catabolic genes is not strongly repressed by sugars but is repressed by succinate when ammonium is the nitrogen source. The repression exerted by succinate was relieved when MOP was supplied as the sole source of nitrogen. This suggests that genes for opine catabolism encoded by pYDH208 are regulated, in part, by nitrogen availability.  相似文献   

4.
5.
D Parke 《Journal of bacteriology》1993,175(11):3529-3535
An Escherichia coli system for generating a commercially unavailable catabolite in vivo was developed and was used to facilitate molecular genetic studies of phenolic catabolism. Introduction of the plasmid-borne Acinetobacter pcaHG genes, encoding the 3,4-dioxygenase which acts on protocatechuate, into E. coli resulted in bioconversion of exogenously supplied protocatechuate into beta-carboxy-cis,cis-muconate. This compound has been shown to be an inducer of the protocatechuate (pca) genes required for catabolism of protocatechuate to tricarboxylic acid cycle intermediates in Rhizobium leguminosarum biovar trifolii. The E. coli bioconversion system was used to explore regulation of the pca genes in a related bacterium, Agrobacterium tumefaciens. The pcaD gene, which encodes beta-ketoadipate enol-lactone hydrolase, from A. tumefaciens A348 was cloned and was shown to be adjacent to a regulatory region which responds strongly to beta-carboxy-cis,cis-muconate in E. coli. Site-specific insertional mutagenesis of the regulatory region eliminated expression of the pcaD gene in E. coli. When the mutation was incorporated into the A. tumefaciens chromosome, it eliminated expression of the pcaD gene and at least three other pca genes as well. The regulatory region was shown to activate gene expression in trans. The novel regulatory gene was termed pcaQ to differentiate it from pca regulatory genes identified in other microbes, which bind different metabolites.  相似文献   

6.
Promoters of Agrobacterium tumefaciens Ti-plasmid virulence genes.   总被引:27,自引:9,他引:27       下载免费PDF全文
  相似文献   

7.
Mutants of Agrobacterium tumefaciens which affect virulence or the ability to catabolize octopine were isolated after Tn5-induced mutagenesis. Of 8,900 colonies tested, 7 mutants with Tn5 insertions in a specific region of other Ti plasmid unable to catabolize octopine were isolated. Thirty-seven mutants affected in tumorigenesis resulted from insertions in the Ti plasmid and the Agrobacterium chromosome. Of these mutations, 12 were chromosomal and 25 mapped on the plasmid. Twenty-three mapped within a 20-megadalton region, which is distinct from the Ti plasmid sequences found stably integrated into the plant cell genome T-deoxyribonucleic acid). Included in these were mutants that were either a virulent or produced tumors with unusual morphologies. Three mutants contained insertions in the T-deoxyribonucleic acid. These three mutants incited tumors which synthesized octopine but had an altered morphology due to either extensive proliferation of shoots or roots from the tumor callus. Three additional mutants not caused by Tn5 contained mutations in the Ti plasmid.  相似文献   

8.
Cell-free extract (crude extract) of Agrobacterium tumefaciens grown on d-glucuronate or d-glucarate converts d-glucarate and galactarate to a mixture of 2-keto-3-deoxy- and 4-deoxy-5-keto-d-glucarate. These compounds are then converted by partially purified crude extract to an intermediate tentatively identified as 2,5-diketoadipate. The same enzyme preparation further decarboxylates this intermediate to alpha-ketoglutarate semialdehyde, which is subsequently oxidized in a nicotinamide adenine dinucleotide-dependent reaction to alpha-ketoglutaric acid. Since A. tumefaciens converts d-glucuronic acid to d-glucarate, a pathway from d-glucuronate to alpha-ketoglutarate in A. tumefaciens was determined.  相似文献   

9.
The virulence (vir) genes are required in the early stages of plant tumor formation and are located together on the tumor-inducing (Ti) plasmid in Agrobacterium tumefaciens. Five of the vir genes are expressed inducibly in response to the following monocyclic phenolic compounds: acetosyringone, catechol, gallate, beta-resorcylate, protocatechuate, p-hydroxybenzoate, and vanillin. Of these compounds, only the latter six, excluding vanillin [corrected] served as chemoattractants and only the latter three served as growth substrates for A. tumefaciens A348. Strain A136, isogenic except for lack of the Ti plasmid, demonstrated chemotactic behavior and nutritional capabilities similar to those of strain A348. The chemotactic response to the vir gene inducers was expressed constitutively.  相似文献   

10.
Dual control of Agrobacterium tumefaciens Ti plasmid virulence genes.   总被引:6,自引:11,他引:6       下载免费PDF全文
The virulence genes of nopaline (pTiC58) and octopine (pTiA6NC) Ti plasmids are similarly affected by the Agrobacterium tumefaciens ros mutation. Of six vir region complementation groups (virA, virB, virG, virC, virD, and virE) examined by using fusions to reporter genes, the promoters of only two (virC and virD) responded to the ros mutation. For each promoter that was affected by ros, the level of expression of its associated genes was substantially elevated in the mutant. This increase was not influenced by Ti plasmid-encoded factors, and the mutation did not interfere with the induction of pTiC58 vir genes by phenolic compounds via the VirA/VirG regulatory control mechanism. The effects of the ros mutation and acetosyringone were cumulative for all vir promoters examined. The pleiotropic characteristics of the ros mutant include the complete absence of the major acidic capsular polysaccharide.  相似文献   

