首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prosopis glandulosa var. torreyana accounts for nearly 90% of the total plant cover in a mesquite woodland community near Harper's Well along the southern margin of the Salton Sea in the Sonoran Desert of California. Total above-ground biomass in ten individuals studied in detail ranged from 43–760 kg per plant and 1.9–8.5 kg m-2 canopy area. Stand biomass ranged locally from a high of 23,000 kg ha-1 near the wash to 3,500 kg ha-1 in the fringe of this mesquite stand. Net above-ground primary production for 1980 had a mean of 2.2 kg m-2 canopy for shrub forms and 5.3 kg m-2 canopy for tree forms. Mean Prosopis stand production for 1980 was 3,650 kg ha-1, an extremely high value for desert communities. This level of production is particularly high in relation to the low mean annual precipitation of approximately 70 mm. New woody tissues in trunk and branches accounted for 51.5% of the allocation of productivity in Prosopis, a remarkably high woody allocation for a desert plant. Only 33.6% of net primary production was allocated to leaves.  相似文献   

2.
Deforestation in the Brazilian Amazon has resulted in the conversion of >230,000 km2 of tropical forest, yet little is known on the quantities of biomass consumed or the losses of nutrients from the ecosystem. We quantified the above-ground biomass, nutrient pools and the effects of biomass burning in four slashed primary tropical moist forests in the Brazilian Amazon. Total above-ground biomass (TAGB) ranged from 292 Mg ha-1 to 436 Mg ha-1. Coarse wood debris (>20.5 cm diameter) was the dominant fuel component. However, structure of the four sites were variable. Coarse wood debris comprised from 44% to 69% of the TAGB, while the forest floor (litter and rootmat) comprised from 3.7 to 8.0% of the TAGB. Total biomass consumption ranged from 42% to 57%. Fires resulted in the consumption of >99% of the litter and rootmat, yet <50% of the coarse wood debirs. Dramatic losses in C, N, and S were quantified. Lesser quantities of P, K, and Ca were lost by combustion processes. Carbon losses from the ecosystem were 58–112 Mg ha-1. Nitrogen losses ranged from 817 to 1605 kg ha-1 and S losses ranged from 92 to 122 kg ha-1. This represents losses that are as high as 56%, 68%, and 49% of the total above-ground pools of these nutrients, respectively. Losses of P were as high as 20 kg ha-1 or 32% of the above-ground pool. Losses to the atmosphere arising from primary slash fires were variable among sites due to site differences in concentration, fuel biomass, and fuel structure, climatic fluctuations, and anthropogenic influences. Compared to fires in other forest ecosystems, fires in slashed primary tropical evergreen forests result in among the highest total losses of nutrients ever measured. In addition, the proportion of the total nutrient pool lost from slash fires is higher in this ecosystem compared to other ecosystems due to a higher percentage of nutrients stored in above-ground biomass.  相似文献   

3.
The increase in biomass of different aquatic and terrestrial herbaceous plant communities was measured during various growth periods in the Amazon floodplain near Manaus. Maximum biomass varied from 4–11.2 t ha–1 dry weight in mixed annual terrestrial communities to 6–23 t ha–1 in aquatic annual species (Paspalum repens, Oryza perennis, Luziola spruceana and Hymenachne amplexicaulis) and 15.6–57.6 t ha–1 in communities of the perennial species Paspalum fasciculatum. Cumulative biomass of 3 successively growing annual species reached 30 t ha–1 a–1. Net primary production is considerably higher than maximum biomass. Paspalum fasciculatum reached 70 t during a growth period of 8 months. If one considers for annual species a monthly loss of 10–25% of the biomass, then net primary production in areas with three successive macrophyte communities and a cumulative maximum biomass of 30 t ha–1 is estimated to reach up to 50 t ha–1 a–1. Annual P/B ratio may reach about 3.  相似文献   

