首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Crystalline, alpha-glucosidase-free sweet potato beta-amylase was found to catalyze hydration of the enolic bond of maltal (alpha-D-glucopyranosyl-(1----4)-2-deoxy-D-glucal) to form 2-deoxymaltose (alpha-D-glucopyranosyl-(1----4)-2-deoxy-D-glucose). The reaction at pH 5.0 showed Vmax 0.082 mumol/min/mg and km 94.5 mM. An exceptionally large solvent deuterium isotope effect, VH/VD = 8, was observed from pH(pD) 4.2 to 5.4; and at pH(pD) 5.0 the effect was found to be directly related to the mole fraction of 2H. The hydration product, isolated from a beta-amylase/maltal digest in acetate-d4/D2O buffer (pD 5.4) was identified through its 1H NMR spectrum as alpha-D-glucopyranosyl-(1----4)-2-deoxy-D-[2(a)-2H]glucose. beta-Amylase in 2H2O thus catalyzes deuteration of the double bond of maltal from a direction opposite that assumed for protonation of the glycosidic oxygen atoms of starch chains and maltosaccharides. This finding confirms the functional flexibility of the enzyme's catalytic groups first demonstrated in studies of the reactions catalyzed with alpha- and beta-maltosyl fluoride (Hehre, E. J., Brewer, C. F., and Genghof, D. S. (1979) J. Biol. Chem. 254, 5942-5950). A possible mechanism of the maltal hydration by beta-amylase involves protonation of substrate from above as the first and rate-limiting step, followed by formation of a transient carbonium ion-enzyme intermediate. Although other possible mechanisms cannot be ruled out, it is clear that this hydration reaction differs from reactions catalyzed with amylaceous substrates and with alpha- and beta-maltosyl fluoride. The ability of beta-amylase to catalyze different types of reactions with different substrates is discussed with respect to observations with other enzymes that, likewise, strongly support the view (Hehre et al.) that the catalytic groups of glycosylases in general may be functionally flexible beyond requirements of the principle of microscopic reversibility.  相似文献   

2.
3.
Crystalline Aspergillus niger alpha-glucosidase and highly purified preparations of rice alpha-glucosidase II and Trichoderma reesei trehalase were found to catalyze the hydration of [2-(2)H]-D-gluco-octenitol, i.e., (Z)-3,7-anhydro-1,2-dideoxy-[2-2H]-D-gluco-oct-2-enitol, to yield 1,2-dideoxy-[2-2H]-D-gluco-octulose. In each case, the stereochemistry of the reaction was elucidated by examining the newly formed centers of asymmetry at C-2 and C-3 of the hydration product. The C-1 to C-3 fragment of each isolated [2-2H]-D-gluco-octulose product was recovered as [2-2H]propionic acid and identified by its positive optical rotatory dispersion as the S isomer, showing that each enzyme had protonated the octenitol (at C-2) from above its re face. 1H NMR spectra of enzyme/D-gluco-octenitol digests in D2O showed that the alpha-anomer of [2-2H]-D-gluco-octulose was exclusively produced by each alpha-glucosidase, whereas the beta-anomer was formed by action of the trehalase. The trans hydration catalyzed by the alpha-glucosidases was found to be very strongly inhibited by the substrate; the cis hydration reaction catalyzed by the trehalase showed no such inhibition. Special importance is attached to the finding that in hydrating octenitol each enzyme creates a product of the same anomeric form as in hydrolyzing an alpha-D-glucosidic substrate. This result adds substantially to the growing evidence that individual glycosylases create the configuration of their reaction products by a means that is independent of donor substrate configuration, that is, by a means other than "retaining" or "inverting" substrate configuration.  相似文献   

