首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: Certain modifications of the neuronal cytoskeleton that are associated with development also occur during regeneration of adult mammalian peripheral nerve. The aim of the present study was to examine one such modification, the tyrosination of a-tubulin. Adult rats were anaesthetized and the left or right sciatic nerve randomly selected and crushed to induce regeneration. In certain instances nerves were crushed then ligatured about the crush, to prevent regeneration. Five days later the rats were killed and the regenerating (or ligatured) and the contralateral (control) nerves were removed. Quantitative immunoblotting of nerve homogenates with antibodies that recognize tyrosinated a-tubulin and total a-tubulin revealed a significant increase (p < 0.01) in the proportion of a-tubulin that was tyrosinated in nerve pieces distal (peripheral) to a nerve crush compared with nerve pieces proximal (central) to a nerve crush and to uncrushed nerve. No such difference occurred in ligatured (crushed but nonregenerating) nerve, implying that the increase was related to the presence of regenerating fibres; nor was there any gradient in tyrosination of α-tubulin in control nerves. This effect was confirmed by cytofluorimetric scanning and fluorescence confocal laser scanning microscopy of fixed sections of control and regenerating nerve, stained with antibodies directed against tyrosinated a-tubulin. When nerves were separated into fractions containing assembled and nonassembled tubulin, a significant (p < 0.01) increase was found in the proportion of tyrosinated α-tubulin in the nonassembled tubulin fraction in nerve pieces containing regenerating fibres. This occurred in the absence of a change in the proportion of assembled and nonassembled tubulin. Measurements of tubulin:tyrosine ligase activity, by incorporation of [3H] tyrosine into endogenous nerve tubulin in vitro, indicated a decrease in tyrosine incorporation into tubulin from nerve pieces distal, compared with those proximal to a nerve crush. There was no such difference in ligatured nerves. It is proposed that the increased amount of tyrosinated a-tubulin is related to an alteration in assembly rate of microtubules required for neurite outgrowth and that the apparent decrease in the tubulin:tyrosine ligase activity in vitro reflects the increased tyrosination in vivo.  相似文献   

2.
Tubulin-tyrosine ligase (TTL), the enzyme that catalyzes the addition of a C-terminal tyrosine residue to alpha-tubulin in the tubulin tyrosination cycle, is involved in tumor progression and has a vital role in neuronal organization. We show that in mammalian fibroblasts, cytoplasmic linker protein (CLIP) 170 and other microtubule plus-end tracking proteins comprising a cytoskeleton-associated protein glycine-rich (CAP-Gly) microtubule binding domain such as CLIP-115 and p150 Glued, localize to the ends of tyrosinated microtubules but not to the ends of detyrosinated microtubules. In vitro, the head domains of CLIP-170 and of p150 Glued bind more efficiently to tyrosinated microtubules than to detyrosinated polymers. In TTL-null fibroblasts, tubulin detyrosination and CAP-Gly protein mislocalization correlate with defects in both spindle positioning during mitosis and cell morphology during interphase. These results indicate that tubulin tyrosination regulates microtubule interactions with CAP-Gly microtubule plus-end tracking proteins and provide explanations for the involvement of TTL in tumor progression and in neuronal organization.  相似文献   

3.
Tubulin:tyrosine ligase (TTL), which catalyzes the post-translational addition of tyrosine to the α chain of tubulin, exists in a wide variety of embryonic and adult vertebrate tissues. In the present study, we report that TTL exists in amphibian oocytes at a time when tubulin is a poor substrate for tyrosination, and when, in immature oocytes, tubulin is not polymerizable. Ligase activity detected at several stages of oogenesis and embryogenesis in Xenopus is compatible with mammalian brain tubulin in the tyrosination reaction. Within 3–5 hr after fertilization, [3H] tyrosine incorporated/μg endogenous tubulin increases approximately 3.5-fold over that in extracts prepared from the largest oocytes obtained. This increase cannot be accounted for by increasing levels of TTL. Ligase activity remains fairly constant throughout oogenesis and early embryogensis and rises significantly (2-fold) only 35–50 hr after fertilization. The late rise in embryonic ligase activity is not accompanied by a change in apparent km for tubulin.  相似文献   

