首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
As is diabetes itself, diabetic angiopathy is a multi-factorial disease. Advanced glycation endproducts (AGE) cause vascular cell derangement characteristic of diabetes, and this is mainly mediated by their interaction with receptor for AGE (RAGE). When made diabetic, RAGE-overexpressing transgenic mice exhibited exacerbation of the indices of nephropathy, and this was prevented by the inhibition of AGE formation. On the other hand, RAGE-deficient animals showed amelioration of diabetic nephropathy. Accordingly, AGE and RAGE should be regarded as environmental and cellular accounts and as a potential therapeutic target for diabetic nephropathy. In effect, substances that inhibit the formation of AGE, break preformed AGE, change metabolic flows away from glycation, antagonize RAGE, and capture RAGE ligands have been proven as effective remedies against this life-threatening disease.  相似文献   

2.
3.
4.

Aims

The tendency to develop diabetic nephropathy is, in part, genetically determined, however this genetic risk is largely undefined. In this proof-of-concept study, we tested the hypothesis that combined analysis of multiple genetic variants can improve prediction.

Methods

Based on previous reports, we selected 27 SNPs in 15 genes from metabolic pathways involved in the pathogenesis of diabetic nephropathy and genotyped them in 1274 Ashkenazi or Sephardic Jewish patients with Type 1 or Type 2 diabetes of >10 years duration. A logistic regression model was built using a backward selection algorithm and SNPs nominally associated with nephropathy in our population. The model was validated by using random “training” (75%) and “test” (25%) subgroups of the original population and by applying the model to an independent dataset of 848 Ashkenazi patients.

Results

The logistic model based on 5 SNPs in 5 genes (HSPG2, NOS3, ADIPOR2, AGER, and CCL5) and 5 conventional variables (age, sex, ethnicity, diabetes type and duration), and allowing for all possible two-way interactions, predicted nephropathy in our initial population (C-statistic = 0.672) better than a model based on conventional variables only (C = 0.569). In the independent replication dataset, although the C-statistic of the genetic model decreased (0.576), it remained highly associated with diabetic nephropathy (χ2 = 17.79, p<0.0001). In the replication dataset, the model based on conventional variables only was not associated with nephropathy (χ2 = 3.2673, p = 0.07).

Conclusion

In this proof-of-concept study, we developed and validated a genetic model in the Ashkenazi/Sephardic population predicting nephropathy more effectively than a similarly constructed non-genetic model. Further testing is required to determine if this modeling approach, using an optimally selected panel of genetic markers, can provide clinically useful prediction and if generic models can be developed for use across multiple ethnic groups or if population-specific models are required.  相似文献   

5.
A critical challenge faced by clinical nephrologists today is the escalating number of patients developing end stage renal disease, a major proportion of which is attributed to diabetic nephropathy (DN). The need for new measures to prevent and treat this disease cannot be overemphasized. To this end, modern genetic approaches provide powerful tools to investigate the etiology of DN. Human studies have already established the importance of genetic susceptibility for DN. Several major susceptibility loci have been identified using linkage studies. In addition, linkage studies in rodents have pinpointed promising chromosomal segments that influence renal traits. Besides augmenting our understanding of disease pathogenesis, these animal studies may facilitate the cloning of disease susceptibility genes in man through the identification of homologous regions that contribute to renal disease. In human diabetes, various genes have been evaluated for their risk contribution to DN. This widespread strategy has been propelled by our knowledge of the glucose-activated pathways underlying DN. Evidence has emerged that a true association does indeed exist for some candidate genes. Furthermore, the in vivo manipulation of gene expression has shown that these genes can modify features of DN in transgenic and knockout rodent models, thus corroborating the findings from human association studies. Still, the exact molecular mechanisms involving these genes remain to be fully elucidated. This formidable task may be accomplished by continuing to harness the synergy between human and experimental genetic approaches. In this respect, our review provides a first synthesis of the current literature to facilitate this challenging effort.  相似文献   