4.
The product distributions for the reactions of dihydroxyacetone phosphate (DHAP) in D(2)O at pD 7.9 catalyzed by triosephosphate isomerase (TIM) from chicken and rabbit muscle were determined by (1)H NMR spectroscopy using glyceraldehyde 3-phosphate dehydrogenase to trap the first-formed products of the thermodynamically unfavorable isomerization reaction, (R)-glyceraldehyde 3-phosphate (GAP) and [2(R)-(2)H]-GAP (d-GAP). Three products were observed from the reactions catalyzed by TIM: GAP from isomerization with intramolecular transfer of hydrogen (18% of the enzymatic products), d-GAP from isomerization with incorporation of deuterium from D(2)O into C-2 of GAP (43% of the enzymatic products), and [1(R)-(2)H]-DHAP (d-DHAP) from incorporation of deuterium from D(2)O into C-1 of DHAP (40% of the enzymatic products). The ratios of the yields of the deuterium-labeled products d-DHAP and d-GAP from partitioning of the intermediate of the TIM-catalyzed reactions of GAP and DHAP in D(2)O are 1.48 and 0.93, respectively. This provides evidence that the reaction of these two substrates does not proceed through a single, common, reaction intermediate but, rather, through distinct intermediates that differ in the bonding and arrangement of catalytic residues at the enediolate O-1 and O-2 oxyanions formed on deprotonation of GAP and DHAP, respectively.  相似文献   

5.
We investigated the effects of guanidine hydrochloride (GuHCl) and high pressure on the conformational flexibility of the active site of sweet potato beta-amylase by monitoring the sulfhydryl reaction and the enzymatic activity. The reactivity of Cys345 at the active site, one of six inert half cystine residues of this enzyme, was enhanced by GuHCl at concentrations below 0.5 M. A GuHCl-induced change of the active site was also observed through an intensity change in the near-UV circular dichroism (CD) spectrum. On the other hand, the native conformation of sweet potato beta-amylase observed through fluorescence polarization, far-UV CD spectrum and intrinsic fluorescence was not influenced by GuHCl at concentrations below 0.5 M. Therefore, Cys345 reaction caused by GuHCl was due to an alteration of the local conformation of the active site. GuHCl-induced reaction of Cys345, located in the vicinity of subsites 3 and 4, is attributed to enhanced subsite flexibility, which is responsible for substrate slipping in a single-chain attack mechanism. Due to the flexible conformation, the local region of the subsite is more susceptible to GuHCl perturbation than the molecule overall. The enzymatic activity of sweet potato beta-amylase was reversibly inhibited by GuHCl at concentrations below 0.5 M, and kinetic analysis of the enzymatic mechanism showed that GuHCl decreases the kcat value. High pressure below 400 MPa also inactivated sweet potato beta-amylase with an increase in Cys345 reactivity. These findings indicated that excessively enhanced subsite flexibility reduced the enzymatic activity of sweet potato beta-amylase.  相似文献   

6.
Incorporation of deuterium atoms from deuterium-labeled NADPH and 2H2O during the reaction catalyzed by 2,4-dienoyl-CoA reductase of Escherichia coli (E. coli) was investigated. When trans-2,cis-4-decadienoyl-CoA was incubated with 4R- or 4S-[4-2H1]NADPH in the presence of purified 2,4-dienoyl-CoA reductase, no deuterium was detected in the reaction product by gas chromatography-mass spectrometry after derivatization to its pyrrolidine amide. On the other hand, when the dienoyl-CoA was incubated in the presence of NADPH and the reductase in 2H2O, two deuterium atoms were incorporated: One deuterium atom was located at the C-4 position of trans-2-decenoate, and the other at the C-5 position. The UV and shorter wavelengths of the visible spectrum of the reductase solution revealed that the reductase contained flavin as a prosthetic group. Therefore it is considered that a hydrogen atom of NADPH was first transferred to the flavin moiety of the reductase, and then the hydrogen atom was rapidly exchanged for one in the medium before its direct transfer to the substrate.  相似文献   

7.
Hydroperoxide-dependent sulfoxidation catalyzed by soybean microsomes   总被引:1,自引:0,他引:1  
The sulfoxidation of methiocarb, an aromatic-alkyl sulfide pesticide, catalyzed by soybean microsomes was found to be strongly stimulated in the presence of cumene and linoleic acid hydroperoxides. We have shown that this S-oxidation, which does not require cofactors such as NAD(P)H, is an hydroperoxide-dependent reaction: 18O2-labeling experiments demonstrated that the oxygen atom incorporated into the sulfoxide originated from hydroperoxides rather than from molecular oxygen. In the absence of exogenous hydroperoxides, soybean microsomes catalyzed methiocarb sulfoxide formation at a basal rate dependent on their endogenous hydroperoxides, especially those derived from free fatty acids. The nature of the sulfoxidase is discussed. Our results seem to rule out the participation of cytochrome P-450 in this oxidation, whereas the studied sulfoxidase presents some similarities to plant peroxygenase.  相似文献   