4.
Alpha tubulin can be post-translationally tyrosinated at the carboxy-terminus by a specific enzyme: tubulin tyrosine ligase. The expression of tubulin tyrosine ligase mRNA and protein during the development of rat skeletal muscle was examined in the present study. A portion of the coding region of the rat ligase cDNA was isolated and sequenced. The nucleotide and amino acid sequences showed about 90% homology with previously reported porcine and bovine ligase sequences. In newborn rats, ligase mRNA and protein were highly expressed in skeletal muscle. During early postnatal development, however, both ligase mRNA and protein dropped down dramatically. Quantitative measurements revealed that ligase protein at postnatal day 20 represented only 10% or less of the level at postnatal day 1. Ligase mRNA expression was also examined during the myogenesis in vitro . A strong ligase mRNA signal was detected in both undifferentiated myoblasts and cross-striated, contractile myotubes. The present results suggest that, during muscle differentiation, ligase function may be regulated by the amount of available mRNA. The discrepancy in the ligase expression between the in vivo and in vitro myogenesis suggests that factors controlling the levels of mRNA in vivo are lost in vitro .  相似文献   

5.
Tubulin normally undergoes a cycle of detyrosination/tyrosination on the carboxy terminus of its -subunit and this results in subpopulations of tyrosinated tubulin and detyrosinated tubulin. Brain tubulin preparations also contain a third major tubulin subpopulation which is non-tyrosinatable. This review describes the purification and the structural characterization of non-tyrosinatable tubulin. This tubulin variant lacks a carboxyterminal glutamyl-tyrosine group on its -subunit (2-tubulin). 2-tubulin is generated from detyrosinated tubulin through an irreversible reaction. 2-tubulin accumulates in neurons and in stable microtubule assemblies. It also accumulates in some tumor cells due to the frequent loss of tubulin tyrosine ligase in such cells. 2-tubulin may be a useful marker of malignancy in human tumors.  相似文献   

6.
The authors describe a cell-based assay for anti-microtubule compounds suitable for automation. This assay allows the identification, in a single screening campaign, of both microtubule-destabilizing and microtubule-stabilizing agents. Its rationale is based on the substrate properties of the tubulin-modifying enzymes involved in the tubulin tyrosination cycle. This cycle involves the removal of the C-terminal tyrosine of the tubulin alpha-subunit by an ill-defined tubulin carboxypeptidase and its readdition by tubulin tyrosine ligase. Because of the substrate properties of these enzymes, dynamic microtubules, sensitive to depolymerizing drugs, are composed of tyrosinated tubulin, whereas non-dynamic, stabilized microtubules are composed of detyrosinated tubulin. Thus depolymerization or stabilization of the microtubule network can easily be detected with double-immunofluorescence staining using antibodies specific to tyrosinated and detyrosinated tubulin. The authors have scaled this assay to the 96-well plate format and adapted its process for an automated handling, including a readout using a microplate reader. They describe the different steps of this adaptation. This assay was validated using known compounds. This new cell-based assay represents an alternative to both global cytotoxicity assays and in vitro tubulin assembly assays commonly used for the detection of microtubule poisons.  相似文献   

7.
Microtubules and their post-translational modifications are involved in major cellular processes. In severe diseases such as neurodegenerative disorders, tyrosinated tubulin and tyrosinated microtubules are in lower concentration. We present here a mechanistic mathematical model of the microtubule tyrosination cycle combining computational modeling and high-content image analyses to understand the key kinetic parameters governing the tyrosination status in different cellular models. That mathematical model is parameterized, firstly, for neuronal cells using kinetic values taken from the literature, and, secondly, for proliferative cells, by a change of two parameter values obtained, and shown minimal, by a continuous optimization procedure based on temporal logic constraints to formalize experimental high-content imaging data. In both cases, the mathematical models explain the inability to increase the tyrosination status by activating the Tubulin Tyrosine Ligase enzyme. The tyrosinated tubulin is indeed the product of a chain of two reactions in the cycle: the detyrosinated microtubule depolymerization followed by its tyrosination. The tyrosination status at equilibrium is thus limited by both reaction rates and activating the tyrosination reaction alone is not effective. Our computational model also predicts the effect of inhibiting the Tubulin Carboxy Peptidase enzyme which we have experimentally validated in MEF cellular model. Furthermore, the model predicts that the activation of two particular kinetic parameters, the tyrosination and detyrosinated microtubule depolymerization rate constants, in synergy, should suffice to enable an increase of the tyrosination status in living cells.  相似文献   