6.
糖尿病肾病蛋白尿发生机制的研究进展   总被引:1,自引:0,他引:1  
糖尿病肾病蛋白尿的发生发展是多因素综合作用的结果.虽然蛋白尿的确切病因仍未清楚,但基本是由肾脏血流动力学改变、肾小球滤过屏障异常、多种生长因子、细胞因子、免疫炎症因子异常表达以及肾小管异常等多个因素综合所致.在分子水平上,氧化应激是糖尿病并发症发生的早期事件.此外,内皮细胞结构异常和功能紊乱以及肾小管重吸收功能异常可能也参与了蛋白尿的发生发展.本文着重探讨糖尿病肾病蛋白尿发生的细胞及分子机制研究进展,为更好的防治糖尿病肾病提供有力的依据.  相似文献   

7.
RAGE mRNA expression in the diabetic mouse kidney   总被引:1,自引:0,他引:1  
Receptors for advanced glycation end products (RAGE), which bind and internalize AGE-modified proteins formed from oxidation and other products of the nonenzymatic glycation reaction, have been mechanistically implicated in the development of the chronic complications of diabetes. In the present experiments, we sought evidence for the participation of RAGE in diabetic nephropathy by analysis of steady state levels of mRNA encoding RAGE in the renal cortex of a well-defined animal model (the db/db mouse) that develops renal pathology similar to that found in human diabetes. In these animals, increased AGE-product formation was confirmed by measurement of fluorescence in serum and renal cortex proteins. Renal involvement was confirmed by demonstration of increased urine albumin excretion and elevated serum creatinine concentrations relative to nondiabetic (db/m) littermate controls. Despite elevated concentrations of circulating and tissue AGE-modified proteins, the level of RAGE mRNA expression in renal cortex of diabetic mice did not significantly differ from that in nondiabetic littermate controls. The findings militate against changes in RAGE expression in the pathogenesis of renal abnormalities in this animal model.  相似文献   

8.
9.
A meta-analysis was performed to assess the associations of the receptor for advanced glycation end products (RAGE) gene polymorphisms [Gly82Ser (rs2070600), 1704 G/T (rs184003), 429 T/C (rs1800625)] with type 2 diabetes mellitus (T2DM), diabetic retinopathy (DR) and diabetic nephropathy (DN). A comprehensive research was conducted to identify all case-control or cohort studies. The fixed or random effect pooled measure was selected based on the homogeneity test among studies that was evaluated with I2. Meta-regression was used to explore the potential sources of between-study heterogeneity. Publication bias was estimated using Peters test. Twenty-nine articles were included. Overall, after excluding articles deviating from Hardy–Weinberg equilibrium in controls and sensitive analysis, no significant association was found between RAGE gene polymorphisms (Gly82Ser, 1704 G/T, 429 T/C) and any of T2DM, DR and DN risk, respectively. Subgroup analysis stratified by ethnicity (Asian and Caucasian) also found no significant association between the above-mentioned three polymorphisms and T2DM risk, respectively. This meta-analysis suggested that there might be no association of RAGE gene polymorphisms (Gly82Ser, 1704 G/T, 429 T/C) with T2DM, DR and DN risk.  相似文献   

10.
Groups of Cohen diabetic rats, aged 30 days were treated with Acarbose (40 mg per 100 g sucrose diet) for 3, 5 and 7 months. Siblings of the same sex were used as controls and fed the sucrose diet alone. The dose of Acarbose was adjusted in a preliminary study and found to be tolerated by the animals. Acarbose treatment resulted in a significant reduction of the 2 hr postprandial blood glucose. No elevation of the plasma insulin was noted. A significant decreased incidence and severity of glomerulosclerosis was not in the 3 months Acarbose treated groups (P less than 0.05) and in the 5 and 7 months (P less than 0.01) in comparison with the controls. In the 7 months Acarbose treated group the longevity was significantly longer than in the control (P less than 0.05). In the 3 and 5 months groups, increased longevity was not apparent as the animals were sacrificed before having the opportunity to manifest the difference.  相似文献   

11.
Yang S  Wang H  Yang Y  Wang W  Jiang J  Zhao X  Du Q  Wang X  Yao Y  Shen H  Shen C  Zhao Y 《Gene》2012,498(2):311-316

Background

Advanced glycation end products (AGEs) are produced by non-enzymatic glycation or glycoxidation of proteins, lipids and nucleic acids. The bond of AGEs and the receptor of AGE (AGER) in a pro-oxidant environment could induce immune and inflammation reaction involved in progress of microvascular disease. Accumulated evidence warrant further study on AGE–AGER pathway and genetic susceptibility to hypertension (HT).