11.
Summary The genetic organization of functions responsible for mannityl opine catabolism of the Ti plasmid of Agrobacterium tumefaciens strain 15955 was investigated. A partial HindIII digest of pTi15955 was cloned into a broad host range cosmid and the clones obtained were tested for ability to confer mannityl opine degradation upon Agrobacterium. Inserts containing genes for catabolism of mannopinic acid, mannopine, agropine, and agropinic acid were obtained, spanning a segment of 43 kb on the Ti plasmid. Two clones conferring upon Agrobacterium the ability to catabolize the mannityl opines were mobilized to several Rhizobium sp., to Pseudomonas putida and P. fluorescens and to Escherichia coli. The catabolic functions were phenotypically expressed in all Rhizobium sp. tested, and in P. fluorescens, but not in P. putida or in E. coli.  相似文献   

12.
Regulation of the vir genes of Agrobacterium tumefaciens plasmid pTiC58.   总被引:44,自引:25,他引:19       下载免费PDF全文
The virulence (vir) region of pTiC58 was screened for promoter activities by using gene fusions to a promoterless lux operon in the broad-host-range vector pUCD615. Active vir fragments contained the strongly acetosyringone-inducible promoters of virB, virC, virD, and virE and the weakly inducible promoters of virA and virG. Identical induction patterns were obtained with freshly sliced carrot disks, suggesting that an inducer is released after plant tissue is wounded. Optimal conditions for vir gene induction were pH 5.7 for 50 microM acetosyringone or sinapic acid. The induction of virB and virE by acetosyringone was strictly dependent on intact virA and virG loci. An increase in the copy number of virG resulted in a proportional, acetosyringone-independent increase in vir gene expression, and a further increase occurred only if an inducing compound and virA were present.  相似文献   

13.
14.
Several octopine strains of Agrobacterium tumefaciens were tested for Ti plasmid (pTi) transfer after induction by 400 micrograms of octopine per ml for 24 h. The strains could be divided into two groups, transfer efficient (Trae) and transfer inefficient (Traie); the respective rates of transfer were 0.77 x 10(-2) to 1.14 x 10(-2) and 0.33 x 10(-6) to 9.8 x 10(-6) plasmid transconjugant per donor cell. Transfer efficiencies of Traie strains were greatly increased when the time of induction was 72 h. A diffusible conjugation factor (CF) that can enhance conjugal transfer of pTi in A. tumefaciens was discovered when both Trae and Traie donor strains were induced in the same plate. The evidence indicates that CF is a key factor affecting transfer efficiency of pTi but is not sufficient by itself to induce transfer. Trac mutants can produce CF constitutively, and Trae strains can produce it after induction by low octopine concentrations. The transfer efficiency of Traie strains was greatly increased by adding CF to the induction medium. The thermosensitive strain B6S, which normally cannot conjugate at temperatures above 30 degrees C, could transfer pTi efficiently at 32 and 34 degrees C in the presence of CF. Production of CF is dependent on the presence of pTi but appears to be common for different opine strains; it was first detected in octopine strains, but nopaline strains also produced the same or a similar compound. CF is very biologically active, affecting donor but not recipient bacterial cells, but CF does not promote aggregation. Data suggest that CF might be an activator or derepressor in the conjugation system of A. tumefaciens. CF is a dialyzable small molecule and is resistant to DNase, RNase, protease, and heating to 100 degrees C for 10 min, but autoclaving (121 degrees C for 15 min) and alkaline treatment removed all activity.  相似文献   

15.
Mutation of the genes virA, virB, virC, and virG of the Agrobacterium tumefaciens octopine-type Ti plasmid pTiR10 was found to cause a 100- to 10,000-fold decrease in the frequency of conjugal transfer of this plasmid between Agrobacterium cells. This effect was not absolute, however, in that it occurred only during early times (18 to 24 h) of induction of the conjugal transfer apparatus by octopine. Induction of these mutant Agrobacterium strains by octopine for longer periods (48 to 72 h) resulted in a normal conjugal transfer frequency. The effect of these vir gene mutations upon conjugation could be restored by the introduction of cosmids harboring wild-type copies of the corresponding disrupted vir genes into the mutant Agrobacterium strains. In addition, transfer of the self-mobilizable plasmid pPH1JI was not impaired in any of the mutant Agrobacterium strains tested. The effect of vir gene function on the conjugal transfer of the Ti plasmid suggests that a relationship may exist between the processes that control the transfer of the T-DNA from Agrobacterium to plant cells and the conjugal transfer of the Ti plasmid between bacterial cells.  相似文献   