4.
An experiment was set up in a Quercus coccifera garrigue in southern France to analyze the effect of burning frequency and season on phytomass production. Fire regimes consisted of late spring or early autumn burns, every 6 yr, every 3 yr, or every 2 yr. The experiment started in 1969 and lasted for 19 yr. In May 1981 and May 1987, 10 samples, each 1 m2, were harvested per treatment. Fire frequency had an effect on the quantity of phytomass which was produced: above-ground phytomass decreased with increasing fire frequency. This was mainly due to the lower biomass of woody plants. In all burning treatments the phytomass of herbs was higher than in the unburned vegetation. Within each burning frequency, the total phytomass of the spring-burned vegetation was always higher than that of the autumn-burned community. Generally, the herb phytomass produced was higher in the autumn-burned plots. There were two fairly distinct phases in the period following fire, each with a different level of annual phytomass production. For the first six years it was about 300 g m?2 yr?1, falling thereafter to about 50 g m?2 yr?1. This and other studies on Q. coccifera garrigue indicate that this community is very resilient with respect to fire, but possesses a low productive capacity and does not show any sign of degeneration up to 30 yr old.  相似文献   

5.
Tian  G.  Kolawole  G.O.  Kang  B.T.  Kirchhof  G. 《Plant and Soil》2000,224(2):287-296
Legume cover crops are a potential means for overcoming N depletion in the derived savanna of West Africa. A 3-year trial was, therefore, conducted near Ibadan, southwestern Nigeria to measure the N contribution of 13 legume cover crops as compared to urea –N, using a N fertilizer replacement index for a maize test crop. Two series of trials involved the following legume cover crop species: Aeschynomene histrix, Centrosema brasilianum, Centrosema pascuorum, Chamaecrista rotundifolia, Cajanus cajan, Crotalaria verrucosa, Crotalaria ochroleuca, Lablab purpureus, Mucuna pruriens, Psophocarpus palustris, Pseudovigna argentea, Pueraria phaseoloides and Stylosanthes hamata. Trials were undertaken using a complete block design. Cover crops were planted in 1994 (Series 1) and 1995 (Series 2) in separate sites and each series was subsequently slashed and planted for one season with maize (Zea mays) in 1995 and 1996. At the 50% flowering stage, N concentration of above-ground vegetation of cover crops ranged from 21 to 38 g N kg–1. Nitrogen accumulated by 4.5-month old cover crops ranged from 14 to 240 kg N ha–1, depending on species and year. Cover crops increased grain yield of the subsequent maize crop by 25–136% over the control without N application. Nitrogen uptake by the maize crop was higher following cover crops than after maize or natural grass. The N fertilizer replacement index of cover crops for maize ranged from 11 (A. histrix) to 96 kg N ha–1 (C. cajan) in Series 2. Perennial (C. brasilianum, S. hamata, C. cajan, P. phaseoloides and C. verrucosa) and annual (C. rotundifolia, M. pruriens, C. ochroleuca and L. purpureus) species could potentially save 50 to 100 kg N ha–1 for maize crops. The cover crops accumulated more N in the wetter than in the drier year. However, the N fertilizer replacement index was higher for subsequent maize grown in the drier year. The cover crop-N recovery in maize was also higher than the urea-N uptake in the drier year. The N fertilizer replacement indexes can be predicted using the above-ground biomass amount of cover crops at 20 weeks after planting (drier year) or the N concentration at that stage (wetter year).  相似文献   

6.
Ground vegetation may act as a sink for nutrients after clear-cutting and thus decrease leaching losses. Biomass and nutrient (N, P, K, Ca) pools of ground vegetation (mosses, roots and above-ground parts of field layer) were determined one year before and five years after clear-cutting of a Norway spruce (Picea abies (L.) H. Karst.) dominated boreal mixed forest stand in eastern Finland (63°51′ N, 28°58′ E). Before clear-cutting the average biomass of ground vegetation was 5307 kg ha−1, with nutrient contents of 46.9 kg N ha−11, 4.1 kg P ha−11, 16.2 kg K ha−11 and 13.9 kg Ca ha−11. The biomass and nutrient pools decreased after clear-cutting being lowest in the second year, the biomass decreasing by 46–65% in the cut plots. The nutrient pools decreased as follows: N 54–72%, P 36–68%, K 51–71% and Ca 57–74%. The decrease in ground vegetation nutrient uptake, and the observed reduced depth of rooting may decrease nutrient retention after clear-cutting and decomposing dead ground vegetation is a potential source of leached nutrients. These negative effects of clear-cutting on the nutrient binding capacity of ground vegetation was short-lived since the total biomass and nutrient pools returned to pre-cutting levels or were even greater by the end of the 5-year study period.  相似文献   

