首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA and RNA helicases of superfamily I are characterized by seven conserved motifs. The five N-terminal motifs are separated from the two C-terminal ones by a spacer that is highly variable in both sequence and length, suggesting the existence of two distinct domains. Using computer methods for protein sequence analysis, we show that PhoH, an ATP-binding protein that is conserved in Escherichia coli and Mycobacterium leprae, is homologous to the putative N-terminal domain of the helicases, whereas the putative E. coli protein YjhR is homologous to the C-terminal domain. These findings suggest that the N-and C-terminal domains of superfamily I helicases have distinct activities, with only the N-terminal domain having the ATPase activity. It is speculated that PhoH and YjhR have evolved from helicases through deletion of the portions of the helicase genes coding for the C- and N-terminal domain, respectively.  相似文献   

2.
Human collagen X contains a highly conserved 161-amino acid C-terminal non-triple helical domain that is homologous to the C-terminal domain of collagen VIII and to the C1q module of the human C1 enzyme. We have expressed this domain (residues 545-680) in Escherichia coli as a glutathione S-transferase fusion protein. The purified fusion protein trimerizes spontaneously in vitro, and after thrombin cleavage, the purified C-terminal domain trimer (46.2 kDa) is extremely stable and trypsin-resistant. Mutations within the C-terminal domain have been observed in patients with Schmid's metaphyseal chondrodysplasia (SMCD). Some of these mutations (Y598D, G618V, W651X, or H669X; X is the stop codon) were constructed by site-directed mutagenesis. Each mutation had identical consequences regarding the fusion protein: 1) absence of trimeric formation, 2) copurification of the approximately 60-kDa GroEL chaperone protein, and 3) sensitivity of the monomeric fusion protein to trypsin digestion. These results show that the C-terminal domain of collagen X is sufficient to produce a very stable and compact trimer in the absence of collagen Gly-X-Y repeats. Moreover, mutations causing SMCD interfere in this system with the correct folding of the C-terminal domain. The existence of a similar mechanism in chondrocytes might explain the relative homogeneity of phenotypes in SMCD despite the diversity of mutations.  相似文献   

3.
We have cloned and characterized a human brain cDNA encoding a new metalloprotease that has been called aminopeptidase O (AP-O). AP-O exhibits a series of structural features characteristic of aminopeptidases, including a conserved catalytic domain with a zinc-binding site (HEXXHX18E) that allows its classification in the M1 family of metallopeptidases or gluzincins. The structural complexity of AP-O is further increased by the presence of an additional C-terminal domain 170 residues long, which is predicted to have an ARM repeat fold originally identified in the Drosophila segment polarity gene product Armadillo. This ARM repeat domain is also present in aminopeptidase B, aminopeptidase B-like, and leukotriene A4 hydrolase and defines a novel subfamily of aminopeptidases that we have called ARM aminopeptidases. Northern blot analysis revealed that AP-O is mainly expressed in the pancreas, placenta, liver, testis, and heart. Human AP-O was produced in Escherichia coli, and the purified recombinant protein hydrolyzed synthetic substrates used for assaying aminopeptidase activity. This activity was abolished by general inhibitors of metalloproteases and specific inhibitors of aminopeptidases. Recombinant AP-O also cleaved angiotensin III to generate angiotensin IV, a bioactive peptide of the renin-angiotensin pathway with multiple actions on diverse tissues, including brain, testis, and heart. On the basis of these results we suggest that AP-O could play a role in the proteolytic processing of bioactive peptides in those tissues where it is expressed.  相似文献   

4.
The deduced amino acid sequence of the Myxococcus xanthus AsgA protein contains an N-terminal domain that is homologous to the receiver of response regulators and a C-terminal domain that is homologous to the transmitter of histidine protein kinases. We overexpressed affinity-tagged AsgA in Escherichia coli, purified the recombinant protein, and showed that AsgA has autokinase activity in vitro. The results of chemical-stability assays suggest that AsgA is phosphorylated on a histidine and provide no evidence for transfer of the phosphoryl group to the conserved aspartate of the receiver domain.  相似文献   