16.
Agrobacterium tumefaciens NT1 harboring pSaB4, which contains the 14-kb BamHI fragment 4 from the octopine/mannityl opine-type Ti plasmid pTi15955, grew well with agropine (AGR) but slowly with mannopine (MOP) as the sole carbon source. When a second plasmid encoding a dedicated transport system for MOP was introduced, these cells grew well with both AGR and MOP. Transposon insertion mutagenesis and subcloning identified a 5.7-kb region of BamHI fragment 4 that encodes functions required for the degradation of MOP. DNA sequence analysis revealed seven putative genes in this region: mocD (moc for mannityl opine catabolism) and mocE, oriented from right to left, and mocRCBAS, oriented from left to right. Significant identities exist at the nucleotide and derived amino acid sequence levels between these moc genes and the mas genes that are responsible for opine biosynthesis in crown gall tumors. MocD is a homolog of Mas2, the anabolic conjugase encoded by mas2'. MocE and MocC are related to the amino half and the carboxyl half, respectively, of Mas1 (MOP reductase), the second enzyme for MOP biosynthesis. These results indicate that the moc and mas genes evolved from a common origin. MocR and MocS are related to each other and to a putative repressor for the AGR degradation system encoded by the rhizogenic plasmid pRiA4. MocB and MocA are homologs of 6-phosphogluconate dehydratase and glucose-6-phosphate dehydrogenase, respectively. Mutations in mocD and mocE, but not mocC, are suppressed by functions encoded by the chromosome or the 450-kb megaplasmid present in many Agrobacterium isolates. We propose that moc genes derived from genes located elsewhere in the bacterial genome and that the tumor-expressed mas genes evolved from the bacterial moc genes.  相似文献   

17.
Four genes coding for small heat shock proteins (sHsps) were identified in the genome sequence of Agrobacterium tumefaciens, one on the circular chromosome (hspC), one on the linear chromosome (hspL), and two on the pAT plasmid (hspAT1 and hspAT2). Induction of sHsps at elevated temperatures was revealed by immunoblot analyses. Primer extension experiments and translational lacZ fusions demonstrated that expression of the pAT-derived genes and hspL is controlled by temperature in a regulon-specific manner. While the sHsp gene on the linear chromosome turned out to be regulated by RpoH (sigma32), both copies on pAT were under the control of highly conserved ROSE (named for repression of heat shock gene expression) sequences in their 5' untranslated region. Secondary structure predictions of the corresponding mRNA strongly suggest that it represses translation at low temperatures by masking the Shine-Dalgarno sequence. The hspC gene was barely expressed (if at all) and not temperature responsive.  相似文献   

18.
Upon incubation of Agrobacterium tumefaciens A348 with acetosyringone, the vir genes encoded by the Ti (tumor-inducing) plasmid are induced. The addition of certain opines, including octopine, nopaline, leucinopine, and succinamopine, enhanced this induction 2- to 10-fold. The compounds mannopine, acetopine, arginine, pyruvate, and leucine did not stimulate the induction of the vir genes to such an extent. The enhancement of vir gene induction by opines depended on acetosyringone and the genes virA and virG. Opines stimulated the activity of the vir genes, the double-stranded cleavage of the T (transferred)-DNA at the border repeat sequences, and the production of T-strands by the bacterium. The transformation efficiency of cotton shoot tips was markedly increased by the addition of acetosyringone and nopaline at the time of infection.  相似文献   

19.
Plasmid required for virulence of Agrobacterium tumefaciens.   总被引:130,自引:73,他引:57       下载免费PDF全文
The irreversible loss of crown gall-inducing ability of Agrobacterium tumefaciens strain C-58 during growth at 37 C is shown to be due to loss of a large plasmid (1.2 X 10-8 daltons). The gene responsible for this high rate of plasmid loss at elevated temperatures seems to be located on the plasmid. In addition, another spontaneous avirulent variant, A. tumefaciens strain IIBNV6 is shown to lack the virulence plasmid which its virulent sibling strain, IIBV7, possesses. Deoxyribonucleic acid reassociation measurements prove that the plasmid is eliminated, not integrated into the chromosome, in both of the avirulent derivatives. Transfer of virulence from donor strain C-58 to avirulent recipient strain A136 results from the transfer of a plasmid, which appears identical to the donor plasmid by deoxyribonucleic acid reassociation measurements. The transfer of virulence in another cross, K27 X A136, was also shown to result from the transfer of a large plasmid. These findings establish unequivocally that the large plasmid determines virulence. Two additional genetic determinants have been located on the virulence plasmid of A. tumefaciens strain C-58: the ability to utilize nopaline and sensitivity to a bacteriocin produced by strain 84. The latter trait can be exploited for selection of avirulent plasmid-free derivatives of strain C-58. The trait of nopaline utilization appears to be on the virulence plasmid also in strains IIBV7 and K27.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号