首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Results from laboratory feeding experiments have shown that elevated atmospheric carbon dioxide can affect interactions between plants and insect herbivores, primarily through changes in leaf nutritional quality occurring at elevated CO2. Very few data are available on insect herbivory in plant communities where insects can choose among species and positions in the canopy in which to feed. Our objectives were to determine the extent to which CO2-induced changes in plant communities and leaf nutritional quality may affect herbivory at the level of the entire canopy. We introduced equivalent populations of fourth instar Spodoptera eridania, a lepidopteran generalist, to complex model ecosystems containing seven species of moist tropical plants maintained under low mineral nutrient supply. Larvae were allowed to feed freely for 14 days, by which time they had reached the seventh instar. Prior to larval introductions, plant communities had been continuously exposed to either 340 l CO2 l–1 or to 610 l CO2 l–1 for 1.5 years. No major shifts in leaf nutritional quality [concentrations of N, total non-structural carbohydrates (TNC), sugar, and starch; ratios of: C/N, TNC/N, sugar/N, starch/N; leaf toughness] were observed between CO2 treatments for any of the species. Furthermore, no correlations were observed between these measures of leaf quality and leaf biomass consumption. Total leaf area and biomass of all plant communities were similar when caterpillars were introduced. However, leaf biomass of some species was slightly greater-and for other species slightly less (e.g. Cecropia peltata)-in communities exposed to elevated CO2. Larvae showed the strongest preference for C. peltata leaves, the plant species that was least abundant in all communites, and fed relatively little on plants species which were more abundant. Thus, our results indicate that leaf tissue quality, as described by these parameters, is not necessarily affected by elevated CO2 under relatively low nutrient conditions. Hence, the potential importance of CO2-induced shifts in leaf nutritional quality, as determinants of herbivory, may be overestimated for many plant communities growing on nutrient-poor sites if estimates are based on traditional laboratory feeding studies. Finally, slight shifts in the abundance of leaf tissue of various species occurring under elevated CO2 will probably not significantly affect herbivory by generalist insects. However, generalist insect herbivores appear to become more dependent on less-preferred plant species in cases where elevated CO2 results in reduced availability of leaves of a favoured plant species, and this greater dependency may eventually affect insect populations adversely.  相似文献   

2.
The direct and indirect effects of increasing levels of atmospheric carbon dioxide (CO2) on plant nitrogen (N) content were studied in a shortgrass steppe ecosystem in northeastern Colorado, USA. Beginning in 1997 nine experimental plots were established: three open-top chambers with ambient CO2 levels (approximately 365 mol mol–1), three open-top chambers with twice-ambient CO2 levels (approximately 720 mol mol–1), and three unchambered control plots. After 3 years of growing-season CO2 treatment, the aboveground N concentration of plants grown under elevated atmospheric CO2 decreased, and the carbon–nitrogen (C:N) ratio increased. At the same time, increased aboveground biomass production under elevated atmospheric CO2 conditions increased the net transfer of N out of the soil of elevated-CO2 plots. Aboveground biomass production after simulated herbivory was also greater under elevated CO2 compared to ambient CO2. Surprisingly, no significant changes in belowground plant tissue N content were detected in response to elevated CO2. Measurements of individual species at peak standing phytomass showed significant effects of CO2 treatment on aboveground plant tissue N concentration and significant differences between species in N concentration, suggesting that changes in species composition under elevated CO2 will contribute to overall changes in nutrient cycling. Changes in plant N content, driven by changes in aboveground plant N concentration, could have important consequences for biogeochemical cycling rates and the long-term productivity of the shortgrass steppe as atmospheric CO2 concentrations increase.  相似文献   