8.
9.
S H Hwang  T Nowak 《Biochemistry》1986,25(19):5590-5595
The stereochemistry of the carboxylation of phosphoenolpyruvate to yield oxalacetate, catalyzed by chicken liver phosphoenolpyruvate carboxykinase and by Ascaris muscle phosphoenolpyruvate carboxykinase, was determined. The substrate (Z)-3-fluorophosphoenolpyruvate was used for the stereochemical analysis. The carboxylation reaction was coupled to malate dehydrogenase to yield 3-fluoromalate, and the stereochemistry of the products was identified by 19F NMR. In separate experiments, the enantiomeric tautomers of 3-fluorooxalacetate were shown to be utilized by malate dehydrogenase to yield (2R,3R)- and (2R,3S)-3-fluoromalate in nearly identical amounts. The products were identified by 19F NMR. When (Z)-3-fluorophosphoenolpyruvate was used as a substrate for phosphoenolpyruvate carboxykinase from avian liver and from Ascaris, and malate dehydrogenase was used to trap the product, only a single diastereomer was observed. This product was shown to be (2R,3R)-3-fluoromalate in each case. The assignments were based on coupling constants taken from Keck et al. [Keck, R., Hess, H., & Rétey, J. (1980) FEBS Lett. 114, 287]. These results indicate that the stereochemistry of carboxylation, catalyzed by chicken phosphoenolpyruvate carboxykinase and by Ascaris phosphoenolpyruvate carboxykinase, is identical and takes place from the si side of the enzyme-bound phosphoenolpyruvate. The carboxylation reaction was run both in H2O and in D2O. No deuterium incorporation into fluoromalate was shown to occur. The product 3-fluorooxalacetate is thus released from phosphoenolpyruvate carboxykinase as the keto form and is reduced more rapidly by reduced nicotinamide adenine dinucleotide with malate dehydrogenase than by the occurrence of tautomerization.  相似文献   

10.
The product distributions for the reactions of (R)-glyceraldehyde 3-phosphate (GAP) in D(2)O at pD 7.5-7.9 catalyzed by triosephosphate isomerase (TIM) from chicken and rabbit muscle were determined by (1)H NMR spectroscopy. Three products were observed from the reactions catalyzed by TIM: dihydroxyacetone phosphate (DHAP) from isomerization with intramolecular transfer of hydrogen (49% of the enzymatic products), [1(R)-(2)H]-DHAP from isomerization with incorporation of deuterium from D(2)O into C-1 of DHAP (31% of the enzymatic products), and [2(R)-(2)H]-GAP from incorporation of deuterium from D(2)O into C-2 of GAP (21% of the enzymatic products). The similar yields of [1(R)-(2)H]-DHAP and [2(R)-(2)H]-GAP from partitioning of the enzyme-bound enediol(ate) intermediate between hydron transfer to C-1 and C-2 is consistent with earlier results, which showed that there are similar barriers for conversion of this intermediate to the alpha-hydroxy ketone and aldehyde products (Knowles, J. R., and Albery, W. J. (1977) Acc. Chem. Res. 10, 105-111). However, the observation that the TIM-catalyzed isomerization of GAP in D(2)O proceeds with 49% intramolecular transfer of the (1)H label from substrate to product DHAP stands in sharp contrast with the 相似文献   

