首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stabilization of the T-state of hemoglobin   总被引:1,自引:0,他引:1  
The effect of inositol hexaphosphate and bezafibrate on binding of O2 and CO to HbAO at high concentrations (1 mM) has been evaluated using thin layer optical techniques. Data analysis shows 1) the occurrence of greatly reduced ligand dependent cooperativity (Hill slope of 2.23 for CO and 1.51 for O2), and 2) the presence of significant triply ligated species. The data fits a nested allosteric two-state MWC model in which the T state consists of two allosteric substrates, Tt and Tr, where Tt binds only to the alpha chains and Tr binds to both alpha and beta chains. The model indicates that the triply ligated species consists of a predominant amount of T form, agreeing with kinetic observations of CO ligated hemoglobin. The maximum amount of triply ligated R molecules (CO or O2) implicated is less than 1%, a result similar to that found previously for binding studies made in the absence of BZF and IHP.  相似文献   

2.
A theoretical study is made on catalytic activities of allosteric enzymes in non-equilibrium systems. It is demonstrated that the amount of chemical flow catalyzed by allosteric enzymes in systems maintained far-from-equilibrium can be qualitatively different from that familiar in the near-equilibrium situations. To be more specific, a study is made of a system containing two chemical species, S and P, and an allosteric enzyme, E, which catalyzes the reaction of the interconversion between them. This system interacts with its environment in a way characterized by a set of controlled parameters. By this interaction the system is maintained far-from-equilibrium. More than one steady state is possible for a certain range of controlled parameters. For continuous changes of the controlled parameters, discontinuous transitions between the multiple steady states can occur. This new aspect of the enzyme kinetics of allosteric proteins may play a role in the regulation of metabolic flows within living cells.  相似文献   

3.
G Holzapfel  G Buhrman  C Mattos 《Biochemistry》2012,51(31):6114-6126
Ras GTPase cycles between its active GTP-bound form promoted by GEFs and its inactive GDP-bound form promoted by GAPs to affect the control of various cellular functions. It is becoming increasingly apparent that subtle regulation of the GTP-bound active state may occur through promotion of substates mediated by an allosteric switch mechanism that induces a disorder to order transition in switch II upon ligand binding at an allosteric site. We show with high-resolution structures that calcium acetate and either dithioerythritol (DTE) or dithiothreitol (DTT) soaked into H-Ras-GppNHp crystals in the presence of a moderate amount of poly(ethylene glycol) (PEG) can selectively shift the equilibrium to the "on" state, where the active site appears to be poised for catalysis (calcium acetate), or to what we call the "ordered off" state, which is associated with an anticatalytic conformation (DTE or DTT). We also show that the equilibrium is reversible in our crystals and dependent on the nature of the small molecule present. Calcium acetate binding in the allosteric site stabilizes the conformation observed in the H-Ras-GppNHp/NOR1A complex, and PEG, DTE, and DTT stabilize the anticatalytic conformation observed in the complex between the Ras homologue Ran and Importin-β. The small molecules are therefore selecting biologically relevant conformations in the crystal that are sampled by the disordered switch II in the uncomplexed GTP-bound form of H-Ras. In the presence of a large amount of PEG, the ordered off conformation predominates, whereas in solution, in the absence of PEG, switch regions appear to remain disordered in what we call the off state, unable to bind DTE.  相似文献   

4.
Targeting allosteric sites is gaining increasing recognition as a strategy for modulating the activity of enzymes, especially in drug design. Here we investigate the mechanisms of allosteric regulation of cathepsin K as a representative of cysteine cathepsins and a promising drug target for the treatment of osteoporosis. Eight novel modifiers are identified by computational targeting of predicted allosteric sites on the surface of the enzyme. All act via hyperbolic kinetic mechanisms in presence of low molecular mass substrates, as expected for allosteric effectors. Two compounds have sizable effects on enzyme activity using interstitial collagen as a natural substrate of cathepsin K and four compounds show a significantly stabilizing effect on cathepsin K. The concept of activity modification space is introduced to obtain a global perspective of the effects elicited by the modifiers. Analysis of the activity modification space reveals that the activity of cathepsin K is regulated via multiple, different allosteric mechanisms.  相似文献   

