首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In a previous paper, it was shown that the limb bud mesodermal cells differentiated into cartilage even at low cell density by lowering the serum content in the culture medium (Hattori & Ide, Exp cell res 150 (1984) 338) [20]. The present paper describes the effects of cAMP on limb bud chondrogenesis at low cell density. cAMP promoted chondrogenesis at low cell density in cultures with various concentrations of serum. The limb bud cells differentiated into cartilage cells without forming aggregates. cAMP inhibited the loss of chondrogenic capability in serum-rich medium. The relationship between cAMP level and serum content is also discussed.  相似文献   

2.
Summary The histochemistry of the adventitious cartilage of the chick has been studied and compared with both primary cartilage and the bone on which the adventitious cartilage develops. The distribution of DNA, RNA, collagen, acid mucopolysaccharide, mucoprotein, glycogen, lipid, alkaline phosphatase and inorganic phosphate has been studied. Adventitious cartilage was found to have the histochemistry of primary hypertrophic cartilage and to calcify. The appearance of lipid and alkaline phosphatase activity coincided with the onset of calcification.The proliferating osteogenic and chondrogenic cells of the chick embryo have been classified and compared histochemically. Collagen synthesis was found to be high in the osteogenic cells and acid mucopolysaccharide and mucoprotein synthesis high in the chondrogenic cells.It has been postulated that the morphogenetic switch from osteogenesis to adventitious chondrogenesis most probably involves a change in the rate of collagen and acid mucopolysaccharide synthesis by the germinal cells of the membrane bones.  相似文献   

3.
4.
When limb bud mesenchymal cells are cultured at high density, chondrogenesis takes place in vitro. Treatment of such cultures with the tumor promoter 12-O-tetradecanoyl phorbol 13-acetate (TPA) resulted in complete inhibition of chondrogenesis as indicated from staining the cultures for proteoglycans and from RNA hybridization to cDNA probes specific for four cartilage macromolecules. The effect of TPA varied depending on the initial plating density. At high density, TPA inhibited cell proliferation. At low density, cell proliferation was stimulated by TPA and above a certain cell density, chondrogenesis took place even in the presence of TPA. These results are interpreted to mean that the effect of TPA on chondrogenesis is indirect, possibly through its influence on cell proliferation.  相似文献   

5.
The sensitive step of inhibition of chondrogenesis in vitro by retinoids was investigated in modified micromass cultures of limb bud mesenchymal cells from mouse embryos of day 11 and 12. Evaluation of chondrogenesis was performed after alcian blue staining, using a simple random hit counting of cartilage nodules. All-trans-retinoic acid, 13-cis-retinoic acid, and a newly developed arotinoid, RO 13-6298, were tested for their ability to inhibit chondrogenesis. We found that inhibition of chondrogenesis depended on the dosage and the duration of treatment with the different retinoids. Further analysis showed that chondrogenesis in limb bud mesenchymal cells from the proximal part was irreversibly inhibited after one hour of treatment, whereas distal cells showed a reduction of cartilage development only after a treatment period of 12 and more hours. In respect to the doses of the retinoids, proximal cells were about one magnitude more vulnerable than distal cells. These proximo-distal differences were obtained with 13-cis-retinoic acid at 10 micrograms/ml, with all-trans-retinoic acid at 1 microgram/ml and with arotinoid RO 13-6298 with 10 ng/ml. It is supposed that the late blastemal stage of chondrogenic differentiation before the onset of matrix synthesis is the step which is most vulnerable to retinoid treatment.  相似文献   

6.
We have examined the ability of dexamethasone, retinoic acid, and vitamin D3 to induce osteogenic differentiation in rat marrow stromal cell cultures by measuring the expression of mRNAs associated with the differentiated osteoblast phenotype as well as analyzing collagen secretion and alkaline phosphatase activity. Marrow cells were cultured for 8 days in primary culture and 8 days in secondary culture, with and without 10 nM dexamethasone or 1 microM retinoic acid. Under all conditions, cultures produced high levels of osteonectin mRNA. Cells grown with dexamethasone in both primary and secondary culture contained elevated alkaline phosphatase mRNA and significant amounts of type I collagen and osteopontin mRNA. Addition of 1,25-dihydroxyvitamin D3 to these dexamethasone-treated cultures induced expression of osteocalcin mRNA and increased osteopontin mRNA. The levels of alkaline phosphatase, osteopontin, and osteocalcin mRNAs in Dex/Dex/VitD3 cultures were comparable to those of 1,25-dihydroxyvitamin D3-treated ROS 17/2.8 osteosarcoma cells. Omitting dexamethasone from either primary or secondary culture resulted in significantly less alkaline phosphatase mRNA, little osteopontin mRNA, and no osteocalcin mRNA. Retinoic acid increased alkaline phosphatase activity to a greater extent than did dexamethasone but did not have a parallel effect on the expression of alkaline phosphatase mRNA and induced neither osteopontin or osteocalcin mRNAs. In all conditions, marrow stromal cells synthesized and secreted a mixture of type I and III collagens. However, dexamethasone-treated cells also synthesized an additional collagen type, provisionally identified as type V. The synthesis and secretion of collagens type I and III was decreased by both dexamethasone and retinoic acid. Neither dexamethasone nor retinoic acid induced mRNAs associated with the chondrogenic phenotype. We conclude that dexamethasone, but not retinoic acid, promotes the expression of markers of the osteoblast phenotype in cultures of rat marrow stromal fibroblasts.  相似文献   