3.
Mangroves, woody halophytes restricted to protected tropical coasts, form some of the most productive ecosystems in the world, but their capacity to act as a carbon source or sink under climate change is unknown. Their ability to adjust growth or to function as potential carbon sinks under conditions of rising atmospheric CO2 during global change may affect global carbon cycling, but as yet has not been investigated experimentally. Halophyte responses to CO2 doubling may be constrained by the need to use carbon conservatively under water-limited conditions, but data are lacking to issue general predictions. We describe the growth, architecture, biomass allocation, anatomy, and photosynthetic physiology of the predominant neotropical mangrove tree, Rhizophora mangle L., grown solitarily in ambient (350 ll–1) and double-ambient (700 ll–1) CO2 concentrations for over 1 year. Mangrove seedlings exhibited significantly increased biomass, total stem length, branching activity, and total leaf area in elevated CO2. Enhanced total plant biomass under high CO2 was associated with higher root:shoot ratios, relative growth rates, and net assimilation rates, but few allometric shifts were attributable to CO2 treatment independent of plant size. Maximal photosynthetic rates were enhanced among high-CO2 plants while stomatal conductances were lower, but the magnitude of the treatment difference declined over time, and high-CO2 seedlings showed a lower Pmax at 700 ll–1 CO2 than low-CO2 plants transferred to 700 ll–1 CO2: possible evidence of downregulation. The relative thicknesses of leaf cell layers were not affected by treatment. Stomatal density decreased as epidermal cells enlarged in elevated CO2. Foliar chlorophyll, nitrogen, and sodium concentrations were lower in high CO2. Mangroves grown in high CO2 were reproductive after only 1 year of growth (fully 2 years before they typically reproduce in the field), produced aerial roots, and showed extensive lignification of the main stem; hence, elevated CO2 appeared to accelerate maturation as well as growth. Data from this long-term study suggest that certain mangrove growth characters will change flexibly as atmospheric CO2 increases, and accord with responses previously shown in Rhizophora apiculata. Such results must be integrated with data from sea-level rise studies to yield predictions of mangrove performance under changing climate.  相似文献   

4.
Summary Photosynthetic rates and nutrient contents of spruce needles were measured in a region with high levels of air pollution in NE Bavaria, Germany (FRG), and compared to spruce grown under clean air conditions at Craigieburn, in the South Island of New Zealand (NZ). The absolute rates of CO2 uptake, the slope of the CO2 response curve at 240 l l–1 internal CO2 concentration, and the change of photosynthetic rates with needle age at ambient and saturated CO2 concentrations were virtually identical at both measuring sites. These results confirm an earlier conclusion, that there is no long-term effect of atmospheric pollutants directly on photosynthetic CO2 uptake rates with persistent exposure at the FRG site to high levels of anthropogenic air pollution. Photosynthetic capacity at saturating CO2 concentration was three times higher in the NZ spruce. Needles with high photosynthetic capacity in NZ had lower nitrogen and higher calcium concentrations per unit dry weight but higher concentrations of nitrogen, phosphorus, potassium, magnesium and calcium per unit leaf area, and twice the specific leaf weight.  相似文献   

5.
Two-year-old sweet chestnut trees were grown outside in normal or double CO2 atmospheric concentration. In spring and in autumn of two growing seasons, a six day labelling pulse of14C labelled CO2 was used to follow the carbon assimilation and distribution in the plant-soil system. Doubling atmospheric CO2 had a significant effect on the tree net carbon uptake. A large proportion of the additional C uptake was lost through the root system. This suggests that increased C uptake under elevated CO2 conditions increases C cycling without necessarily increasing C storage in the plant. Total root derived material represented a significant amount of the extra-assimilated carbon due to the CO2 treatment and was strongly correlated with the phenological stage of the tree. Increasing root rhizodeposition led to a stimulation of microbial activity, particularly near the end of the growing season. When plant rhizodeposition was expressed as a function of the root dry weight, the effect of increasing CO2 resulted in a higher root activity. The C to N ratios were significantly higher for trees grown under elevated CO2 except for the fine root compartment. An evaluation of the plant-soil system nitrogen dynamics showed, during the second season of CO2 treatment, a decrease of soil N mineralization rate and total N uptake for trees grown at elevated CO2 levels.  相似文献   