5.
A recent report by M. Gregoriou, I. P. Trayer, and A. Cornish-Bowden (1986, Eur. J. Biochem. 161, 171-176) showed that the mechanism for rat skeletal muscle hexokinase contains two allosteric sites: one for ATP and one for glucose 6-phosphate. In this report, we show that the allosteric mechanism is at variance with a large amount of kinetic data for the skeletal muscle hexokinase reaction in the literature. In addition, the allosteric mechanism conflicts with isotope exchange at chemical equilibrium data reported by M. Gregoriou, I. P. Trayer, and A. Cornish-Bowden (1983, Eur. J. Biochem. 134, 283-288).  相似文献   

6.
7.
The cholecystokinin (CCK1) receptor is a G protein-coupled receptor important for nutrient homeostasis. The molecular basis of CCK-receptor binding has been debated, with one prominent model suggesting occupation of the same region of the intramembranous helical bundle as benzodiazepines. Here, we used a specific assay of allosteric ligand interaction to probe the mode of binding of devazepide, a prototypic benzodiazepine ligand. Devazepide elicited marked slowing of dissociation of pre-bound CCK, only possible through binding to a topographically distinct allosteric site. This effect was disrupted by chemical modification of a cysteine in the benzodiazepine-binding pocket. Application of an allosteric model to the equilibrium interaction between a series of benzodiazepine ligands and CCK yielded quantitative estimates of each modulator’s affinity for the allosteric site, as well as the degree of negative cooperativity for the interaction between occupied orthosteric and allosteric sites. The allosteric nature of benzodiazepine binding to the CCK1 receptor provides new opportunities for small molecule drug development.  相似文献   

8.
A method for testing the validity of the rapid-equilibrium assumption as it might apply to allosteric enzymes using exclusively steady-state kinetic data is presented. The method is based upon a recognition that the ratio of apparent dissociation constants for the allosteric ligand, obtained under conditions of limiting and saturating substrate concentration, must yield the thermodynamic value for the coupling parameter between the substrate and allosteric ligand even in the general steady-state case. If this value is found to be equal to the apparent coupling parameter determined from the ratio of limiting values of the Michaelis constant for substrate obtained in the absence and saturating presence of the allosteric ligand, then the substrate can be correctly viewed as effectively achieving a binding equilibrium with the enzyme in the steady-state. The utility and limitations of this method are demonstrated by examining the ADP activation of beef heart mitochondrial NAD-dependent isocitrate dehydrogenase.  相似文献   

9.
Despite the established view of protein kinases as dynamic and versatile allosteric regulatory machines, our knowledge of allosteric functional states, allosteric interaction networks, and the intrinsic folding energy landscapes is surprisingly limited. We discuss the latest developments in structural characterization of allosteric molecular events underlying protein kinase dynamics and functions using structural, biophysical, and computational biology approaches. The recent studies highlighted progress in making the invisible aspects of protein kinase ‘life’ visible, including the determination of hidden allosteric states and mapping of allosteric energy landscapes, discovery of new mechanisms underlying ligand-induced modulation of allosteric activity, evolutionary adaptation of kinase allostery, and characterization of allosteric interaction networks as the intrinsic driver of kinase adaptability and signal transmission in the regulatory assemblies.  相似文献   