7.
Platelet-derived growth factor (PDGF) influences the proliferation and differentiation of a variety of cells. In this study, we have investigated the effect of PDGF isoforms on chondrogenesis by stage 24 chick limb bud mesoderm cells in culture. Synthesis of sulfated proteoglycans, an index of chondrogenesis, was inhibited by all three PDGF isoforms (PDGF-AA, PDGF-AB, and PDGF-BB). Application of PDGF isoforms during the first 2 days of culture, before the cells were overtly differentiating, resulted in decreased synthesis of sulfated proteoglycans. This was similar to when PDGF isoforms were present throughout the culture period. However, application of PDGF isoform during only the last 2 days of culture, did not inhibit cartilage matrix production. When chondrogenic and nonchondrogenic cells were separated from the cultures and replated, PDGF-AB and PDGF-BB inhibited the incorporation of sulfate by the chondrogenic cells. Recombinant bone morphogenetic protein 2B reversed the inhibitory effects of PDGF on sulfated proteoglycan synthesis and DNA synthesis. PDGF receptor binding analysis indicated that beta-receptors were predominant receptors present on the chondrogenic and nonchondrogenic cells of the stage 24 mesoderm. PDGF isoforms increased thymidine incorporation by 48 h in both high and low density cultures. However, at later periods, cell proliferation was inhibited by PDGF-AA and PDGF-AB but not by PDGF-BB. PDGF acted as a bifunctional modulator of mesodermal cell proliferation and thus may regulate chondrogenesis during limb differentiation and morphogenesis.  相似文献   

8.
Mesenchyme cells derived from limb buds of day 10 mouse embryos were plated out at confluent and sub-confluent cell densities. Cells in confluent cultures multiplied and differentiated into chondrocytes. The addition of vitamin A to the culture medium inhibited both cell proliferation and chondrogenesis. However, cytosine arabinoside, which also inhibited growth, did not block chondrogenesis. This indicates that the inhibition of growth in the vitamin A-treated cultures did not necessarily contribute to the inhibition of chondrogenesis. Cells in sub-confluent cultures multiplied but did not differentiate into chondrocytes. In contrast to confluent cultures, vitamin A did not inhibit growth in sub-confluent cultures. This observation suggests that vitamin A may inhibit growth by causing contact inhibition.  相似文献   

9.
Chondrogenic differentiation in mouse limb bud mesenchymal cells cultured at high density was suppressed by supplementation of the medium with retinoic acid (1 microgram/ml or 3.3 X 10(-6) M). Since in control medium overt chondrogenesis begins on day 3, retinoic acid was introduced on day 2 so that the relationship between initial biosynthetic changes and inhibition of chondrogenesis could be studied. During the first 24 h of exposure the treated cells remained viable but suffered 10% inhibition in growth and synthesized [3H]glucosamine-labeled glycosaminoglycan at a level 24% below untreated cells. The amount of labeled hyaluronic acid released into the culture medium by the treated cells was, however, 2-fold greater, on a per cell basis, than that in the untreated cultures. It is suggested that the displacement of hyaluronate may play a role in the disruption of mesenchymal cell differentiation and of limb morphogenesis as observed in other systems.  相似文献   