8.
Neutrophil activation by specific stimuli, such as the oligopeptide chemotactic factor fMet-Leu-(fMLF), is associated with an increased enzymatic addition of tyrosine to tubulin α -subunits, as measured by 14C tyrosine uptake. In studies using immunoblots we have found that this increased tyrosine uptake into tubulin in activated neutrophils reflects an increase in the proportion of cellular tubulin that is tyrosinated rather than simply an increase in the turnover of tyrosinated subunits. However, the increased accumulation of tyrosinated tubulin was also found to follow an initial depletion of tyrosinated tubulin and concomitant increase in detyrosinated tubulin between 0 and 60 sec following stimulation of neutrophils with fMLF. Immunogold electron microscopy studies of intact micro tubules recovered from activated neutrophils demonstrated that these rapid changes in the relative content of tubulin isoforms in the cells were not associated with the formation or disappearance of microtubule microdomains composed of only one form of tubulin. Previously, we have shown that under conditions of fMLF-stimulated exocytosis there is an increased binding of neutrophil granules to endogenous microtubules. Since neutrophil activation by fMLF is associated with increased tyrosination of α -tubulin subunits, we speculated that rapid changes in the levels of tyrosinated tubulin in the microtubules of activated neutrophils might have a role in the regulation of granule-microtubule interactions. When the binding of purified neutrophil granules to reconstituted rat brain microtubules containing approximately 50% tyrosinated tubulin was measured by electron microscopy and compared with granule binding to microtubules that contained no detectable tyrosinated tubulin, granule-microtubule associations were found to be significantly favored by detyrosinated vs. tyrosinated tubulin. These findings indicate that interactions between cytoplasmic granules and microtubules in activated neutrophils may be modulated by rapid changes in the relative content of detyrosinated and tyrosinated tubulin in the microtubule network of the cells. © 1993 Wiley-Liss, Inc.  相似文献   

9.
hTTLL12 is a member of the tubulin tyrosine ligase (TTL) family that is highly conserved in phylogeny. It has both SET-like and TTL-like domains, suggesting that it could have histone methylation and tubulin tyrosine ligase activities. Altered expression of hTTLL12 in human cells leads to specific changes in H4K20 trimethylation, and tubulin detyrosination, hTTLL12 does not catalyse histone methylation or tubulin tyrosination in vitro, as might be expected from the lack of critical amino acids in its SET-like and TTLL-like domains. hTTLL12 misexpression increases mitotic duration and chromosome numbers. These results suggest that hTTLL12 has non-catalytic functions related to tubulin and histone modification, which could be linked to its effects on mitosis and chromosome number stability.  相似文献   

10.
This review discusses the possible role of alpha-tubulin detyrosination, a reversible post-translational modification that occurs at the protein's C-terminus, in cellular morphogenesis. Higher eukaryotic cells possess a cyclic post-translational mechanism by which dynamic microtubules are differentiated from their more stable counterparts; a tubulin-specific carboxypeptidase detyrosinates tubulin protomers within microtubules, while the reverse reaction, tyrosination, is performed on the soluble protomer by a second tubulin-specific enzyme, tubulin tyrosine ligase. In general, the turnover of microtubules in undifferentiated, proliferating cells is so rapid that the microtubules accumulate very little detyrosinated tubulin; that is, they are enriched in tyrosinated tubulin. However, an early event common to at least three well-studied morphogenetic events--myogenesis, neuritogenesis, and directed cell motility--is the elaboration of a polarized array of stable microtubules that become enriched in detyrosinated tubulin. The formation of this specialized array of microtubules in specific locations in cells undergoing morphogenesis suggests that it plays an important role in generating cellular asymmetries.  相似文献   