10.
《Biophysical journal》2022,121(11):2035-2045
Allosteric regulation is essential to control biological function. In addition, allosteric sites offer a promising venue for selective drug targeting. However, accurate mapping of allosteric sites remains challenging since allostery relies on often subtle, yet functionally relevant, structural and dynamical changes. A viable approach proposed to overcome such challenge is chemical shift covariance analysis (CHESCA). Although CHESCA offers an exhaustive map of allosteric networks, it is critical to define the core allosteric sites to be prioritized in subsequent functional studies or in the design of allosteric drugs. Here, we propose two new CHESCA-based methodologies, called temperature CHESCA (T-CHESCA) and CLASS-CHESCA, aimed at narrowing down allosteric maps to the core allosteric residues. Both T- and CLASS-CHESCAs rely on the invariance of core inter-residue correlations to changes in the chemical shifts of the active and inactive conformations interconverting in fast exchange. In T-CHESCA the chemical shifts of such states are modulated through temperature changes, while in CLASS-CHESCA through variations in the spin-active nuclei involved in pairwise correlations. T- and CLASS-CHESCAs, as well as complete-linkage CHESCA, were applied to the cAMP-binding domain of the exchange protein directly activated by cAMP (EPAC), which serves as a prototypical allosteric switch. Residues consistently identified by the three CHESCA methods were found in previously identified EPAC allosteric core sites. Hence, T-, CLASS-, and CL-CHESCA provide a toolset to establish allosteric site hierarchy and triage allosteric sites to be further analyzed by mutations and functional assays. Furthermore, the core allosteric networks selectively revealed through T- and CLASS-CHESCA are expected to facilitate the mechanistic understanding of disease-related mutations and the design of selective allosteric modulators.  相似文献   

11.
Allosteric feedback inhibition is the mechanism by which metabolic end products regulate their own biosynthesis by binding to an upstream enzyme. Despite its importance in controlling metabolism, there are relatively few allosteric mechanisms understood in detail. This is because allostery does not have an identifiable structural motif, making the discovery of new allosteric enzymes a difficult process. The lack of a conserved motif implies that the evolution of each allosteric mechanism is unique. Here we describe an atypical allosteric mechanism in human UDP-α-d-glucose 6-dehydrogenase (hUGDH) based on an easily acquired and identifiable structural attribute: packing defects in the protein core. In contrast to classic allostery, the active and allosteric sites in hUGDH are present as a single, bifunctional site. Using two new crystal structures, we show that binding of the feedback inhibitor, UDP-α-d-xylose, elicits a distinct induced-fit response; a buried loop translates ~4 ? along and rotates ~180° about the main chain axis, requiring surrounding side chains to repack. This allosteric transition is facilitated by packing defects, which negate the steric conformational restraints normally imposed by the protein core. Sedimentation velocity studies show that this repacking favors the formation of an inactive hexameric complex with unusual symmetry. We present evidence that hUGDH and the unrelated enzyme dCTP deaminase have converged to very similar atypical allosteric mechanisms using the same adaptive strategy, the selection for packing defects. Thus, the selection for packing defects is a robust mechanism for the evolution of allostery and induced fit.  相似文献   