10.
Recent studies have demonstrated that adipose-derived mesenchymal cells (AMCs) offer great promise for cell-based therapies because of their ability to differentiate toward bone, cartilage, and fat. Given that cartilage is an avascular tissue and that mesenchymal cells experience hypoxia during prechondrogenic condensation in endochondral ossification, the goal of this study was to understand the influence of oxygen tension on AMC differentiation into bone and cartilage. In vitro chondrogenesis was induced using a three-dimensional micromass culture model supplemented with TGF-1. Collagen II production and extracellular matrix proteoglycans were assessed with immunohistochemistry and Alcian blue staining, respectively. Strikingly, micromasses differentiated in reduced oxygen tension (2% O2) showed markedly decreased chondrogenesis. Osteogenesis was induced using osteogenic medium supplemented with retinoic acid or vitamin D and was assessed with alkaline phosphatase activity and mineralization. AMCs differentiated in both 21 and 2% O2 environments. However, osteogenesis was severely diminished in a low-oxygen environment. These data demonstrated that hypoxia strongly inhibits in vitro chondrogenesis and osteogenesis in AMCs. cartilage; bone  相似文献   

11.
We have recently reported that retinoic acid inhibits dexamethasone-induced alkaline phosphatase activity and mineralization in human osteoblastic cell line SV-HFO. In this study, we show that this inhibitory effect on alkaline phosphatase activity depends on the stage of cell differentiation; however, expression of tetranectin, which is a recently reported bone matrix protein, was completely inhibited by treatment with retinoic acid, irrespective of the stage of cell differentiation. Similarly, mineral deposit formation in SV-HFO cells was phase-independently inhibited by retinoic acid. To our knowledge, this is the first report that retinoic acid downregulates the tetranectin expression in human osteoblastic cells independent of the stage of cell differentiation, and is correlated with inhibition of mineralization.  相似文献   

12.
Effects of the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) on chondrogenesis and concentrations of prostaglandin E2 (PGE2) and cyclic AMP (cAMP) were investigated in micromass cultures of chick limb mesenchyme derived from the distal tip of stage 25 limb buds. TPA completely inhibited chondrogenesis during the first 4 days of culture; however, a few small cartilage nodules formed by day 6. Relative to control cultures, both PGE2 and cAMP concentrations were altered by TPA treatment during the 6-day period of cell culture. Concentrations of both compounds increased in control cells during the first 24 h of culture and then declined during the remaining 5 days. In TPA-treated cells both PGE2 and cAMP levels increased progressively during the 6 days of days of cell culture, each being elevated at day 6 by twofold over control cells. The results suggest the presence of regulatory pathways important in chondrogenesis which occur independent of those initiated by PGE2 and the cAMP system.  相似文献   

13.
Recent studies have shown that in the developing limb bud retinoic acid is a skeletal morphogen at physiological levels, but a potent teratogen at higher levels. Retinoic acid has also been shown to be teratogenic during facial development, but very low levels may have an as yet unspecified role in normal development. In the present study the effects of retinoic acid on chondrogenesis and myogenesis by craniofacial cells grown in micromass cell culture were investigated. Retinoic acid, at concentrations of 0.01-100 ng/ml, was supplied to cells derived from day-4 (H.H stage 23/24) chick embryo mandibular, maxillary and frontonasal processes, grown in micromass cultures for 4 days in both serum-containing and defined media. Based on Alcian-blue-staining, concentrations of retinoic acid of 0.1-1 ng/ml were found to enhance chondrogenesis by mandibular cells grown in defined medium, while greater concentrations up to 100 ng/ml inhibited chondrogenesis. By contrast, chondrogenesis was generally retarded by all concentrations of retinoic acid applied to frontonasal cells grown in defined medium and when applied to both mandibular and frontonasal cells when grown in serum-containing medium. Cells from stage-23/24 maxillae did not display any significant chondrogenic activity in either medium under these culture conditions. Unlike chondrogenesis, myogenesis in mandibular, frontonasal and maxillary cultures was greater in defined than serum-containing medium, based on the appearance of immunologically detectable muscle myosin, and was reduced considerably less in defined medium by all concentrations of retinoic acid tested. In the presence of serum however, myogenesis was retarded with increasing concentrations of retinoic acid beyond 1 ng/ml in micromass cultures from all three facial regions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Fibronectin gene expression during limb cartilage differentiation   总被引:6,自引:0,他引:6  
A critical event in limb cartilage differentiation is a transient cellular condensation process in which prechondrogenic mesenchymal cells become closely juxtaposed and interact with one another prior to initiating cartilage matrix deposition. Fibronectin (FN) has been suggested to be involved in regulating the onset of condensation and chondrogenesis by actively promoting prechondrogenic aggregate formation during the process. We have performed a systematic quantitative study of the expression of the FN gene during the progression of chondrogenesis in vitro and in vivo. In high-density micromass cultures of limb mesenchymal cells, FN mRNA levels increase about 5-fold coincident with the crucial condensation process, and remain relatively high during the initial deposition of cartilage matrix by the cells. Thereafter, FN mRNA levels progressively decline to relatively low levels as the cultures form a virtually uniform mass of cartilage. The changes in FN mRNA levels in vitro are paralleled closely by changes in the relative rate of FN synthesis as determined by pulse-labeling and immunoprecipitation analysis. The relative rate of FN synthesis increases 4- to 5-fold at condensation and the onset of chondrogenesis, after which it progressively declines to low levels as cartilage matrix accumulates. High levels of FN gene expression also occur at the onset of chondrogenesis in vivo. In the proximal central core regions of the limb bud in which condensation and cartilage matrix deposition are being initiated, FN mRNA levels and the relative rates of FN synthesis become progressively about 4-fold higher than in the distal subridge region, which consists of undifferentiated mesenchymal cells that have not yet initiated condensation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
We measured changes of cytosolic Ca2+ concentration during chondrogenesis, which occurs in high-density cultures (HDC) of chondrifying chicken mesenchymal cells. A significant, transient elevation was detected in Fura-2-loaded cells on day 3 of culturing, when majority of chondrogenic cells of HDC become differentiated. This 140 nM peak of cytosolic Ca2+ concentration is a result of increased Ca-influx and is indispensable to proper chondrogenesis, because addition of 0.8mM EGTA to culture medium on day 2 or 3 significantly decreased the intracellular Ca2+ concentration abolishing the Ca2+-peak of day 3 and inhibited cartilage formation. Uncontrolled Ca2+ influx evoked by a Ca2+ ionophore exerted dual effects on chondrogenesis in a concentration-dependent manner; 0.1mg/L A23187 increased, whereas 5 mg/L A23187 almost totally blocked cartilage formation. Intracellular Ca-stores seemed not to have any significant participation in the regulation of changes of cytosolic Ca2+ concentration of chondrifying cells. Activity of Ca-calmodulin-dependent protein phosphatase, calcineurin responded to changes of intracellular Ca2+ concentration induced by EGTA or A23187 in a differentiation stage-dependent manner. Since inhibition of calcineurin with cyclosporine A eliminated the peak in the cytosolic Ca2+ concentration, an active regulatory role of calcineurin on Ca2+ influx of chondrifying cells can be supposed.  相似文献   