6.
Summary In order to document the natural CO2 environment of the moss Hylocomium splendens, and ascertain whether or not the moss was adapted to this, and its interactions with other microenvironmental factors, two studies were carried out. Firstly, the seasonal variations of CO2 concentration, photosynthetically active radiation (PAR), tissue water content and temperature were measured in the natural microenvironment of H. splendens in a subarctic forest during the summer period (July–September). Secondly, the photosynthetic responses of the species to controlled CO2 concentrations, PAR, temperature, and hydration were measured in the laboratory. CO2 concentrations around the upper parts of the plant, when PAR was above the compensation point (30 mol m–2 s–1), were mostly between 400 and 450 ppm. They occasionally increased up to 1143 ppm for short periods. PAR flux densities below saturating light levels for photosynthesis (100 mol m–2 s–1), occurred during 65% (July), 76% (August) and 96% (September) of the hours of the summer period. The temperature optimum of photosynthesis was 20° C: this temperature coincided with PAR above the compensation point during 5%, 6% and 0% of the time in July, August and September, respectively. Optimal hydration of tissues was infrequent. Hence PAR, temperature and water limit CO2 uptake for most of the growing season. Our data suggest that the higher than normal ambient CO2 concentration in the immediate environment of the plant counteracts some of the limitations in PAR supply that it experiences in its habitat. This species already experiences concentrations of atmospheric CO2 predicted to occur over the next 50 years.  相似文献   

7.
Leaf photosynthesis rate of the C4 species Paspalum plicatulum Michx was virtually CO2-saturated at normal atmospheric CO2 concentration but transpiration decreased as CO2 was increased above normal concentrations thereby increasing transpiration efficiency. To test whether this leaf response led growth to be CO2-sensitive when water supply was restricted, plants were grown in sealed pots of soil as miniature swards. Water was supplied either daily to maintain a constant water table, or at three growth restricting levels on a 5-day drying cycle. Plants were either in a cabinet with normal air (340 mol (CO2) mol-1 (air)) or with 250 mol mol-1 enrichment. Harvesting was by several cycles of defoliation.With abundant water supply high CO2 concentration did not cause increased growth, but it did not cause an increase in growth over a wide range of growth-limiting water supplies either. Only when water supply was less than 30–50% of the amount used by the stand with a water-table was there evidence that dry weight growth was enhanced by high CO2. In addition, with successive regrowth, the enhancing effect under a regime of minimal water allocations, became attenuated. Examination of leaf gas exchange, growth and water use data showed that in the long term stomatal conductance responses were of little significance in matching plant water use to low water allocation; regulation of leaf area was the mechanism through which consumption matched supply. Since high CO2 effects operate principally via stomatal conductance in C4 species, we postulate that for this species higher CO2 concentrations expected globally in future will not have much effect on long term growth.  相似文献   

8.
Summary Artemisia tridentata seedlings were grown under carbon dioxide concentrations of 350 and 650 l l–1 and two levels of soil nutrition. In the high nutrient treatment, increasing CO2 led to a doubling of shoot mass, whereas nutrient limitation completely constrained the response to elevated CO2. Root biomass was unaffected by any treatment. Plant root/shoot ratios declined under carbon dioxide enrichment but increased under low nutrient availability, thus the ratio was apparently controlled by changes in carbon allocation to shoot mass alone. Growth under CO2 enrichment increased the starch concentrations of leaves grown under both nutrient regimes, while increased CO2 and low nutrient availability acted in concert to reduce leaf nitrogen concentration and water content. Carbon dioxide enrichment and soil nutrient limitation both acted to increase the balance of leaf storage carbohydrate versus nitrogen (C/N). The two treatment effects were significantly interactive in that nutrient limitation slightly reduced the C/N balance among the high-CO2 plants. Leaf volatile terpene concentration increased only in the nutrient limited plants and did not follow the overall increase in leaf C/N ratio. Grasshopper consumption was significantly greater on host leaves grown under CO2 enrichment but was reduced on leaves grown under low nutrient availability. An overall negative relationship of consumption versus leaf volatile concentration suggests that terpenes may have been one of several important leaf characteristics limiting consumption of the low nutrient hosts. Digestibility of host leaves grown under the high CO2 treatment was significantly increased and was related to high leaf starch content. Grasshopper growth efficiency (ECI) was significantly reduced by the nutrient limitation treatment but co-varied with leaf water content.  相似文献   