Methods

We designed a two-stage association study to evaluate the association of AGER polymorphism and HT. In stage 1, seven tagSNPs were tested in 524 cases and 531 controls and the significant SNPs (P < 0.05) would enter into stage 2 including 807 cases and 869 controls. Furthermore, joint analysis was performed for all 2731 subjects including 1331 cases and 1400 controls, and meta-analysis was applied to evaluate combined estimations from the subgroups of stage 1 and stage 2.

Results

In stage 1, rs204994 had significant association with HT (P < 0.05) and enter stage 2. Neither joint analysis nor meta-analysis found statistical association of rs204994 with HT after adjusted for the covariates in the whole population. However, further stratification analysis found that rs204994 was significantly associated with HT in < 50 years and ≥ 50 years groups, ORs (95%CI) of dominant model were 1.623 (1.054–2.500) and 0.721 (0.546–0.952) respectively. No significant correlation was found between blood pressure and the polymorphisms of rs204994.

Conclusions

Our data suggests that age might modulate the genetic effects of variation of rs204994 in AGER on HT and further replications in other populations and functional studies should be warranted.  相似文献   

12.
Type 2 diabetes causes premature morbidity and mortality due to the complications of atherosclerosis and diabetic nephropathy (DN). Polymorphism of Apo E gene is known to influence lipid metabolism. Apo E is polymorphic, consisting of three common isoforms (epsilon2, epsilon3 and epsilon4) encoded by three alleles (2, 3 and 4) in exon 4 on chromosome 19. The aim of this study was to investigate the effect of Apo E polymorphism as a prognostic risk factor for the development of DN. A total of 108 NIDDM patients were recruited from the Nephrology and Endocrinology Departments of our hospital. All subjects were divided into three groups: Group I: diabetes with nephropathy (n:37), group II: diabetes without nephropathy (n:71), group III: controls (n:46). Apo E genotypes were determined by real-time PCR. The epsilon4 allele frequency was significantly higher in-group I (10.8%) than in-group III (2.2%), (p < 0.05). In diabetics without nephropathy, the total cholesterol and LDL cholesterol levels were significantly lower in subjects with epsilon2 alleles than epsilon3 and epsilon4 alleles. In conclusion, the present prospective study indicates that the epsilon4 allele of the Apo E polymorphism is one of the prognostic risk factors involved in the development of DN with type 2 diabetes mellitus.  相似文献   

13.

Aims

Type 2 diabetes is characterised by increased plasma concentrations of pro-inflammatory cytokines [such as tumour necrosis factor – alpha; TNF-α] and soluble forms of adhesion molecules involved in leukocyte – endothelial interactions. These molecules are synthesised as transmembrane proteins and the plasma soluble forms are generated by ectodomain cleavage from the cell surface by members of the ADAM [a disintegrin and metalloproteinase] proteinase family. We hypothesised that plasma low density lipoprotein [LDL] from subjects with Type 2 diabetes would influence in vitro monocytic ADAM and matrix metalloproteinase [MMP] gene expression differently compared to control LDL.

Methods

We examined relative mRNA expression by real time PCR in a monocytic cell line [THP-1] cultured for 4, 8 and 24 hrs with human plasma LDL derived from subjects with [n = 5] or without [n = 4] Type 2 diabetes. Gene expression for MMP-1 and 9, and ADAM – 8, 15, 17 and 28 was studied.

Results

Type 2 diabetes LDL significantly increased gene expression of MMP – 1 [p < 0.01] MMP – 9 [p < 0.001], and ADAM 17 [p < 0.05], – 28 [p < 0.01] and – 15 [p < 0.01] compared to control LDL. Type 2 diabetes LDL had disparate effects on inhibitors of MMP.