12.
Citrate synthase from Escherichia coli enhances the fluorescence of its allosteric inhibitor, NADH, and shifts the peak of emission of the coenzyme from 457 to 428 nm. These effects have been used to measure the binding of NADH to this enzyme under various conditions. The dissociation constant for the NADH-citrate synthase complex is about 0.28 muM at pH 6.2, but increases toward alkaline pH as if binding depends on protonation of a group with a pKa of about 7.05. Over the pH range 6.2-8.7, the number of binding sites decreases from about 0.65 to about 0.25 per citrate synthase subunit. The midpoint of this transition is at about pH 7.7, and it may be one reflection of the partial depolymerization of the enzyme which is known to occur in this pH range. A gel filtration method has been used to verify that the fluorescence enhancement technique accurately reveals all of the NADH molecules bound to the enzyme in the concentration range of interest. NAD+ and NADP+ were weak competitive inhibitors of NADH binding at pH 7.8 (Ki values greater than 1 mM), but stronger inhibition was shown by 5'-AMP and 3'-AMP, with Ki values of 83 +/- 5 and 65 +/- 4 muM, respectively. Acetyl-CoA, one of the substrates, and KCl, an activator, also inhibit the binding in a weakly cooperative manner. All of these effects are consistent with kinetic observations on this system. We interpret our results in terms of two types of binding site for nucleotides on citrate synthase: an active site which binds acetyl-CoA, the substrate, or its analogue 3'-AMP; and an allosteric site which binds NADH or its analogue 5'-AMP and has a lesser affinity for other nicotinamide adenine dinucloetides. When the active site is occupied, we propose that NADH cannot bind to the allosteric site, but 5'-AMP can; conversely, when NADH is the in the allosteric site, the active site cannot be occupied. In addition to these two classes of sites, there must be points for interaction with KCl and other salts. Oxaloacetate, the second substrate, and alpha-ketoglutarate, an inhibitor whose mode of action is believed to be allosteric, have no effect on NADH binding to citrate synthase at pH 7.8. When NADH is bound to citrate synthase, it quenches the intrinsic tryptophan fluorescence of the enzyme. The amount of quenching is proportional to the amount of NADH bound, at least up to a binding ratio of 0.50 NADH per enzyme subunit. This amount of binding leads to the quenching of 53 +/- 5% of the enzyme fluorescence, which means that one NADH molecule can quench all the intrinsic fluorescence of the subunit to which it binds.  相似文献   

13.
Herein, we report on the role of the allosteric site in the activation mechanism of soybean lipoxygenase-1 utilizing stopped-flow inhibition kinetic studies. The K(D) for the activation was determined to be 25.9 +/- 2.3 microM and the rate constant for the oxidation of the iron cofactor, k(2), to be 182 +/- 4 s(-1). Two inhibitors were employed in this study, (Z)-9-octadecenyl sulfate (OS) and (Z)-9-palmitoleyl sulfate (PS), of which OS is an allosteric inhibitor of the turnover process, while PS is a linear mixed inhibitor with a K(i) of 13.7 +/- 1.3 microM for the catalytic site and a K(i)' of 140 +/- 9 microM for the allosteric site. It was found that OS does not inhibit the activation of soybean lipoxygenase-1, while PS acts as a competitive inhibitor versus the product, 13-hydroperoxy-9,11-(Z,E)-octadecadienoic acid, with a K(i) of 17.5 +/- 3.8 microM. These results suggest that OS binds to an allosteric site that is separate from the catalytic iron site. We further observed that the allosteric site binding selectivity is sensitive to inhibitor length as seen by its preference for OS over that of PS, which is two carbons longer than PS.  相似文献   

14.
Inhibiting the main protease of SARS-CoV-2 is of great interest in tackling the COVID-19 pandemic caused by the virus. Most efforts have been centred on inhibiting the binding site of the enzyme. However, considering allosteric sites, distant from the active or orthosteric site, broadens the search space for drug candidates and confers the advantages of allosteric drug targeting. Here, we report the allosteric communication pathways in the main protease dimer by using two novel fully atomistic graph-theoretical methods: Bond-to-bond propensity, which has been previously successful in identifying allosteric sites in extensive benchmark data sets without a priori knowledge, and Markov transient analysis, which has previously aided in finding novel drug targets in catalytic protein families. Using statistical bootstrapping, we score the highest ranking sites against random sites at similar distances, and we identify four statistically significant putative allosteric sites as good candidates for alternative drug targeting.  相似文献   