7.
The composition and density of soil seed banks beneath co-occurring Adenostoma fasciculatum and Ceanothus greggii shrubs from three chaparral stands last burned 9, 35 and 85 years before 1986 were investigated. The overall density of seeds in the soil, as estimated by germinations under greenhouse conditions, increased with time since fire (ca. 8000 to 25000/m2). However, this increase was due entirely to the accumulation of A. fasciculatum seed in the soil (ca. 2000 to 21000/m2). In contrast, the density of C. greggii seed was different in each of the three stands, but was not correlated with time since fire: maximum densities were recorded from the 35 year old stand (ca. 2000/m2).A total of 31 taxa germinated and 17 occurred in sufficient numbers to be analyzed statistically. Germinable seed densities of three herb species were not influenced by soil source (beneath A. fasciculatum or C. greggii), time since fire, or the direct effects of a controlled fire treatment. Germinable seed densities of a further nine species were significantly influenced by the elapsed time since stands last burned. The densities of four decreased and five increased. Four of the species that increased in seed density over the three stands were annuals, suggesting that the chaparral sub-canopy habitat is not as unfavorable for annuals as is often assumed. The fire treatment decreased germinable seed densities of four annual species by 40–70%, but increased the germinable seed densities of the shrubs A. fasciculatum and C. greggii, and the annual Phacelia brachyloba. Our results indicate that seeds of A. fasciculatum will increase in the soil bank for at least 85 years after fire in chaparral where it is dominant. In contrast, seed reserves of C. greggii appear to be influenced primarily by site-specific patterns of seed production and by the intensity of post-dispersal seed predation.  相似文献   

8.
Net production and carbon cycling in a bamboo Phyllostachys pubescens stand   总被引:2,自引:0,他引:2  
Isagi  Y.  Kawahara  T.  Kamo  K.  Ito  H. 《Plant Ecology》1997,133(1):123-52
Phyllostachys pubescens Mazel ex Houzeau de Lehaie is one of the largest bamboo species with a leptomorph root system in the world. The species originates in China and has been naturalized in the neighboring countries. It was introduced in 1746 into Japan because of the economic value of the young sprouts and culm woods. It escaped from the planted areas and expanded by invading the original vegetation. In order to clarify the basic ecological characteristics of the species, carbon fixation and cycling were determined in a stand of Phyllostachys pubescens. The standing culm density and average DBH in 1991 were 7100 ha(-1) and 11.3 cm, respectively. The above-ground biomass was 116.5 t ha(-1) for culms, 15.5 t ha(-1) for branches, 5.9 t ha(-1) for leaves and 137.9 t ha(-1) in total. The total above-ground biomass was one of the largest among the world's bamboo communities. The biomasses of rhizomes and fine roots were 16.7 t ha(-1) and 27.9 t ha(-1), respectively. Annual soil respiration was 52.3 t CO(2) ha(-1) yr(-1), the highest among those determined in Japan. The gross production was high: 32.8 t C ha(-1) yr(-1). Allocation of the products to its root system was also high: 34% to gross production and 46% to the fluxes out of the leaves into other compartments of the ecosystem. This resulted in the reduced above-ground net production of 18.1 t ha(-1) yr(-1), which fell within the average range of productivity of forests under similar climate conditions. This paper discusses the correspondence of the allocation pattern with the successful range expansion.  相似文献   

9.
Carbon balance of a tropical savanna of northern Australia   总被引:7,自引:0,他引:7  
Chen X  Hutley LB  Eamus D 《Oecologia》2003,137(3):405-416
Through estimations of above- and below-ground standing biomass, annual biomass increment, fine root production and turnover, litterfall, canopy respiration and total soil CO2 efflux, a carbon balance on seasonal and yearly time-scales is developed for a Eucalypt open-forest savanna in northern Australia. This carbon balance is compared to estimates of carbon fluxes derived from eddy covariance measurements conducted at the same site. The total carbon (C) stock of the savanna was 204±53 ton C ha–1, with approximately 84% below-ground and 16% above-ground. Soil organic carbon content (0–1 m) was 151±33 ton C ha–1, accounting for about 74% of the total carbon content in the ecosystem. Vegetation biomass was 53±20 ton C ha–1, 39% of which was found in the root component and 61% in above-ground components (trees, shrubs, grasses). Annual gross primary production was 20.8 ton C ha–1, of which 27% occurred in above-ground components and 73% below-ground components. Net primary production was 11 ton C ha–1 year–1, of which 8.0 ton C ha–1 (73%) was contributed by below-ground net primary production and 3.0 ton C ha–1 (27%) by above-ground net primary production. Annual soil carbon efflux was 14.3 ton C ha–1 year–1. Approximately three-quarters of the carbon flux (above-ground, below-ground and total ecosystem) occur during the 5–6 months of the wet season. This savanna site is a carbon sink during the wet season, but becomes a weak source during the dry season. Annual net ecosystem production was 3.8 ton C ha–1 year–1.  相似文献   