11.
The two preceding papers [Powers, V. M., Koo, C. W., Kenyon, G. L., Gerlt, J. A., & Kozarich, J. W. (1991) Biochemistry (first paper of three in this issue); Neidhart, D. J., Howell, P. L., Petsko, G. A., Powers, V. M., Li, R., Kenyon, G. L., & Gerlt, J. A. (1991) Biochemistry (second paper of three in this issue)] suggest that the active site of mandelate racemase (MR) contains two distinct general acid/base catalysts: Lys 166, which abstracts the alpha-proton from (S)-mandelate, and His 297, which abstracts the alpha-proton from (R)-mandelate. In this paper we report on the properties of the mutant of MR in which His 297 has been converted to asparagine by site-directed mutagenesis (H297N). The structure of H297N, solved by molecular replacement at 2.2-A resolution, reveals that no conformational alterations accompany the substitution. As expected, H297N has no detectable MR activity. However, H297N catalyzes the stereospecific elimination of bromide ion from racemic p-(bromomethyl)mandelate to give p-(methyl)-benzoylformate in 45% yield at a rate equal to that measured for wild-type enzyme; the unreacted p-(bromomethyl)mandelate is recovered as (R)-p-(hydroxymethyl)mandelate. At pD 7.5, H297N catalyzes the stereospecific exchange of the alpha-proton of (S)- but not (R)-mandelate with D2O solvent at a rate 3.3-fold less than that observed for incorporation of solvent deuterium into (S)-mandelate catalyzed by wild-type enzyme. The pD dependence of the rate of the exchange reaction catalyzed by H297N reveals a pKa of 6.4 in D2O, which is assigned to Lys 166.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The intrinsic enthalpy changes (corrected for hydration of D-glyceraldehyde 3-phosphate) for the reactions catalyzed by the alpha and beta 2 subunits of tryptophan synthase from Escherichia coli have been determined calorimetrically. Cleavage of indoleglycerol phosphate (alpha reaction) was found to be associated with a delta H value of 54.0 +/- 2.5 kJ mol-1, while condensation of indole with L-serine (beta reaction) involved -80.3 +/- 4.6 kJ mol-1'. By direct determination of the enthalpy concomitant with the overall synthesis of tryptophan from indoleglycerol phosphate and L-serine an enthalpy value of -13.4 +/- 5.6 kJ mol-1 was observed. In view of the uncertainties of the literature data used for calculation of the hydration contribution, the agreement between the directly measured delta H value of the overall reaction and the sum of the enthalpies of the alpha and beta reactions is fair. Deamination of L-serine, a side reaction catalyzed preferentially by the isolated beta 2 pyridoxal 5'-phosphate2 subunit, was shown to be associated with an enthalpy change of -7.3 +/- 0.4 kJ mol-1.  相似文献   

13.
Michaelis constants (Kms) and molecular activities (kos) of phenyl, p-nitrophenyl and p-methylphenyl alpha-maltoside for taka-amylase A catalyzed hydrolyses were determined in H2O and in D2O at pH or pD 5.3 and at 25 degrees C. Production of alpha-maltose in the hydrolysis was confirmed by 1H NMR. Neither substituent nor solvent deuterium isotope effects on Kms for phenyl, p-nitrophenyl and p-methylphenyl alpha-maltosides were detected. On the other hand, substituent effects on kos of these compounds were evident, but the isotope effects on kos were not marked, so that protonation of the substrate in the catalytic reaction might not be rate-limiting. The result indicates that nucleophilic attack of a carboxylate anion of the enzyme upon the protonated substrate is the rate-limiting step in the hydrolysis proceeding through the nucleophilic double displacement mechanism, which involves a covalently bonded glycosyl intermediate. The molecular orbitals of phenyl alpha-D-glucosides as model compounds of phenyl alpha-maltosides were calculated by the AM1 method. From the results, it was concluded that the lowering of the lowest unoccupied molecular orbital (LUMO) energy levels and the increase of distribution of LUMO on the anomeric carbon, C-1, of the compounds are caused by protonation at the glycosidic oxygen from the protonated carboxyl group of the enzyme. This causes acceleration of the hydrolysis of a substrate by the enzyme.  相似文献   

14.
Jih PJ  Chen YC  Jeng ST 《Plant physiology》2003,132(1):381-389
The IPO (ipomoelin) gene was isolated from sweet potato (Ipomoea batatas cv Tainung 57) and used as a molecular probe to investigate its regulation by hydrogen peroxide (H(2)O(2)) and nitric oxide (NO) after sweet potato was wounded. The expression of the IPO gene was stimulated by H(2)O(2) whether or not the plant was wounded, but its expression after wounding was totally suppressed by the presence of diphenylene iodonium, an inhibitor of NADPH oxidase, both in the local and systemic leaves of sweet potato. These results imply that a signal transduction resulting from the mechanical wounding of sweet potato may involve NADPH oxidase, which produces endogenous H(2)O(2) to stimulate the expression of the IPO gene. The production of H(2)O(2) was also required for methyl jasmonate to stimulate the IPO gene expression. On the contrary, NO delayed the expression of the IPO gene, whereas N(G)-monomethyl-L-arginine monoacetate, an inhibitor of NO synthase, enhanced the expression of the IPO gene after the plant was wounded. This study also demonstrates that the production of H(2)O(2) stained with 3,3'-diaminobenzidine hydrochloride could be stimulated by wounding but was suppressed in the presence of NO. Meanwhile, the generation of NO was visualized by confocal scanning microscope in the presence of 4,5-diaminofluorescein diacetate after sweet potato was wounded. In conclusion, when sweet potato was wounded, both H(2)O(2) and NO were produced to modulate the plant's defense system. Together, H(2)O(2) and NO regulate the expression of the IPO gene, and their interaction might further stimulate plants to protect themselves from invasions by pathogens and herbivores.  相似文献   