16.
Matrix GLA protein (MGP), a gamma-carboxyglutamic acid (GLA)-rich, vitamin K-dependent and apatite-binding protein, is a regulator of hypertrophic cartilage mineralization during development. However, MGP is produced by both hypertrophic and immature chondrocytes, suggesting that MGP's role in mineralization is cell stage-dependent, and that MGP may have other roles in immature cells. It is also unclear whether MGP regulates the quantity of mineral or mineral nature and quality as well. To address these issues, we determined the effects of manipulations of MGP synthesis and expression in (a) immature and hypertrophic chondrocyte cultures and (b) the chick limb bud in vivo. The two chondrocyte cultures displayed comparable levels of MGP gene expression. Yet, treatment with warfarin, a gamma-carboxylase inhibitor and vitamin K antagonist, triggered mineralization in hypertrophic but not immature cultures. Warfarin effects on mineralization were highly selective, were accompanied by no appreciable changes in MGP expression, alkaline phosphatase activity, or cell number, and were counteracted by vitamin K cotreatment. Scanning electron microscopy, x-ray microanalysis, and Fourier-transform infrared spectroscopy revealed that mineral forming in control and warfarin-treated hypertrophic cell cultures was similar and represented stoichiometric apatite. Virally driven MGP overexpression in cultured chondrocytes greatly decreased mineralization. Surprisingly, MGP overexpression in the developing limb not only inhibited cartilage mineralization, but also delayed chondrocyte maturation and blocked endochondral ossification and formation of a diaphyseal intramembranous bone collar. The results show that MGP is a powerful but developmentally regulated inhibitor of cartilage mineralization, controls mineral quantity but not type, and appears to have a previously unsuspected role in regulating chondrocyte maturation and ossification processes.  相似文献   