10.
A field trial was conducted to study the response of sunflower (Helianthus annuus L.) to different phosphorus levels (16, 24 or 32 kg P ha–1) and inoculation with vesicular-arbuscular mycorrhizal fungus, Glomus fasciculatum on vertisol during summer 1993. At the vegetative stage of sunflower, percent mycorrhizal root colonization, spore count, dry biomass and P uptake did not differ significantly between inoculated and uninoculated control plants. However, at later stages (flowering and maturity) percent root colonization, spore count, total dry biomass and total P uptake were significantly higher in inoculated plants than in uninoculated control plants. The total dry biomass, P content and seed yield increased with increasing P level in uninoculated plants, whereas no significant difference was observed between 16 and 32 kg P ha–1 in inoculated plants. The positive effect of mycorrhizal inoculation decreased with increasing P level above 16 kg P ha–1, due to decreased percent root colonization and spore count at higher P levels.  相似文献   

11.
C. E. Ohiagu  T. G. Wood 《Oecologia》1979,40(2):155-165
Summary Annual grass production in ungrazed plots was 2,731 kg ha-1, litter production was 1,619 kg ha-1 and decomposition was 1,789 kg ha-1. In grazed plots the corresponding figures were 3,157 kg ha-1, 1,440 kg ha-1, and 1,475 kg ha-1 respectively; cattle consumed 1,405 kg ha-1. Litter disappearance was greatest in the dry season: 1,226 kg ha-1 (69% of the annual total) disappearing in the 4 months of December to March in the ungrazed plots, largely due to consumption (790 kg ha-1 in December to March) by fungus-growing termites (Macrotermitinae). A positive linear relationship was found between maximum grass biomass and annual rainfall in West Africa.  相似文献   

12.
Ståhl  Lena  Nyberg  Gert  Högberg  Peter  Buresh  Roland J. 《Plant and Soil》2002,243(1):103-117
The effects of planted fallows of Sesbania sesban (L.) Merr. and Calliandra calothyrsus (Meissner) on soil inorganic nitrogen dynamics and two subsequent maize crops were evaluated under field conditions in the highlands of eastern Kenya. Continuous unfertilised maize, maize/bean rotation and natural regrowth of vegetation (weed fallow) were used as control treatments. The proportion of symbiotic N2-fixation was estimated by measuring both leaf 15N enrichment and whole-plant 15N enrichment by the 15N dilution technique for Sesbania and Calliandra, using Eucalyptus saligna (Sm.) and Grevillea robusta (A. Cunn) as reference species. Above- and below-ground biomass and N contents were examined in Sesbania, Calliandra, Eucalyptus and Grevillea 22 months after planting. Both the content of inorganic N in the topsoil and the quantity of N mineralised during rainy seasons were higher after the Sesbania fallows than after the other treatments. Compared to the continuous unfertilised maize treatment, both residual crop yields were significantly higher when mineral N (one application of 60 kg N ha–1) was added. Furthermore, the second crop following the Sesbania fallow was significantly higher than the continuous maize crop. The above-ground biomass of the trees at final harvest were 31.5, 24.5, 32.5 and 43.5 Mg ha–1 for the Sesbania, Calliandra, Grevillea and Eucalyptus, respectively. For the total below-ground biomass the values for these same tree species were 11.1, 15.5, 17.7, and 19.1 Mg ha–1, respectively, of which coarse roots (>2 mm), including tap roots, amounted to 70–90%. About 70–90% of the N in Sesbania, and 50–70% in Calliandra, was derived from N2-fixation. Estimates based on leaf 15N enrichment and whole-plant 15N enrichment were strongly correlated. The N added by N2-fixation amounted to 280–360 kg N ha–1 for Sesbania and 120–170 kg N ha–1 for Calliandra, resulting in a positive N balance after two maize cropping seasons of 170–250 kg N ha–1 and 90–140 kg N ha–1, for Sesbania and Calliandra, respectively. All the other treatments gave negative N balances after two cropping seasons. We conclude that Sesbania sesban is a tree species well suited for short duration fallows due to its fast growth, high nutrient content, high litter quality and its ability to fix large amounts of N2 from the atmosphere.  相似文献   