15.
Microcalorimetry and high performance liquid chromatography have been used to conduct a thermodynamic investigation of reactions catalyzed by anthranilate synthase, the enzyme located at the first step in the biosynthetic pathway leading from chorismate to tryptophan. One of the overall biochemical reactions catalyzed by anthranilate synthase is: chorismate(aq) + ammonia(aq) = anthranilate(aq) + pyruvate(aq) + H2O(l). This reaction can be divided into two partial reactions involving the intermediate 2-amino-4-deoxyisochorismate (ADIC): chorismate(aq) + ammonia(aq) = ADIC(aq) + H2O(l) and ADIC(aq) = anthranilate(aq) + pyruvate(aq). The native anthranilate synthase and a mutant form of it that is deficient in ADIC lyase activity but has ADIC synthase activity were used to study the overall ammonia-dependent reaction and the first of the above two partial reactions, respectively. Microcalorimetric measurements were performed on the overall reaction at a temperature of 298.15 K and pH 7.79. Equilibrium measurements were performed on the first partial (ADIC synthase) reaction at temperatures ranging from 288.15 to 302.65 K, and at pH values from 7.76 to 8.08. The results of the equilibrium and calorimetric measurements were analyzed in terms of a chemical equilibrium model that accounts for the multiplicity of ionic states of the reactants and products. These calculations gave thermodynamic quantities at the temperature 298.15 K and an ionic strength of zero for chemical reference reactions involving specific ionic forms. For the reaction: chorismate2-(aq) + NH4+(aq) = anthranilate-(aq) + pyruvate-(aq) + H+(aq) + H2O(l), delta rHmo = -(116.3 +/- 5.4) kJ mol-1. For the reaction: chorismate2-(aq) + NH4+(aq) = ADIC-(aq) + H2O(l), K = (20.3 +/- 4.5) and delta rHmo = (7.5 +/- 0.6) kJ mol-1. Thermodynamic cycle calculations were used to calculate thermodynamic quantities for three additional reactions that are pertinent to this branch point of the chorismate pathway. The quantities obtained in this study permit the calculation of the position of equilibrium of these reactions as a function of temperature, pH, and ionic strength. Values of the apparent equilibrium constants and the standard transformed Gibbs energy changes delta rG'mo under approximately physiological conditions are given.  相似文献   

16.
Methemoglobin (metHb) with H2O2 catalyzed the oxidation of 3-hydroxykynurenine (3-HKY) in the reaction mixture of metHb, 3-HKY, and H2O2. The spectrophotometric experiments suggest the following mechanism for the 3-HKY oxidation by metHb with H2O2. MetHb first reacts with H2O2 to form the ferryl complex of Hb. This species then oxidizes 3-HKY, while it returns to metHb. 3-HKY was more reactive with the ferryl complex than glutathione but less reactive than ascorbic acid. Scavengers of the hydroxyl radical, dimethyl sulfoxide and ethanol, scarcely inhibited the 3-HKY oxidation by metHb with H2O2. Desferrioxamine, a metal chelator, hardly suppressed the 3-HKY oxidation. These results indicate that the hydroxyl radical is not involved in the 3-HKY oxidation by metHb with H2O2.  相似文献   

17.
W D Frasch  R Mei 《Biochemistry》1987,26(23):7321-7325
The evolution of O2 from H2O2 catalyzed by the oxygen-evolving complex (OEC) in darkness was examined with photosystem II reaction center complex preparations from spinach. Flash illumination of dark-adapted reaction centers was used to make S0-enriched or S1-enriched complexes. The membranes catalyzed O2 evolution from H2O2 when preset to either the S0 or S1 state. However, only the S0-state reaction was inhibited by carbonyl cyanide m-chlorophenylhydrazone and dependent on chloride. These results indicate that (1) the S0-dependent and S1-dependent catalytic cycles can be separated by flash illumination, (2) the S0-dependent reaction involves the formation of the S2 state, and (3) the S1-dependent reaction does not involve the formation of the S2 or S3 states. A kinetic study of the S1-dependent reaction revealed a rapid equilibrium ordered mechanism in which (1) the binding of Ca(II) must precede the binding of H2O2 to the OEC and (2) the reaction of Ca(II) with the free enzyme is at thermodynamic equilibrium such that Ca(II) does not necessarily dissociate after each catalytic cycle.  相似文献   