9.
The CO2 concentration of the atmosphere has increased by almost 30% in the past two centuries, with most of the increase (>5 Pa) during the past 60 years. Controlled environment studies of crop plants dependent on the C3 photosynthetic pathway indicate that an increase of this magnitude would enhance net photosynthesis, reduce stomatal conductance, and increase the difference in CO2 concentration across the stomata, i.e., CO2 concentration outside the leaf to that within (c a-c i). Here we report evidence, based on stable isotope composition of tree rings from three species of field-grown, native conifer trees, that the trees have indeed responded. However, rather than increasing c a-c i, intercellular CO2 concentrations have shifted upward to match the rise in atmospheric concentrations, holding c a-c i constant. No differences were detected among Douglas-fir (Pseudotsuga menziesii), ponderosa pine (Pinus ponderosa), or western white pine (Pinus monticola). The values of c a-c i were inferred from stable carbon isotope ratio (13C) of tree ring holocellulose adjusted for the 0.6–2.6 difference between holocellulose and whole sapwood. The cellulose extraction removed contaminants deposited in the tree ring after it formed and the adjustment corrected for the enrichment of cellulose relative to whole tissue. The whole sapwood values were then adjusted for bublished estimates of past atmospheric 13CO2 and CO2 concentrations. To avoid confounding tree age with CO2, cellulose deposited by saplings in the 1980s was compared to cellulose deposited in the inner rings of nature trees when the mature trees were saplings, between 1910–1929 and 1941–1970; thus saplings were compared to saplings. In a separate analysis, the juvenile effect, which describes the tendency for 13C to increase in the first decades of a tree's life, was quantified independent of source CO2 effects. This study provides evidence that conifers have undergone adjustments in the intercellular CO2 concentration that have maintained c a-c i constant. Based on these results and others, we suggest that c a-c i, which has also been referred to as the intrinsic water-use efficiency, should be considered a homeostatic gas-exchange set point for these conifer species.  相似文献   

10.
Susan Marks  Keith Clay 《Oecologia》1990,84(2):207-214
Summary Increasing atmospheric carbon dioxide (CO2) concentration is expected to increase plant productivity and alter plant/plant interactions, but little is known about its effects on symbiotic interactions with microorganisms. Interactions between perennial ryegrass, Lolium perenne (a C3 plant), and purpletop grass, Tridens flavus (a C4 plant), and their clavicipitaceous fungal endophytes (Acremonium lolii and Balansia epichloe, respectively) were investigated by growing the grasses under 350 and 650 l l 1 CO2 at two nutrient levels. Infected and uninfected perennial ryegrass responded with increased growth to both CO2 enrichment and nutrient addition. Biomass and leaf area of infected and uninfected plants responded similarly to CO2 enrichment. When growth analysis parameters were calculated, there were significant increases in relative growth rate and net assimilation rate of infected plants compared to uninfected plants, although the differences remained constant across CO2 and nutrient treatments. Growth of purpletop grass did not increase with CO2 enrichment or nutrient addition and there were no significant differences between infected and uninfected plants. CO2 enrichment did not alter the interactions between these two host grasses and their endophytic-fungal symbionts.  相似文献   