13.
Summary We estimated the density of subterranean termites Gnathamitermes tubiformans at 800,000 · ha-1 for a standing crop biomass of 2 kg · ha-1 Predation losses were estimated to be 5,73 kg · ha-1 · yr-1 representing the major release of nutrients from termites to surficial soil layers. Nutrient fluxes from termites to predators amounted to 410g N·ha-1·yr-1, 33 g S · ha-1 · yr-1 and 19 g P · ha-1 · yr-1. These fluxes account for 8% of the litter N, 1.5% of the litter P and 2.9% of the litter S. The termites fixed an estimated 66 g · ha-1 · yr-1 atmospheric N and returned an estimated 100 g · ha-1 · yr-1 in the surface gallery carton. Since losses of elements from subterannean termites were greater than standing crops, we estimated an annual turnover of N at 3.5 times per year, P of 2.5 times per year, and S of 2.5 per times per year.Since surface foraging, predation and alate flights are pulse regulated by rainfall, nutrient flows through subterranean termites are episodic and releases of nutrients accumulated in termite biomass preceeds or is coincident with productivity pulses of some shallow rooted plants. We propose that subterranean termites are important as regulators in desert nutrient cycles.  相似文献   

14.
Cymbopogon flexuosus, lemongrass, and C. martinii, palmarosa, are perennial grasses grown to produce essential oils for the fragrance industry. The objectives of this study were (1) to evaluate biomass and oil yields as a function of nitrogen and sulfur fertilization, and (2) to characterize their utility for lignocellulosic ethanol compared to Panicum virgatum (switchgrass). Mean biomass yields were 12.83 Mg lemongrass ha-1 and 15.11 Mg palmarosa ha-1 during the second harvest year resulting in theoretical biofuel yields of 2541 and 2569 L ethanol ha-1 respectively compared to reported 1749–3691 L ethanol ha-1 for switchgrass. Pretreated lemongrass yielded 198 mL ethanol (g biomass)-1 and pretreated palmarosa yielded 170 mL ethanol (g biomass)-1. Additionally, lemongrass yielded 85.7 kg essential oil ha-1 and palmarosa yielded 67.0 kg ha-1 with an estimated value of USD $857 and $1005 ha-1. These data suggest that dual-use crops such as lemongrass and palmarosa may increase the economic viability of lignocellulosic biofuels.  相似文献   

15.
Nutrient leaching from forest substrate after clear-cutting and subsequent soil preparation is strongly influenced by the capacity of ground vegetation to sequester the released nutrients. We studied the rates and patterns of biomass and nutrient accumulation in ground vegetation growing on ridges, in furrows and on undisturbed surfaces for 2–5 years after disc-plowing in eastern Finland. The biomass of mosses on ridges remained significantly lower than that in furrows and on undisturbed surfaces. Field layer biomass on ridges and in furrows was significantly lower than on undisturbed surfaces throughout the study period. Field layer biomass increased more on ridges than in furrows. Root biomass on ridges and undisturbed surfaces was considerably higher than in furrows. Five years after disc-plowing, total biomass and nutrient pools for ridges (biomass 4,975 kg ha−1, N 40 kg ha−1, P 5 kg ha−1, K 20 kg ha−1 and Ca 18 kg ha−1) and undisturbed surfaces (biomass 5,613 kg ha−1, N 43 kg ha−1, P 5 kg ha−1, K 22 kg ha−1 and Ca 18 kg ha−1) were similar, but considerably lower for furrows (biomass 1,807 kg ha−1, N 16 kg ha−1, P 2 kg ha−1, K 10 kg ha−1 and Ca 6 kg ha−1). Ridges covered 25% of the area, furrows 30 and 45% was undisturbed surfaces. Taking into account the proportion of each type of surface, values for the whole prepared clear-cut area were 4,312, 34, 4, 18 and 14 kg ha−1 for biomass, N, P, K and Ca, respectively. Biomass and nutrient pools had not returned to uncut forest levels at the end of the 5-year study period. The results indicate that mosses and field layer vegetation respond differently to soil preparation, that the development of biomass on ridges, in furrows and on undisturbed surfaces proceeds at different rates, and that the biomass and nutrient uptake of ground vegetation remains below pre-site preparation levels for several years. However, ridges, which are known to be the most susceptible to leaching, revegetate rapidly. Responsible Editor: Tibor Kalapos.  相似文献   