5.
The cDNA for bovine ras p21 GTPase activating protein (GAP) has been cloned and the 1044 amino acid polypeptide encoded by the clone has been shown to bind the GTP complexes of both normal and oncogenic Harvey (Ha) ras p21. To identify the regions of GAP critical for the catalytic stimulation of ras p21 GTPase activity, a series of truncated forms of GAP protein were expressed in Escherichia coli. The C-terminal 343 amino acids of GAP (residues 702-1044) were observed to bind Ha ras p21-GTP and stimulate Ha ras p21 GTPase activity with the same efficiency (kcat/KM congruent to 1 x 10(6) M-1 s-1 at 24 degrees C) as GAP purified from bovine brain or full-length GAP expressed in E. coli. Deletion of the final 61 amino acid residues of GAP (residues 986-1044) rendered the protein insoluble upon expression in E. coli. These results define a distinct catalytic domain at the C terminus of GAP. In addition, GAP contains amino acid similarity with the B and C box domains conserved among phospholipase C-II, the crk oncogene product, and the non-receptor tyrosine kinase oncogene products. This homologous region is located in the N-terminal half of GAP outside of the catalytic domain that stimulates ras p21 GTPase activity and may constitute a distinct structural or functional domain within the GAP protein.  相似文献   

6.
The dihydrolipoamide acetyltransferase subunit (E2p) of the pyruvate dehydrogenase complex of Escherichia coli has three highly conserved and tandemly repeated lipoyl domains, each containing approx. 80 amino acid residues. These domains are covalently modified with lipoyl groups bound in amide linkage to the N6-amino groups of specific lysine residues, and the cofactors perform essential roles in the formation and transfer of acetyl groups by the dehydrogenase (E1p) and acetyltransferase (E2p) subunits. A subgene encoding a hybrid lipoyl domain was previously shown to generate two products when overexpressed, whereas a mutant subgene, in which the lipoyl-lysine codon is replaced by a glutamine codon, expresses only one product. A method has been devised for purifying the three types of independently folded domain from crude extracts of E. coli, based on their pH-(and heat-)stabilities. The domains were characterized by: amino acid and N-terminal sequence analysis, lipoic acid content, acetylation by E1p, tryptic peptide analysis and immunochemical activity. This has shown that the two forms of domain expressed from the parental subgene are lipoylated (L203) and unlipoylated (U203) derivatives of the hybrid lipoyl domain, whereas the mutant subgene produces a single unlipoylatable domain (204) containing the Lys-244----Gln substitution.  相似文献   

7.
Human soluble ("cytosolic") aminopeptidase P (hsAmP) is an aminoacylprolyl hydrolase (EC 3.4.11.9) present in all tissues yet examined. hsAmP is related in terms of catalytic specificity to an ectoenzyme, membrane aminopeptidase P (hmAmP), which is largely limited in distribution to endothelia and brush border epithelia. Although both enzymes can degrade oligopeptides having N-terminal Xaa-Pro- moieties, hsAmP and hmAmP are of relatively low sequence homology. Recently, it has been shown that the two enzymes are not products of splice variants of the same gene. How hsAmP relates to hmAmP has clinical significance in that both can inactivate bradykinin, and AmP deficiency states have been described. The hmAmP gene (XPNPEP2) is disposed at chromosome Xq25, a disposition with clear meaning in terms of inheritance of hmAmP deficiencies. To further explore similarities and differences between hsAmP and hmAmP, the present study was begun to determine the chromosomal disposition of the hsAmP gene. Here we show that the gene is sublocalized on chromosome 10q25.3. We also show that hsAmP and hmAmP contain homologous blocks of sequence common to members of the "pita bread-fold" protein family, of which Escherichia coli methionine aminopeptidase is the prototype. The prototype is known to contain a proton shuttle and five divalent metal ligands, counterparts of which we identify in the homologous blocks of sequence in both hsAmP and hmAmP and compare to E. coli aminopeptidase.  相似文献   