11.
Bernd Schäppi 《Oecologia》1996,106(1):93-99
Leaf expansion, population dynamics and reproduction under elevated CO2 were studied for two dominant and four subdominant species in a high alpine grassland (2500 above sea level, Swiss Central Alps). Plots of alpine heath were exposed to 335 l l-1 and 680 l l-1 CO2 in open-top chambers over three growing seasons. Treatments also included natural and moderately improved mineral nutrient supply (40 kg N ha-1 year-1 in an NPK fertilizer mix). Seasonal dynamics of leaf expansion, which was studied for the dominant graminoid Carex curvula only, were not affected by elevated CO2 during two warm seasons or during a cool season. Improved nutrient supply increased both the expansion rate and the duration of leaf growth but elevated CO2 did not cause any further stimulation. Plant and tiller density (studied in all species) increased under elevated CO2 in the codominant Leontodon helveticus and the subdominant Trifolium alpinum, remained unchanged in two other minor species Poa alpina and Phyteuma globulariifolium, and decreased in Carex curvula. In Potentilla aurea elevated CO2 compensated for a natural decline in shoot number. By year 3 the number of fertile shoots in Leontodon and individual seed weight in Carex were slightly increased under elevated CO2, indicating CO2 effects on sexual reproduction in these two dominant species. The results suggest that the effects of elevated CO2 on the population dynamics of the species studied were not general, but species-specific and rather moderate effects. However, the reduction of tiller density in Carex curvula, in contrast to the increases observed in Leontodon helveticus and Trifolium alpinum, indicates that elevated CO2 may negatively affect the abundance of the species most characteristic of this alpine plant community.  相似文献   

12.
Qilian juniper (Sabina przewalskii Kom.) and Qinghai spruce (Picea crassifolia Kom.) represent different tree functional types, which can be found extensively in northwestern China. The former is drought-tolerant, whereas the latter is hygrophilous and shade-tolerant. We compared their intrinsic water-use efficiency (iWUE, inferred from carbon isotopic discrimination, δ13C, in their wood) as a function of atmospheric CO2 concentration, [CO2], and climate. δ13C of spruce was consistently about higher than that of juniper in semi-arid areas but was lower in arid areas. This difference was stable over time and demonstrated strong cross-correlations between species, although some subtle high-frequency (2 or 3 years) variations existed in both species, suggesting that regional climate may control carbon isotope discrimination. The ratio (the [CO2] values in leaf intercellular and the atmosphere, respectively) of the juniper increased steadily over time, whereas that of the spruce showed a long-term downward trend. IWUE increased at all sites over the 150-year study period, mainly caused by increasing [CO2]. The relationship between iWUE and [CO2] reveals that the spruce was more sensitive than the juniper to increasing [CO2], suggesting a species-specific adaptation to long-term environmental changes. Correlations between the high-frequency variations in stable carbon discrimination (Δ) and climate indicate similar intra-site responses to climate in both species, but different response strengths. Overall, complex interactions of temperature and moisture on stable carbon discrimination during current growth seasons of both species were environmental-determined. Regulation of gas exchange and reduced transpiration may influence water and energy budgets directly; therefore species-dependent responses of trees to elevated CO2 should be considered in future research on global plant physiological ecology.  相似文献   

13.
Physiological responses to elevated CO2 at the leaf and canopy-level were studied in an intact pine (Pinus taeda) forest ecosystem exposed to elevated CO2 using a free-air CO2 enrichment (FACE) technique. Normalized canopy water-use of trees exposed to elevated CO2 over an 8-day exposure period was similar to that of trees exposed to current ambient CO2 under sunny conditions. During a portion of the exposure period when sky conditions were cloudy, CO2-exposed trees showed minor (7%) but significant reductions in relative sap flux density compared to trees under ambient CO2 conditions. Short-term (minutes) direct stomatal responses to elevated CO2 were also relatively weak (5% reduction in stomatal aperture in response to high CO2 concentrations). We observed no evidence of adjustment in stomatal conductance in foliage grown under elevated CO2 for nearly 80 days compared to foliage grown under current ambient CO2, so intrinsic leaf water-use efficiency at elevated CO2 was enhanced primarily by direct responses of photosynthesis to CO2. We did not detect statistical differences in parameters from photosynthetic responses to intercellular CO2 (A net-C i curves) for Pinus taeda foliage grown under elevated CO2 (550 mol mol–1) for 50–80 days compared to those for foliage grown under current ambient CO2 from similar-sized reference trees nearby. In both cases, leaf net photosynthetic rate at 550 mol mol–1 CO2 was enhanced by approximately 65% compared to the rate at ambient CO2 (350 mol mol–1). A similar level of enhancement under elevated CO2 was observed for daily photosynthesis under field conditions on a sunny day. While enhancement of photosynthesis by elevated CO2 during the study period appears to be primarily attributable to direct photosynthetic responses to CO2 in the pine forest, longer-term CO2 responses and feedbacks remain to be evaluated.  相似文献   