16.
The above-ground accumulation of N,N uptake and litter quality resulting from improved or deteriorated availability of water and nutrients in a 25 year old Norway spruce stand in SW Sweden (as part of the Skogaby project) is presented. Treatment include irrigation; artificial drought; ammonium sulphate addition; N-free-fertilisation and irrigation with liquid fertilisers including a complete set of nutrients according to the Ingested principle (fertigation). At start of the experiment the stand contained 86.5 t dry mass and 352 kg N ha−1. The following three years the annual N uptake in untreated trees was 32 kg N ha−1 to be compared with the annual N throughfall of 17 kg ha−1. Simultaneously, the treatment with ammonium sulphate and liquid fertilisation resulted in 48 and 56 kg ha−1 y−1, respectively, in treatment specific N-uptake following an application of 100 kg N ha−1 y−1. Addition of a N-free fertiliser resulted in improved N-uptake by 19 kg N ha−1 y−1 and irrigation by 10 kg N ha−1 y−1, compared to control. A linear relation between total above-ground dry mass production and N-uptake was found for trees growing with similar water availability. Dry mass production increased with increased water availability given the same N-uptake. It is concluded that the studied stand this far is not N saturated', as N fertilisation resulted in both increased N uptake and increased growth. Addition of a N-free-fertiliser resulted in increased uptake of N compared to the control, indicating an increased mineralisation rate or uptake capacity of the root system. The linear relation between N uptake and biomass production shows that at this study site N is a highly limiting factor for growth.  相似文献   

17.
Nitrogen cycling and dynamic analysis of man made larch forest ecosystem   总被引:2,自引:0,他引:2  
Liu  Shirong 《Plant and Soil》1995,(1):391-397
Nitrogen cycling process and dynamic change over 2 years were studied in 21-year-old planted dahurian larch (Lurix gmelinii (Rupr) Rupr.) in the eastern part of northern China. N concentrations in the plants varied by tissue, age, position in tree and season. In the aboveground components the N concentration was highest in foliage, followed by live branches, bolebark and bolewood. The organic N concentrations in undergrowth and herbs were higher than that in larch tree. The total amount of N accumulated in the larch ecosystem was 13167 kg.ha-1, in which the percentages of N storage in soil, living plants, dead standing and litter were 94.7%, 2.8%, 0.1% and 2.4%, respectively. The uptake of N by vegetation was 56 kg.ha-1.y-1, in which the retention and return were 24 kg.ha-1.y-1 and 32 kg. ha-1 y-1, respectively. Precipitation provided 13 kg.ha-1.y-1 of N, while N loss via runoff was 4 kg.ha-1.y-1 and therefore, the net gain of N by ecosystem was 9 kg.ha-1.y-1.The simulation of N dynamic change showed that an increase in the age of stand was accompanied by a concomitant increase in N storage in the forest floor, whereas N flux from forest floor organic matter into soil would decrease, and consequently, growth rate of larch stands would reduce owing to the inadequacy of available N in the soil. The prediction indicated that the degradation of soil fertility in larch plantation might occur under continuous cropping. The study implied that release rate of N from litter into soil was the key factor in determining and regulating N cycling in larch plantation.The understory minor vegetation in the larch stand plays an important role in speeding up N cycling. The timely thinning is needed to improve growth and development of shrubs and herbs, and to avert the potential soil degradation. The mixed stand of larch with either a certain proportion of broad-leaved or a moderately well developed understory vegetation should be encouraged.  相似文献   