18.
A functional screen in Escherichia coli was established to identify potato genes coding for proteins involved in transitory starch degradation. One clone isolated had a sequence very similar to a recently described chloroplast-targeted beta-amylase of Arabidopsis. Expression of the gene in E. coli showed that the protein product was a functional beta-amylase that could degrade both starch granules and solubilized amylopectin, while import experiments demonstrated that the beta-amylase was imported and processed into pea chloroplasts. To study the function of the protein in transitory starch degradation, transgenic potato plants were generated where its activity was reduced using antisense techniques. Analysis of plants reduced in the presence of this beta-amylase isoform showed that their leaves had a starch-excess phenotype, indicating a defect in starch degradation. In addition, it was shown that the antisense plants degraded only 8-30% of their total starch, in comparison with 50% in the wild type, over the dark period. This is the first time that a physiological role for a beta-amylase in plants has been demonstrated.  相似文献   

19.
Mechanism of reactions catalyzed by selenocysteine beta-lyase   总被引:1,自引:0,他引:1  
The reaction mechanism of selenocystine beta-lyase has been studied and it was found that elemental selenium is released enzymatically from selenocysteine, and reduced to H2Se nonenzymatically with dithiothreitol or some other reductants that are added to prepare selenocysteine from selenocystine in the anaerobic reaction system. 1H and 13C NMR spectra of L-alanine formed in 2H2O have shown that an equimolar amount of [beta-2H1]- and [beta-2H2]alanines are produced. The deuterium isotope effect at the alpha position was observed; kH/kD = 2.4. These results indicated that the alpha hydrogen of selenocysteine was removed by a base at the active site, and was incorporated into the alpha position of alanine, a product, without exchange of a solvent deuterium. When the enzyme was incubated with L-selenocysteine in the absence of added pyridoxal 5'-phosphate, the activity decreased with prolonged incubation time. However, the activity was recovered by addition of 5'-phosphate. The spectrophotometric study showed that the inactivated enzyme was the apo form. The apoenzyme was activated by a combination of pyridoxamine 5'-phosphate and various alpha-keto acids such as alpha-ketoglutarate and pyruvate. Thus, the enzyme is inactivated through transamination between selenocysteine and the bound pyridoxal 5'-phosphate to produce pyridoxamine 5'-phosphate and a keto acid derived from selenocysteine. The pyridoxal enzyme, an active form, is regenerated by addition of alpha-keto acids. This regulatory mechanism is analogous to those of aspartate beta-decarboxylase [EC 4.1.1.12], arginine racemase [EC 5.1.1.9], and kynureninase [EC 3.7.1.3] [K. Soda and K. Tanizawa (1979) Adv. Enzymol. 49, 1].  相似文献   

20.
The time course of the (1 leads to 4)-alpha-D-glucopyranosyltransfer reactions catalyzed by the cyclodextrin glycosyltransferase ((1 leads to 4)-alpha-D-glucan: [(1 leads to 4)-alpha-D-glucopyranosyl]transferase (cyclizing), EC 2.4.1.19, CGT) from Klebsiella pneumoniae was studied with several commercial amyloses, potato starch, and amylopectin, respectively. Amyloses were poor substrates for the cyclization reaction. In the initial phase of the transfer reactions, the CGT catalyzed a rapid shortening of the amylose chains. The rate of this shortening reaction was significantly accelerated by addition of maltooligosaccharides. Maximum rate of cyclohexaamylose formation was reached with amylose chains sufficiently short (less than Glc100) for the cyclization reaction. Cyclohexaamylose was formed with maximum rate from amyloses containing amylopectin impurities in the initial phase of the transfer reactions, suggesting that the non-reducing ends of the outer amylopectin chains serve as acceptors for the disproportionation of the amylose. Accordingly, water-soluble, high-molecular-weight products containing higher percentages of lengthened outer-chains were obtained from potato starch or amylopectin. In the course of the transfer reactions, only traces of smaller maltooligosaccharides were detected chromatographically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号