8.
Phenylalanine hydroxylase, tyrosine hydroxylase, and tryptophan hydroxylase constitute a family of tetrahydropterin-dependent aromatic amino acid hydroxylases. Comparison of the amino acid sequences of these three proteins shows that the C-terminal two-thirds are homologous, while the N-terminal thirds are not. This is consistent with a model in which the C-terminal two-thirds constitute a conserved catalytic domain to which has been appended discrete regulatory domains. To test such a model, two mutant proteins have been constructed, expressed in Escherichia coli, purified, and characterized. One protein contains the first 158 amino acids of rat tyrosine hydroxylase. The second lacks the first 155 amino acid residues of this enzyme. The spectral properties of the two domains suggest that their three-dimensional structures are changed only slightly from intact tyrosine hydroxylase. The N-terminal domain mutant binds to heparin and is phosphorylated by cAMP-dependent protein kinase at the same rate as the holoenzyme but lacks any catalytic activity. The C-terminal domain mutant is fully active, with Vmax and Km values identical to the holoenzyme; these results establish that all of the catalytic residues of tyrosine hydroxylase are located in the C-terminal 330 amino acids. The results with the two mutant proteins are consistent with these two segments of tyrosine hydroxylase being two separate domains, one regulatory and one catalytic.  相似文献   

9.
We have used an antibody to a previously identified 180 kDa (Hmp1) protein in Escherichia coli to clone the corresponding gene, which encodes a polypeptide of 114 kDa that has a mobility equivalent to 180 kDa in SDS/PAGE. We have demonstrated that the 180 kDa polypeptide is the primary gene product and not due to aggregation with other molecules. Moreover, our data indicate that the highly charged C-terminal region of the protein is responsible for its anomalous behaviour when analysed by SDS/PAGE. The hmp1 gene is in fact identical to ams (abnormal mRNA stability), also designated rne (RnaseE), and reported to have an ORF of 91 kDa. This discrepancy with the data in this paper can be ascribed to the omission of two bases in the previously reported sequence, generating an apparent stop codon. We previously demonstrated that the 180 kDa Hmp1/Ams protein cross reacted with both a polyclonal antibody and a monoclonal antibody raised against a yeast heavy chain myosin. However, we could detect no homology with myosin genes in the ams/hmp1 sequence. From the DNA sequence data, we identified a putative nucleotide binding site and a transmembrane domain in the N-terminal half of the molecule. In the C-terminal half, which appears to constitute a separate domain dominated by proline and charged amino acids, we also identified a region homologous to the highly conserved 70 kDa snRNP protein, involved in RNA splicing in eukaryotes. This feature would be consistent with reports that ams encodes RNaseE, an enzyme required for the processing of several stable RNAs in E. coli.  相似文献   

10.
11.
12.
mscL encodes a channel in Escherichia coli that is opened by membrane stretch force, probably serving as an osmotic gauge. Sequences more or less similar to mscL are found in other bacteria, but the degree of conserved function has been unclear. We subcloned and expressed these putative homologues in E . coli and examined their products under patch clamp. Here, we show that each indeed encodes a conserved mechanosensitive channel activity, consistent with the interpretation that this is an important and primary function of the protein in a wide range of bacteria. Although similar, channels of different bacteria differ in kinetics and their degree of mechanosensitivity. Comparison of the primary sequence of these proteins reveals two highly conserved regions, corresponding to domains previously shown to be important for the function of the wild-type E . coli channel, and a C-terminal region that is not conserved in all species. This structural conservation is providing insight into regions of this molecule that are vital to its role as a mechanosensitive channel and may have broader implications for the understanding of other mechanosensitive systems.  相似文献   

13.
Bacterial alarmone (p)ppGpp, is a global regulator responsible for the stringent control. Two homologous (p)ppGpp synthetases, RelA and SpoT, have been identified and characterized in Escherichia coli, whereas Gram-positive bacteria such as Bacillus subtilis have been thought to possess only a single RelA-SpoT enzyme. We have now identified two genes, yjbM and ywaC, in B. subtilis that encode a novel type of alarmone synthetase. The predicted products of these genes are relatively small proteins ( approximately 25 kDa) that correspond to the (p)ppGpp synthetase domain of RelA-SpoT family members. A database survey revealed that genes homologous to yjbM and ywaC are conserved in certain bacteria belonging to Firmicutes or Actinobacteria phyla but not in other phyla such as Proteobacteria. We designated the proteins as small alarmone synthetases (SASs) to distinguish them from RelA-SpoT proteins. The (p)ppGpp synthetase function of YjbM and YwaC was confirmed by genetic complementation analysis and by in vitro assay of enzyme activity. Molecular genetic analysis also revealed that ywaC is induced by alkaline shock, resulting in the transient accumulation of ppGpp. The SAS proteins thus likely function in the biosynthesis of alarmone with a mode of action distinct from that of RelA-SpoT homologues.  相似文献   