18.
Disturbance,drought and dynamics of desert dune grassland,South Africa   总被引:4,自引:0,他引:4  
Milton  S.J.  Dean  W.R.J. 《Plant Ecology》2000,150(1-2):37-51
A seven-year study of marked plants and plots in Stipagrostis ciliata (Desf.) de Winter dune grassland, in the arid (<100 mm yr–1) Bushmanland area of the Northern Cape province of South Africa, was designed to test the hypothesis that establishment of ephemeral plants, and recruitment of perennial grasses was dependent upon disturbances that reduced the density of living perennial grass tussocks. In 1989, eight 4 m2 plots were cleared of perennial vegetation by uprooting and removing all plants so as to resemble small-scale disturbances made by burrowing mammals or territorial antelope. The vegetation on the cleared plots and surroundings was monitored until 1996. Initial results supported our hypothesis. In wet years, when ephemeral plants were abundant, their average fresh mass was 2–3 times greater per unit area on the cleared plots than in control plots in adjacent, undisturbed grassland. Many Stipagrostis seedlings established in the cleared plots over the two years following clearing but were rare in adjacent areas among established conspecifics. However, a drought in 1992 (11 mm of rain over 12 months) lead to widespread mortality of the perennial grass, killing 56% (range 22–79%) of established tufts. High densities of Stipagrostis seedlings appeared following the drought-breaking rains in January 1993, both in the disturbed plots and in the surrounding `undisturbed' dune grassland. Ephemeral plants established in large numbers throughout the area during the high rainfall year of 1996 and were generally more numerous in the old disturbances than in control plots. Seven years after clearing the biomass of grass on the cleared plots was approximately 34% of the mass removed from the plots in 1989 whereas in the undisturbed grassland biomass was 66% of 1989 levels. Drought had little long-term effect on community composition, and Stipagrostis ciliata constituted 94–98% of plant community before and after drought. Cleared plots were recolonised by S. ciliata, but the contribution of other grass species increased by 6–9%. Synchronous recruitment following occasional drought-induced mortality can generate even-aged populations of the dominant desert dune grasses.  相似文献   

19.
Zielonka  Tomasz  Piątek  Grzegorz 《Plant Ecology》2004,172(1):63-72
This is a study of the colonization pattern of herbs and dwarf shrubs on rotten logs in subalpine spruce forests (Plagiothecio Piceetum) in the Tatra Mountains. On four study plots (total area 1.43 ha.) all dead logs were measured and the decomposition stage was estimated using the 8-degree scale. For each log the cover of all vascular species, bryophytes and lichens was determined according to the methods of classical phytosociology. Constancy and an index of coverage were calculated for all vascular species growing on logs. The total volume of logs was relatively high (93 m3 ha–1) and constituted 22% of the volume of living trees. Logs and stumps covered 411 m2 ha–1. These values are similar to those known from natural spruce forest from Carpathians and Scandinavia. The 8 stages of decomposition were equally represented, which indicates a constant supply of dead wood to the forest floor over time. The colonization of dead wood starts with lichens, followed by bryophytes and finally herbs and tree saplings. The first vascular plant colonists of dead logs appear at decay stage nr. 3 at least 20 years after tree death. The most suitable condition for most of the herb species corresponds to decay stage nr. 6 ca. 50 years after tree death. The herb cover is distinctively dominated by Vaccinium myrtillus. Simultaneously with herb species, tree seedlings colonize the logs. Constancy and abundance of Norway spruce saplings increases with advanced decomposition. It seems that the herb cover of logs does not hinder the regeneration of spruce.  相似文献   

20.
Summary Embryonopsis halticella is a brachypterous moth endemic to the Kerguelen Province of sub-Antarctic islands. Its larvae are strictly host-specific grass-borers of the tussock grass Poa cookii, and are the major herbivores on Marion Island. Monthly sampling over one year (1984) on Marion Island showed that E. halticella larvae reach a biomass of 0.222 g m-2 (dry mass) in P. cookii grassland in summer. In feeding experiments conducted in the laboratory on Marion Island, larvae consumed 0.3 X their own live mass in leaf material daily. Extrapolated consumption rates in the field range from 1 kg ha-1 month-1 in winter to 18 kg ha-1 month-1 (dry mass) in summer. Total annual consumption, based on leaf feeding only, amounts to 86 kg ha-1 (dry mass). Significant shifts in diet from foliage to seeds occur during spring, and larvae also consume their own frass and exuviae. It is calculated that E. halticella larvae remove 2.5% of the annual production of Poa cookii in Marion Island tussock grassland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号