Conclusion

These data suggest that Type 2 diabetes LDL could lead to increased adhesion molecule and TNF alpha cell surface shedding, and vascular plaque instability, by promoting increased expression of ADAM and MMP genes.  相似文献   

14.
We previously described the identification of the 3'end of an unknown gene CDK7 using differential display which appeared to be up-regulated in diabetic kidneys [R.A. Page, C.A. Morris, J.D. Williams, C.J. von Ruhland, A.N. Malik, Isolation of diabetes-associated kidney genes using differential display, Biochem. Biophys. Res. Commun. 232 (1997) 49-53]. Here we show that CDK7 is a putative thiol related gene which is regulated by glucose in human and rat renal cells. CDK7 mRNA increased by >threefold in cultured human mesangial cells grown in high glucose for 4 days. In the kidneys of the GK rat, a model of type II diabetes, CDK7 showed a steady age-related increase in mRNA, increasing to >sixfold in 40 week GK rats compared to normoglycemic age-matched Wistar rat kidneys, this increase correlates with progressive hyperglycemia. CDK7 mRNA is widely expressed, showing particularly high levels of expression in rat and human liver, and encodes a putative 338 amino acids highly conserved peptide with several conserved domains, including a cys-pro-arg-cys domain conserved in 15 diverse species which is similar to the catalytic centre of thioredoxin, suggesting a role in oxidative stress.  相似文献   

15.
Forbes JM  Cooper ME 《Amino acids》2012,42(4):1185-1192
The kidney is an extremely complex organ with broad ranging functions in the body, including but not restricted to waste excretion, ion and water balance, maintenance of blood pressure, glucose homeostasis, generation of erythropoietin and activation of vitamin D. With diabetes, many of these integral processes are interrupted via a combination of haemodynamic and metabolic changes including increases in the accumulation of proteins modified by advanced glycation, known as advanced glycation end products (AGEs). Indeed, hyperglycaemia and the redox imbalances seen with diabetes are each independent accelerants for the production of AGEs, which synergistically combine in this disorder. In addition, as kidney function declines, characterised by a loss of glomerular filtration, the excretion of AGEs is decreased, possibly exacerbating renal injury by further elevating the body’s tissue and circulating AGE pool. Therefore, it has become apparent that decreasing the accumulation of AGEs or interrupting their downstream effects on the kidney, are desirable therapeutic targets for the treatment of diabetic renal disease.  相似文献   

16.
Soluble RAGE in type 2 diabetes: association with oxidative stress   总被引:1,自引:0,他引:1  
Advanced glycation end products (AGEs) contribute to diabetic vascular complications by engaging the AGE receptor (RAGE). A soluble RAGE form (sRAGE) acts as a decoy domain receptor, thus decreasing AGE cellular binding. A cross-sectional comparison of sRAGE, asymmetric dimethylarginine (ADMA) plasma levels (index of endothelial dysfunction), and urinary 8-iso-prostaglandin (PG)F(2alpha) (marker of oxidative stress) was performed between 86 diabetic patients and 43 controls. Plasma sRAGE levels were significantly lower and ADMA levels were significantly higher in diabetic patients as compared to controls (P<0.0001). HbA1c and urinary 8-iso-PGF(2alpha) were correlated inversely with sRAGE and directly with ADMA. On multivariate analysis HbA1c was independently related to sRAGE levels in diabetic patients. Twenty-four of 86 patients with newly diagnosed diabetes and 12 patients in poor metabolic control were reevaluated after treatment with a hypoglycemic agent or insulin, respectively. Improvement in metabolic control by oral agents or insulin resulted in a significant increase in sRAGE and decrease in ADMA levels (P<0.0001). Thus, poor glycemic control reduces sRAGE levels, in association with enhanced oxidative stress and endothelial dysfunction in diabetes. These abnormalities are susceptible to modulation by improvement in metabolic control.  相似文献   

17.
In the past decade, a number of case–control studies have been carried out to investigate the relationship between the ApoE polymorphism and diabetic nephropathy. However, the results have been inconclusive. To investigate this inconsistency, we performed a meta-analysis of all available studies dealing with the relationship between the ApoE polymorphism and DN. The 23 studies in the meta- analysis included 6,012 diabetic patients with (n = 2,979) and without (n = 3,033) DN. The ApoE ε2 allele was significantly associated with DN (OR = 1.64, 95% CI: 1.26–2.13; P(Z) = 0.00027), whereas the ε4 allele was non-significantly associated with DN (OR = 0.93, 95% CI: 0.78–1.11; P(Z) = 0.418). However, significant heterogeneity was detected. In further subgroup analyses, genotyping methods, outcome of cases and duration of diabetes in controls were found to explain some of the heterogeneity. Genotypic analysis also found a strong association between the ε2 carriers and DN (OR = 1.61, 95% CI: 1.22–2.13; P(Z) = 0.001) and indicated that ε4 tended to have a marginally significant protective effect for DN (OR = 0.82, 95% CI: 0.65–1.03; P(Z) = 0.085). The results of our meta-analysis support a genetic association between the ApoE polymorphism and DN. ε2 increases the risk of DN in diabetes patients, while ε4 trends to be protective. These findings may have implications for therapeutic intervention in diabetic nephropathy.  相似文献   