11.
Post‐translational modifications (PTMs) of α/β‐tubulin are believed to regulate interactions with microtubule‐binding proteins. A well‐characterized PTM involves in the removal and re‐ligation of the C‐terminal tyrosine on α‐tubulin, but the purpose of this tyrosination–detyrosination cycle remains elusive. Here, we examined the processive motility of mammalian dynein complexed with dynactin and BicD2 (DDB) on tyrosinated versus detyrosinated microtubules. Motility was decreased ~fourfold on detyrosinated microtubules, constituting the largest effect of a tubulin PTM on motor function observed to date. This preference is mediated by dynactin's microtubule‐binding p150 subunit rather than dynein itself. Interestingly, on a bipartite microtubule consisting of tyrosinated and detyrosinated segments, DDB molecules that initiated movement on tyrosinated tubulin continued moving into the segment composed of detyrosinated tubulin. This result indicates that the α‐tubulin tyrosine facilitates initial motor–tubulin encounters, but is not needed for subsequent motility. Our results reveal a strong effect of the C‐terminal α‐tubulin tyrosine on dynein–dynactin motility and suggest that the tubulin tyrosination cycle could modulate the initiation of dynein‐driven motility in cells.  相似文献   

12.
Summary The post-translational addition of tyrosine toa-tubulin, catalyzed by tubulin:tyrosine ligase, has been previously reported in mammals and birds. The present study demonstrated that significant ligase activity was present in representative organisms from several other major vertebrate classes (chondrichthyes through reptiles) and that both substrate and enzyme from all vertebrates investigated were compatible with mammalian ligase and tubulin in the tyrosination reaction. None of the invertebrate tissues examined showed incorporation of tyrosine, phenylalanine or dihydroxyphenylalanine intoa tubulin under conditions allowing significant incorporation of these compounds in vertebrate supernatant samples. The failure of invertebrate tubulin to incorporate tyrosine in vitro did not appear to be due to saturation of the carboxyl terminal position with tyrosine or the presence of a soluble inhibitor of ligase activity.Although tubulin amino acid composition has been highly conserved throughout evolution, a major evolutionary divergence is described based upon biochemical differences whereby invertebrate tubulin cannot be tyrosinated or posttranslationally modified with phenylalanine or dihydroxyphenylalanine under conditions suitable for the incorporation of these compounds by vertebratea tubulin.  相似文献   

13.
Neuronal cells display different subsets of dynamic microtubules. In axons and extending neurites, this intrinsic dynamics is modulated by the microtubule-associated protein tau. Moreover, posttranslational modifications of tubulin, namely acetylation, tyrosination or glutamylation are directly involved in determining the stability of neuronal microtubules. Studies were carried out to analyze the interaction patterns of tau with subsets of microtubules in N2A neuroblastoma cells, which can differentiate in the presence of dibutyryl cAMP. Double labeling studies showed a differential pattern of tau association with microtubules containing acetylated and tyrosinated tubulin. Furthermore, studies using depolymerizing drugs revealed a selectivity in the association of tau with microtubular polymers and microfilaments, within the organization of the neuronal cytoskeleton. In order to study the association of specific tau isoforms with microtubules containing modified tubulin variants, immunoprecipitation studies were carried out. The coimmunoprecipitation data indicated a selective binding of specific tau isoforms to either modified tubulin variant. To assess the hypothesis on the roles of tau isoforms in the stabilization of microtubules containing modified tubulins, the association of those variants with tau isoforms was analyzed in overlay experiments. A preferential binding of acetylated tubulin from undifferentiated N2A cell extracts, to at least one slow-migrating tau isoform was revealed. However, acetylated tubulin from N2A cells containing long neurites displayed a preferential association with two isoforms of tau. On the other hand, tyrosinated tubulin from N2A extracts bound to the entire set of neuronal tau isoforms. These studies, along with the tau association with microtubules with different stability, indicate that tau segregates into subsets of microtubules in the axonal processes. The studies also suggest that these interactions may respond to a functional versatility of these polymers in differentiating neurons.  相似文献   