14.
DipZ is a bacterial cytoplasmic membrane protein that transfers reducing power from the cytoplasm to the periplasm so as to facilitate the formation of correct disulphide bonds and c-type cytochromes in the latter compartment. Topological analysis using gene fusions between the Escherichia coli dipZ and either E. coli phoA or lacZ shows that DipZ has a highly hydrophobic central domain comprising eight transmembrane alpha-helices plus periplasmic globular N-terminal and C-terminal domains. The previously assigned translational start codon for the E. coli DipZ was shown to be incorrect and the protein to be larger than previously thought. The experimentally determined translational start position indicates that an additional alpha-helix at the N-terminus acts as a cleavable signal peptide so that the N-terminus of the mature protein is located in the periplasm. The newly assigned 5' end of the dipZ gene was shown to be preceded by a functional ribosome-binding site. The hydrophobic central domain and both of the periplasmic globular domains each have a pair of highly conserved cysteine residues, and it was shown by site directed mutagenesis that all six conserved cysteine residues contribute to DipZ function.  相似文献   

15.
A highly conserved protein motif characteristic of Class II aminoacyl tRNA synthetases was found to align with a region of Escherichia coli asparagine synthetase A. The alignment was most striking for aspartyl tRNA synthetase, an enzyme with catalytic similarities to asparagine synthetase. To test whether this sequence reflects a conserved function, site-directed mutagenesis was used to replace the codon for Arg298 of asparagine synthetase A, which aligns with an invariant arginine in the Class II aminoacyl tRNA synthetases. The resulting genes were expressed in E. coli, and the gene products were assayed for asparagine synthetase activity in vitro. Every substitution of Arg298, even to a lysine, resulted in a loss of asparagine synthetase activity. Directed random mutagenesis was then used to create a variety of codon changes which resulted in amino acid substitutions within the conserved motif surrounding Arg298. Of the 15 mutant enzymes with amino acid substitutions yielding soluble enzyme, 13 with changes within the conserved region were found to have lost activity. These results are consistent with the possibility that asparagine synthetase A, one of the two unrelated asparagine synthetases in E. coli, evolved from an ancestral aminoacyl tRNA synthetase.  相似文献   

16.
17.
Endonuclease VIII-like 3 (Neil3) is one of the five DNA glycosylases found in mammals that recognize and remove oxidized bases, and initiate the base excision repair (BER) pathway. Previous attempts to express and purify the mouse and human orthologs of Neil3 in their active form have not been successful. Here we report the construction of bicistronic expression vectors for expressing in Escherichia coli the full-length mouse Neil3 (MmuNeil3), its glycosylase domain (MmuNeil3Δ324), as well as the glycosylase domain of human Neil3 (NEIL3Δ324). The purified Neil3 proteins are all active, and NEIL3Δ324 exhibits similar glycosylase/lyase activity as MmuNeil3Δ324 on both single-stranded and double-stranded substrates containing thymine glycol (Tg), spiroiminodihydantoin (Sp) or an abasic site (AP). We show that N-terminal initiator methionine processing is critical for the activity of both mouse and human Neil3 proteins. Co-expressing an E. coli methionine aminopeptidase (EcoMap) Y168A variant with MmuNeil3, MmuNeil3Δ324 and NEIL3Δ324 improves the N-terminal methionine processing and increases the percentage of active Neil3 proteins in the preparation. The purified Neil3 proteins are suitable for biochemical, structural and functional studies.  相似文献   