18.
M Fourmann  F Chariot  N Froger  R Delourme  D Brunel 《Génome》2001,44(6):1083-1099
Numerous sequences analogous to resistance (R) genes exist in plant genomes and could be involved in resistance traits. The aim of this study was to identify a large number of Brassica napus sequences related to R genes and also to test the adequacy of specific PCR-based tools for studying them. Different consensus primers were compared for their efficiency in amplifying resistance-gene analogues (RGAs) related to the nucleotide-binding-site subgroup of R genes. Specific primers were subsequently designed to fine-study the different RGAs and we tested their efficiency in three species related to B. napus: Brassica oleracea, Brassica rapa, and Arabidopsis thaliana. Forty-four B. napus RGAs were identified. Among 29 examined, at least one-third were expressed. Eighteen RGAs were mapped on 10 of the 19 B. napus linkage groups. The high variability within these sequences permitted discrimination of each genotype within a B. napus collection. The RGA-specific primers amplified RGAs in the B. oleracea and B. rapa genomes, but the sequences appear to be poorly conserved in A. thaliana. Specific RGA primers are a precise tool for studying known-sequence RGAs. These sequences represent interesting markers that could be correlated with resistance traits in B. napus or related Brassica genomes.  相似文献   

19.
The widely studied candidate genes of the renin-angiotensin-aldosterone system, angiotensinogen (AGT), and angiotensin II receptor type 1 (AGTR1), are implicated in the development of diabetic nephropathy (DN). A number of studies have evaluated the association between the functional polymorphisms, AGT M235T and AGTR1 A1166C, and DN risk with conflicting results. The present meta-analysis was performed to estimate the overall risk of these polymorphisms associated with DN on 4,377 DN cases and 4,905 controls from 34 published case–control studies by searching electronic databases and reference lists of relevant articles. We examined the association between each polymorphism and the risk of DN by odds ratio (OR) with 95% confidence intervals (95% CI) and calculated the ORs for different genetic model. In addition, stratification analysis by ethnicity and diabetes mellitus (DM) type was conducted. In this meta-analysis, we failed to find any significant main effects in both overall analysis and stratified analysis for the AGT M235T. However, the overall analysis detected a significant association between the AGTR1 A1166C and the risk of DN for the CC compared with the AA and dominant genetic model (CC vs. AA: OR = 2.10, 95% CI: 1.00–4.44; dominant model: OR = 2.11, 95% CI: 1.06–4.23). In subgroup analysis, only patients with T2DM showed significant association for CC vs. AA model and dominant model (CC vs. AA: OR = 3.31, 95% CI: 1.21–9.08; dominant model: OR = 3.50, 95% CI: 1.41–8.69). This study suggests that the AGTR1 A1166C polymorphism may contribute to DN development, particularly in T2DM patients.  相似文献   

20.
Diabetic nephropathy (DN), the most serious complication of Type 1 diabetes (DM1), has a strong genetic component. Cyclooxygenase-2 (COX-2), an inducible enzyme by a number of stimuli, has been implicated in pathophysiology of cardiovascular and renal disease, including DN. The allele -765C, of the -765G > C polymorphism (rs20417) in the COX-2 promoter has lower promoter activity compared with the -765G allele and protective effects in cardiovascular disease. This polymorphism was not investigated in patients with DM1 and nephropathy. The study was conducted in 779 Caucasian patients with DM1 and compared to a representative sample of healthy Czech population. The patients demonstrated lower frequencies of the CC genotype (P = 0.005). From the DM1 cohort, 153 patients met the criteria for low risk of the development of DN (LRDN, duration of DM1 > 10 years, normoalbuminuria, normotension) and 139 patients had manifest DN. There were no differences in -765G > C polymorphisms between LRDN and DN patients. Moreover, the C/G allele frequencies did not also differ between the groups. In conclusion, patients with DM1 display lower freqencies of the protective CC genotype as compared to healthy subjects. However, the study did not reveal associations of -765G > C polymorphism with the risk of DN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号