14.
Posttranslational tyrosination/detyrosination of tubulin   总被引:10,自引:0,他引:10  
Tubulin can be posttranslationally modified at the carboxyl terminus of the alpha-subunit by the addition or release of a tyrosine residue. These reactions involve two enzymes, tubulin: tyrosine ligase and tubulin carboxypeptidase. The tyrosine incorporation reaction has been described mainly in nervous tissue but it has also been found in a great variety of tissues and different species. Molecular aspects of the reactions catalyzed by these enzymes are at present well known, especially the reaction carried out by the ligase. Several lines of evidence indicate that assembled tubulin is the preferred substrate of the carboxypeptidase, whereas nonassembled tubulin is preferred by the ligase. Apparently this posttranslational modification does not affect the capacity of tubulin to form microtubules but it generates microtubules with different degrees of tyrosination. Variation in the content of the carboxyterminal tyrosine of alpha-tubulin as well as changes in the activity of the ligase and the carboxypeptidase are manifested during development. Changes in the cellular microtubular network modify the turnover of the carboxyterminal tyrosine of alpha-tubulin. Different subsets of microtubules with different degrees of tyrosination have been detected in interphase cells and during the mitotic cycle. Data from biochemical, immunological, and genetic studies have been compiled in this review; these are presented, with pertinent comments, with the hope of facilitating the comprehension of this particular aspect of the microtubule field.  相似文献   

15.
The maximum achievable tyrosination level of neurotubulin, in vitro, is about 50%. We have developed a method to obtain a complete separation of the tyrosinatable and nontyrosinatable species. We use an immunoaffinity column, with coupled YL 1/2 monoclonal antibody (anti-Tyr-tubulin) and rapid desalting methods. Both subpopulations can be obtained in a polymerizable, apparently native, form. We find that about 35% of the brain tubulin is truly nontyrosinatable, despite the fact that it is assembly competent. Using a polyclonal antibody directed against nontyrosinatable tubulin, we find that it recognizes a specific epitope on the alpha-subunit of the dimer. The existence of an abundant tubulin subspecies, structurally different from tyrosinatable tubulin, should obviously be kept in mind in immunofluorescence studies of the distribution of nontyrosinated tubulin in brain tissues. Furthermore, we have extensively investigated the effect of tubulin tyrosination on microtubule dynamics. Despite the homogeneity of the populations under comparison, we find no significant effect of tyrosination on microtubule dynamics. Similarly, the stabilizing effects of microtubule associated proteins and of STOP protein were identical in both subpopulations. The drug taxol seems more efficient in stabilizing detyrosinated microtubules, but the difference is moderate. Taken together, these findings suggest that tubulin tyrosination does not effect microtubule stabilization, neither through modifications of the intrinsic tubulin properties nor through a differential binding of stabilizing proteins. Finally, the complete separation of two tubulin species (tyrosinated or detyrosinated) with similar kinetic properties, but immunologically different, should be of value in many kinetic studies of microtubule assembly.  相似文献   

16.
Post-translational modifications of tubulin in the nervous system   总被引:1,自引:0,他引:1  
Many studies have shown that microtubules (MTs) interact with MT-associated proteins and motor proteins. These interactions are essential for the formation and maintenance of the polarized morphology of neurons and have been proposed to be regulated in part by highly diverse, unusual post-translational modifications (PTMs) of tubulin, including acetylation, tyrosination, detyrosination, Δ2 modification, polyglutamylation, polyglycylation, palmitoylation, and phosphorylation. However, the precise mechanisms of PTM generation and the properties of modified MTs have been poorly understood until recently. Recent PTM research has uncovered the enzymes mediating tubulin PTMs and provided new insights into the regulation of MT-based functions. The identification of tubulin deacetylase and discovery of its specific inhibitors have paved the way to understand the roles of acetylated MTs in kinesin-mediated axonal transport and neurodegenerative diseases such as Huntington's disease. Studies with tubulin tyrosine ligase (TTL)-null mice have shown that tyrosinated MTs are essential in normal brain development. The discovery of TTL-like genes encoding polyglutamylase has led to the finding that polyglutamylated MTs which accumulate during brain development are involved in synapse vesicle transport or neurite outgrowth through interactions with motor proteins or MT-associated proteins, respectively. Here we review current exciting topics that are expected to advance MT research in the nervous system.  相似文献   

17.
Abstract: Tubulin was tyrosinated in slices and in extracts of brain of rats of 3, 25, and 120 days of age by successive incorporation of [14C]tyrosine and [3H]-tyrosine, respectively. The release of the incorporated amino acid was measured by using tubulinyl-tyrosine carboxypeptidase, carboxypeptidase A, and tubulin-tyrosine ligase. With the carboxypeptidases no differences in either the rates or the extents of the release of tyrosine between these two differently labeled tubulins were found. Differences were found when the detyrosination was catalyzed by the ligase and these were attributed to a higher inactivation of tubulin labeled in slices than of that labeled in extracts.  相似文献   