14.
Summary Elodea canadensis grows over a wide range of inorganic carbon, nutrient, and light conditions in lakes and streams. Affinity for HCO 3 - use during photosynthesis ranged from strong to weak in Elodea collected from seven localities with different HCO 3 - and CO2 concentrations. The response to HCO 3 - was also very plastic in plants grown in the laboratory at high HCO 3 - concentrations and CO2 concentrations varying from 14.8 to 2,200 M. Bicarbonate affinity was markedly reduced with increasing CO2 concentrations in the growth medium so that ultimately HCO 3 - use was not detectable. High CO2 concentrations also decreased CO2 affinity and induced high CO2 compensation points (360M CO2) and tenfold higher half-saturation values (800 M CO2).The variable HCO 3 - affinity is probably environmentally based. Elodea is a recently introduced species in Denmark, where it reproduces only vegetatively, leaving little opportunity for genetic variation. More important, local populations in the same water system had different HCO 3 - affinities, and a similar variation was created by exposing one plant collection to different laboratory conditions.Bicarbonate use enabled Elodea to photosynthesize rapidly in waters of high alkalinity and enhanced the carbon-extracting capacity by maintaining photosynthesis above pH 10. On the other hand, use of HCO 3 - represents an investment in transport apparatus and energy which is probably not profitable when CO2 is high and HCO 3 - is low. This explanation is supported by the findings that HCO 3 - affinity was low in field populations where HCO 3 - was low (0.5 and 0.9 m M) or CO2 was locally high, and that HCO 3 - affinity was suppressed in the laboratory by high CO2 concentrations.Abbreviations DIC dissolved inorganic carbon (CO2+ HCO 3 - +CO 3 - ) - CO2 compensation point - K 1/2 apparent halfsaturation constant - PHCO 3 interpolated photosynthesis in pure HCO 3 - and zero CO2 - Pmax photosynthetic rate under carbon and light saturation  相似文献   

15.
Phaseolus vulgaris (cv. Hawkesbury Wonder) was grown over a range of NaCl concentrations (0–150 mM), and the effects on growth, ion relations and photosynthetic performance were examined. Dry and fresh weight decreased with increasing external NaCl concentration while the root/shoot ratio increased. The Cl- concentration of leaf tissue increased linearly with increasing external NaCl concentration, as did K+ concentration, although to a lesser degree. Increases in leaf Na+ concentration occurred only at the higher external NaCl concentrations (100 mM). Increases in leaf Cl- were primarily balanced by increases in K+ and Na+. X-ray microanalysis of leaf cells from salinized plants showed that Cl- concentration was high in both the cell vacuole and chloroplast-cytoplasm (250–300 mM in both compartments for the most stressed plants), indicating a lack of effective intracellular ion compartmentation in this species. Salinity had little effect on the total nitrogen and ribulose-1,5-bisphosphate (RuBP) carboxylase (EC 4.1.1.39) content per unit leaf area. Chlorophyll per unit leaf area was reduced considerably by salt stress, however. Stomatal conductance declined substantially with salt stress such that the intercellular CO2 concentration (C i) was reduced by up to 30%. Salinization of plants was found to alter the 13C value of leaves of Phaseolus by up to 5 and this change agreed quantitatively with that predicted by the theory relating carbon-isotope fractionation to the corresponding measured intercellular CO2 concentration. Salt stress also brought about a reduction in photosynthetic CO2 fixation independent of altered diffusional limitations. The initial slope of the photosynthesis versus C i response declined with salinity stress, indicating that the apparent in-vivo activity of RuBP carboxylase was decreased by up to 40% at high leaf Cl- concentrations. The quantum yield for net CO2 uptake was also reduced by salt stress.Abbreviations and symbols A net CO2 assimilation rate - C a ambient CO2 concentration - C i intercellular CO2 concentration - RuBP ribulose-1,5-bisphosphate - 13C ratio of 13C to 12C relative to standard limestone  相似文献   