17.
Microtiter micromass cultures of limb-bud mesenchymal cells   总被引:4,自引:0,他引:4  
Summary A method is described for growing high-density micromass cultures of chick and mouse limb mesenchyme cells in 96-well microtiter plates (μTμM cultures). Rapid quantitative estimates of chondrogenic expression were obtained by automated spectrophotometric analysis of Alcian-blue-stained cartilage matrix extracts performed in the wells in which the cells had been grown. Quantitative estimates of myogenic expression were obtained similarly using anti-sarcomere myosin monoclonal antibody and modified ELISA techniques. This μTμM-ELISA method may be adapted for use with other antigens for which specific antibodies are available. These methods were used to compare cartilage and muscle differentiation in 1 to 4 d μTμM cultures grown in serum-containing (SCM) and defined (DM) media. The DM contains minimal additives (insulin, hydrocortisone, and in some cases, ascorbate or transferrin) and supports both chondrogenesis and myogenesis. The colorimetric analyses agree well with the morphologic appraisal of chondrogenesis and myogenesis. Similar numbers of cartilage nodules formed in all cultures, but in DM the nodules failed to enlarge; explaining the reduced matrix synthesis in DM as compared with SCM, and suggesting that nodule enlargement is a discrete, serum-dependent step. Studies of selected additives to DM show that transferrin enhances myogenesis, ascorbic acid enhances chondrogenesis, and retinoic acid inhibits chondrogenesis. Together, the μTμM system, in situ colorimetric assays of chondrogenesis and myogenesis, and DM will allow rapid prescreening of teratogens and screening of various bioactive compounds (e.g., hormones, growth factors, vitamins, adhesion factors) for effects on limb mesenchymal cell differentiation. This work was supported by grants RR08006-13 (DFP) and HD05505 and HD18577 (MS) from the National Institutes of Health, Bethesda, MD. MF-20 hybridoma supernatant was obtained from the Developmental Studies Hybridoma Bank, Department of Biology, University of Iowa, Iowa City, Iowa 52242 (maintained by NIH grant NO1-HD62915).  相似文献   

18.
A consistent chondrogenesis takes place in micro high-density cultures derived from limb mesenchymal cells of chick embryos of stages 23-24. Flow-cytometric measurements of DNA content showed that cells in the phase of G1 or G0 made up 51% of the dispersed cell suspensions. The proportion of these cells increased to 71% by the onset of cartilage differentiation in day-2 cultures. This ratio was 84% when the voluminous matrix formation began on the 4th day of culturing. Thereafter, it increased to 90% by the 6th day, and to 93% by the 14th day. The results suggest that cartilage differentiates from G0 mesenchymal cells of the limb. In our measurements, however, the G0 phase includes all non-proliferative cell population which have identical DNA content with G1 cells. Therefore, the G0 phase contains also an increasing number of chondroblasts and chondrocytes as the chondrogenesis proceeds.  相似文献   

19.
We have examined the in vitro stage-related chondrogenic potential of avian mandibular ectomesenchymal cells using micromass cultures. Our results indicate that mandibular ectomesenchymal cells as early as stage 16, soon after the formation of the mandibular arches and well before the initiation of in vivo chondrogenesis, have chondrogenic potential which is expressed in micromass culture. There is an increase in the total area of the cultures occupied by cartilage when cells from increasing stages of development are used. The nodular pattern of chondrogenesis in these cultures indicates that mandibular ectomesenchymal cells are a heterogenous population from the time of mandibular arch formation. In addition, we studied the temporal expression of the genes for extracellular matrix proteins during in vitro chondrogenesis and correlated the morphological changes with the pattern of gene expression. Low levels of type II collagen mRNA are present in the cultures prior to detection of any stainable cartilage matrix and increase 5 fold just before the onset of chondrogenesis in vitro. On the other hand mRNA for cartilage proteoglycan core protein was not detected until the second day of culture when stainable cartilage matrix was present and progressively increased thereafter. Messenger RNA for type I collagen was present at the time of initiation of cultures and continuously increased during the culture period. Our experiments also indicated that embryonic epithelia can inhibit the in vitro chondrogenesis of mandibular ectomesenchymal cells and that the inhibitory effect of embryonic epithelia is independent of its age and site of origin.  相似文献   

20.
Effects of retinoic acid (RA) on prostaglandin E2 (PGE2) and cyclic AMP (cAMP) concentrations were investigated in high density, micromass cultures of mesenchymal cells derived from chick limb buds. Exposure of cells during the initial 24 h of culture to RA concentrations between 0.05–1.0 μg/ml inhibited chondrogenesis in a dose-dependent manner with 1.0 μg/ml totally inhibiting cartilage formation. Concentrations of PGE2 and cAMP increased during the prechondrogenic period in control cells in a closely related way and remained elevated throughout the six-day period examined. Addition of RA (0.05 and 0.5 μg/ml) did not significantly alter cAMP concentrations at any time point, but significantly elevated PGE2 levels relative to control cells in six-day cultures in a concentration-dependent manner. Addition of dibutyryl cAMP enhanced chondrogenesis in control cells between days 3 and 4, but failed to alter the inhibitory effect of RA on chondrogenesis. The results indicate that while PGE2 and cAMP are important signals in cartilage differentiation, the inhibitory effects of RA on this process are mediated through some other mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号