18.
In the testis, microtubule-disrupting agents cause breakdown of the Sertoli cell cytoskeleton and sloughing of germ cells with associated Sertoli cell fragments, although the mechanism underlying this event is not understood. In this study, we investigated the effects of carbendazim and colchicine on microtubule polymerization status and posttranslational modifications of tubulin in freshly isolated rat seminiferous tubules. Soluble and polymerized tubulin pools were separated and tubulin was quantified using a competitive ELISA. Carbendazim and colchicine caused extensive microtubule depolymerization, shifting the ratio of soluble to polymerized tubulin from 40%:60% to 78%:22%, and to 84%:16%, respectively. Total tubulin levels remained relatively constant after carbendazim treatment but decreased twofold after colchicine treatment. To determine if modifications to tubulin may be associated with polymerization status, tubulin pools were analyzed by immunoblotting. Acetylated alpha-tubulin and betaIII-tubulin distribution in tubulin pools was not affected by treatment. Tyrosinated alpha-tubulin (52 kDa) was localized in both tubulin pools and had decreased tyrosination in the microtubule pool after carbendazim treatment. A 47-kDa protein immunoreactive with both tyrosinated alpha-tubulin and general alpha-tubulin antibodies was found only in the microtubule pool. The 47-kDa protein (potentially an alpha-tubulin isoform) lost tyrosination, yet was still present in the microtubule pool based on detection with the general alpha-tubulin antibody, after carbendazim treatment. Similar effects were seen with colchicine, although loss of total tubulin protein was measured. Thus, decreased tyrosination of the microtubule pool of tubulin appears to be associated with depolymerization of microtubules.  相似文献   

19.
The synthesis of post-translationally modified tubulins was examined during Artemia development. Tubulin, either purified to homogeneity or in cell-free extracts, was blotted to nitrocellulose and probed with a panel of antibodies. When purified tubulin was examined, tyrosinated tubulin underwent a large decrease as development progressed and this was accompanied by the appearance of detyrosinated tubulin in samples from organisms developed 24 hr. The inclusion of carboxypeptidase inhibitors had a small effect on the relative amounts of tyrosinated and detyrosinated tubulins in 24-hr preparations. The amount of alpha- and beta-tubulin in cell-free extracts of Artemia either remained relatively constant during development or increased slightly. The same result was obtained for acetylated and tyrosinated tubulin. Detyrosinated tubulin first appeared in 24-hr cell-free extracts and was only post-translationally modified tubulin to increase, relative to the total amount of tubulin, as the brine shrimp developed. As revealed by immunofluorescence staining, detyrosinated tubulin occurred in many cell types of developing nauplii and was prominently displayed in mitotic figures. Artemia, a complex metazoan animal, is thus able to grow for an extended period of time in the absence of detyrosinated tubulin. This isoform is however, synthesized in early larvae and may be required for the development of elongated cells including those which encircle the gut. Detyrosination remains as the only developmentally related change observed for brine shrimp tubulin.  相似文献   

20.
Assembly and turnover of detyrosinated tubulin in vivo   总被引:15,自引:9,他引:6       下载免费PDF全文
Detyrosinated (Glu) tubulin was prepared from porcine brain and microinjected into human fibroblasts and Chinese hamster ovary (CHO) cells. Glu tubulin assembled onto the ends of preexisting microtubules and directly from the centrosome within minutes of its microinjection. Incorporation into the cytoskeleton continued until almost all of the microtubules were copolymers of Glu and tyrosinated (Tyr) tubulin. However, further incubation resulted in the progressive and ultimately complete loss of Glu-staining microtubules. Glu tubulin injected into nocodazole-treated cells was converted to Tyr tubulin by a putative tubulin/tyrosine ligase activity. The observed decrease in staining with the Glu antibody over time was used to analyze microtubule turnover in microinjected cells. The mode of Glu disappearance was analyzed quantitatively by tabulating the number of Glu-Tyr copolymers and Tyr-only microtubules at fixed times after injection. The proportion of Glu-Tyr copolymers decreased progressively over time and no segmentally labeled microtubules were observed, indicating that microtubules turn over rapidly and individually. Our results are consistent with a closely regulated tyrosination-detyrosination cycle in living cells and suggest that microtubule turnover is mediated by dynamic instability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号