16.
Intra- and inter-tree variations in 13C/12C ratios were studied within a single clone plantation of 20-year-old Sitka spruce, some of which were treated with mist simulating acidic cloud water. For groups of trees of similar height and the same treatment, sampled at the same whorl height, 13C values for current year needles showed variations (1 SD) of between 0.2 and 0.7. The variations reflect the seasonally averaged influences, on intercellular CO2 concentrations, of slight variations in the microhabitat within a group. For a typical intra-group variation of 0.4 one may be able to distinguish between groups whose mean intercellular CO2 concentrations differ by only 8 ppm. Acid misting resulted in a lowering of 13C values by c. 0.7 (significant at the P0.05 level). This reflects higher intercellular CO2 concentrations for acid misted trees, which can be interpreted in terms of their having assimilation rates c. 10% lower than those of control trees, and might explain the observed reduction in stem growth for acid-misted trees. Without careful attention to sampling strategy, however, these small inter-tree 13C variations can be easily masked by the much larger intra-tree variations with height. Large gradients of increasing needle 13C with height, of c. 0.5 m-1, were observed in two untreated trees of different total height. The gradient was similar for both trees so, though 13C values of both trees were identical close to their leaders (–27), the taller tree displayed much lower values close to the ground (–31). The gradients are believed to reflect lower light levels close to the ground, rather than the accumulation of respired CO2 in the atmosphere. The different height response of stems versus needles, reflected by an increase in 13Cstems13Cneedles with height (for cellulose), is discussed in terms of stem photosynthetic recapture of internally respired CO2.  相似文献   

17.
Freedman  A.  Cavender-Bares  J.  Kebabian  P.L.  Bhaskar  R.  Scott  H.  Bazzaz  F.A. 《Photosynthetica》2002,40(1):127-132
Leaf level net photosynthetic rates (P N) of laurel oak (Quercus hemispherica) juveniles grown under contrasting nutrient and CO2 regimes were negatively correlated with red to far-red ratios, R/FR (690/760 nm), steady-state, solar-excited fluorescence ratios (r 2 = 0.66, n = 12) measured across 12 plant canopies. Laurel oak juveniles that had been subjected to nitrogen stress over a period of a year demonstrated higher R/FR than their counterparts that had been provided with sufficient nitrogen. Plants that had been grown at elevated CO2 concentrations, EC [700 mol (CO2) mol-1] also exhibited significantly higher R/FR when subjected to normal ambient carbon dioxide concentrations than their counterparts grown under ambient concentrations, AC [380 mol (CO2) mol-1]. All fluorescence measurements were obtained by observing a multi-plant canopy using a unique solar-blind passive sensor. This sensor, which utilizes Fraunhofer-line discrimination techniques, detects radiation at the cores of the lines comprising the atmospheric oxygen A- and B-bands, centered at 762 and 688 nm, respectively. These results support the use of solar-excited steady-state plant fluorescence as a potential tool for remote measurement of canopy radiation use efficiency.  相似文献   

18.
Relative importance of short-term environmental interaction and preconditioning to CO2 exchange response was examined in Fragaria ananasa (strawberry, cv. Quinault). Tests included an orthogonal comparison of 15 to 60-min and 6 to 7-h exposures to different levels of temperature (16 to 32°C), photosynthetically active radiation (PAR, 200 to 800 E m2 s-1), and CO2 (300 to 600 l/l) on successive days of study. Plants were otherwise maintained at 21°C, 300 E m2 s-1 PAR and 300–360 l/l CO2 as standard conditions. Treatment was restricted to the mean interval of 14 h daily illumination and the first 3–4 days of each test week over a 12-week cultivation period. CO2 exchange rates were followed with each step-change in environmental level including ascending/descending temperature/PAR within a test period, initial response at standard conditions on successive days of testing, and measurement at reduced O2. Response generally supported prior concepts of leaf biochemical modeling in identifying CO2 fixation as the major site of environmental influence, while overall patterns of whole plant CO2 exchange suggested additional effects for combined environmental factors and preconditioning. These included a positive interaction between temperature and CO2 concentration on photosynthesis at high irradiance and a greater contribution by dark respiration at lower PAR than previously indicated. The further importance of estimating whole plant CO2 exchange from repetitive tests and measurements was evidenced by a high correlation of response to prior treatment both during the daily test period and on consecutive days of testing.Abbreviations C3 plant a plant in which the product of CO2 fixation is a 3-carbon acid (3-phosphoglyceric acid) - IRGA intra-red gas analyzer - PAR photosynthetically active radiation - RH relative humidity - RuBisCO ribulose-1,5-bisphosphate carboxylase/oxygenase Reference to a company and/or product named by the Department is only for purposes of information and does not imply approval or recommendation of the product to the exclusion of others which may also be suitable.  相似文献   