18.
The Escherichia coli MnmE protein is a three-domain protein that exhibits a very high intrinsic GTPase activity and low affinity for GTP and GDP. The middle GTPase domain, when isolated, conserves the high intrinsic GTPase activity of the entire protein, and the C-terminal domain contains the only cysteine residue present in the molecule. MnmE is an evolutionarily conserved protein that, in E. coli, has been shown to control the modification of the uridine at the wobble position of certain tRNAs. Here we examine the biochemical and functional consequences of altering amino acid residues within conserved motifs of the GTPase and C-terminal domains of MnmE. Our results indicate that both domains are essential for the MnmE tRNA modifying function, which requires effective hydrolysis of GTP. Thus, it is shown for the first time that a confirmed defect in the GTP hydrolase activity of MnmE results in the lack of its tRNA modifying function. Moreover, the mutational analysis of the GTPase domain indicates that MnmE is closer to classical GTPases than to GTP-specific metabolic enzymes. Therefore, we propose that MnmE uses a conformational change associated with GTP hydrolysis to promote the tRNA modification reaction, in which the C-terminal Cys may function as a catalytic residue. We demonstrate that point mutations abolishing the tRNA modifying function of MnmE confer synthetic lethality, which stresses the importance of this function in the mRNA decoding process.  相似文献   

19.
G Ghosh  H Y Kim  J P Demaret  S Brunie  L H Schulman 《Biochemistry》1991,30(51):11767-11774
We have previously shown that the anticodon of methionine tRNAs contains the major recognition site required for aminoacylation of tRNAs by Escherichia coli methionyl-tRNA synthetase (MetRS) and have located part of the anticodon binding domain on the enzyme at a site close to Trp461 [Schulman, L. H., & Pelka, H. (1988) Science 242, 765-768; Ghosh, G., Pelka, H., & Schulman, L.H. (1990) Biochemistry 29, 2220-2225]. In order to gain information about other possible sites of contact between MetRS and its tRNA substrates, we have examined the effects of mutations at a series of positively charged residues on the surface of the C-terminal domain of the enzyme. Conversion of Arg356, Arg366, Arg380, or Arg453 to Gln had little or no effect on enzyme activity. Similarly, conversion of Lys402 or Lys439 to Asn failed to significantly alter aminoacylation activity. Conversion of Arg380 to Ala or Arg442 to Gln produced a 5-fold reduction in kcat/Km for aminoacylation of tRNAfMet, with no effect on methionine activation, indicating a possible minor role for these residues in interaction of the enzyme with the tRNA substrate. In contrast, mutation of a phylogenetically conserved residue, Arg395, to Gln increased the Km for aminoacylation of tRNAfMet about 30-fold and reduced kcat/Km by 25,000-fold. The mutant enzyme was also shown to be highly defective by its inability to complement a strain of E. coli having an altered chromosomal MetRS gene.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Aminopeptidase A (APA, EC 3.4.11.7) is a type II integral membrane glycoprotein responsible for the conversion of angiotensin II to angiotensin III in the brain. Previous site-directed mutagenesis studies and the recent molecular modeling of the APA zinc metallopeptidase domain have shown that all the amino acids involved in catalysis are located between residues 200 and 500. The APA ectodomain is cleaved in the kidney into an N-terminal fragment corresponding to the zinc metallopeptidase domain, and a C-terminal fragment of unknown function. We investigated the function of this C-terminal domain, by expressing truncated APAs in Chinese hamster ovary and AtT-20 cells. Deletion of the C-terminal domain abolished the maturation and enzymatic activity of the N-terminal domain, which was retained in the endoplasmic reticulum as an unfolded protein bound to calnexin. Expression in trans of the C-terminal domain resulted in association of the N- and C-terminal domains soon after biosynthesis, allowing folding rescue, maturation, cell surface expression, and activity of the N-terminal zinc metallopeptidase domain. We also show that the C-terminal domain is not required for the catalytic activity of APA but is essential for its activation. Moreover, we show that the C-terminal domain of aminopeptidase N (EC 3.4.11.2, APN) also promotes maturation and cell surface expression of the N-terminal domain of APN, suggesting a common role of the C-terminal domain in the monozinc aminopeptidase family. Our data provide the first demonstration that the C-terminal domain of an eukaryotic exopeptidase acts as an intramolecular chaperone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号