19.
Photosynthetic gas exchange characteristics of two common boreal forest mosses, Sphagnum (section acutifolia) and Pleurozium schreberi, were measured continuously during the time required for the moss to dry out from full hydration. Similar patterns of change in CO2 assimilation with variation in water content occurred for both species. The maximum rates of CO2 assimilation for Sphagnum (approx. 7 mol m–2 s–1) occurred at a water content of approximately 7 (fresh weight/dry weight) while for Pleurozium the maximum rate (approx. 2 mol m–2 s–1) occurred at a water content of approximately 6 (fresh weight/dry weight). Above and below these water contents CO2 assimilation declined. In both species total conductance to water vapour (expressed as a percentage of the maximum rates) remained nearly constant at a water content above 9 (fresh weight/dry weight), but below this level declined in a strong linear manner. Short-term, on-line 13CO2 and C18O16O discrimination varied substantially with changes in moss water content and associated changes in the ratio of chloroplast CO2 to ambient CO2 partial pressure. At full hydration (maximum water content) both Sphagnum and Pleurozium had similar values of 13CO2 discrimination (approx. 15). Discrimination against 13CO2 increased continuously with reductions in water content to a maximum of 27 in Sphagnum and 22 in Pleurozium. In a similar manner C18C16O discrimination increased from approximately 30 at full hydration in both species to a maximum of 150 in Sphagnum and 90 in Pleurozium, at low water content. The observed changes in C18O16O were strongly correlated to predictions of a mechanistic model of discrimination processes. Field measurements of moss water content suggested that photosynthetic gas exchange by moss in the understory of a black spruce forest was regularly limited by low water content.  相似文献   

20.
To study whether responses of antioxidative enzymes to enhanced atmospheric CO2 concentrations are affected by plant nutrition, the activities of superoxide dismutase, catalase and peroxidase were investigated in leaves of 3-year-old beech trees grown with low (0.1 × optimum), intermediate (0.5 × optimum) and high (2 × optimum) nutrient supply rates in open-top chambers at either ambient (~ 355 μmol mol?1) or elevated (700 μmol mol?1) CO2 concentrations. These treatments resulted in foliar C/N ratios of about 20 in the presence of high and > 30 in the presence of low nutrient supply rates. Pigment and malon-dialdehyde contents were determined to assess plant stress levels. Low nutrient supply rates caused pigment loss, whereas elevated CO2 had no effect on pigmentation. Guaiacol peroxidase activities did not respond to either CO2 or nutrient treatment. Catalase activity decreased with decreasing nutrient supply rate and also in response to elevated CO2. Superoxidase dismutase activity was affected by both nutrient supply and CO2 concentration. In leaves from trees grown with the high-nutrient treatment, superoxide dismutase activity was low irrespective of CO2 concentration. In chlorotic leaves, superoxide dismutase activity was increased, suggesting an enhanced need for detoxification of reactive oxygen species. Leaves from plants grown under elevated CO2 with medium nutrient supply rates showed decreased malondialdehyde contents and superoxide dismutase activities. This suggests that the intrinsic oxidative stress of leaves was decreased under these conditions. These results imply that intrinsic oxidative stress is modulated by the balance between N and C assimilation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号