15.
Many proteins display conformational changes resulting from allosteric regulation. Often only a few residues are crucial in conveying these structural and functional allosteric changes. These regions that undergo a significant change in structure upon receiving an input signal, such as molecular recognition, are defined as switch-like regions. Identifying these key residues within switch-like regions can help elucidate the mechanism of allosteric regulation and provide guidance for synthetic regulation. In this study, we combine a novel computational workflow with biochemical methods to identify a switch-like region in the N-terminal domain of human SIRT1 (hSIRT1), a lysine deacetylase that plays important roles in regulating cellular pathways. Based on primary sequence, computational methods predicted a region between residues 186–193 in hSIRT1 to exhibit switch-like behavior. Mutations were then introduced in this region and the resulting mutants were tested for allosteric reactions to resveratrol, a known hSIRT1 allosteric regulator. After fine-tuning the mutations based on comparison of known secondary structures, we were able to pinpoint M193 as the residue essential for allosteric regulation, likely by communicating the allosteric signal. Mutation of this residue maintained enzyme activity but abolished allosteric regulation by resveratrol. Our findings suggest a method to predict switch-like regions in allosterically regulated enzymes based on the primary sequence. If further validated, this could be an efficient way to identify key residues in enzymes for therapeutic drug targeting and other applications.  相似文献   

16.
Allosteric regulation is the most direct and efficient way of regulating protein function, wherein proteins transmit the perturbations at one site to another distinct functional site. Deciphering the mechanism of allosteric regulation is of vital importance for the comprehension of both physiological and pathological events in vivo as well as the rational allosteric drug design. However, it remains challenging to elucidate dominant allosteric signal transduction pathways, especially for large and multi-component protein machineries where long-range allosteric regulation exits. One of the quintessential examples having long-range allosteric regulation is the ternary complex, SPRED1–RAS–neurofibromin type 1 (NF1, a RAS GTPase–activating protein), in which SPRED1 facilitates RAS–GTP hydrolysis by interacting with NF1 at a distal, allosteric site from the RAS binding site. To address the underlying mechanism, we performed extensive Gaussian accelerated molecular dynamics simulations and Markov state model analysis of KRAS–NF1 complex in the presence and absence of SPRED1. Our findings suggested that SPRED1 loading allosterically enhanced KRAS–NF1 binding, but hindered conformational transformation of the NF1 catalytic center for RAS hydrolysis. Moreover, we unveiled the possible allosteric pathways upon SPRED1 binding through difference contact network analysis. This study not only provided an in-depth mechanistic insight into the allosteric regulation of KRAS by SPRED1, but also shed light on the investigation of long-range allosteric regulation among complex macromolecular systems.  相似文献   

17.
The active site of glucosamine-6-phosphate deaminase from Escherichia coli (GlcN6P deaminase, EC 3.5.99.6) has a complex lid formed by two antiparallel beta-strands connected by a helix-loop segment (158-187). This motif contains Arg172, which is a residue involved in binding the substrate in the active-site, and three residues that are part of the allosteric site, Arg158, Lys160 and Thr161. This dual binding role of the motif forming the lid suggests that it plays a key role in the functional coupling between active and allosteric sites. Previous crystallographic work showed that the temperature coefficients of the active-site lid are very large when the enzyme is in its T allosteric state. These coefficients decrease in the R state, thus suggesting that this motif changes its conformational flexibility as a consequence of the allosteric transition. In order to explore the possible connection between the conformational flexibility of the lid and the function of the deaminase, we constructed the site-directed mutant Phe174-Ala. Phe174 is located at the C-end of the lid helix and its side-chain establishes hydrophobic interactions with the remainder of the enzyme. The crystallographic structure of the T state of Phe174-Ala deaminase, determined at 2.02 A resolution, shows no density for the segment 162-181, which is part of the active-site lid (PDB 1JT9). This mutant form of the enzyme is essentially inactive in the absence of the allosteric activator, N-acetylglucosamine-6-P although it recovers its activity up to the wild-type level in the presence of this ligand. Spectrometric and binding studies show that inactivity is due to the inability of the active-site to bind ligands when the allosteric site is empty. These data indicate that the conformational flexibility of the active-site lid critically alters the binding properties of the active site, and that the occupation of the allosteric site restores the lid conformational flexibility to a functional state.  相似文献   

18.
Recent work has shown that ADP is an allosteric activator of nonphosphorylated phosphorylase kinase from rabbit skeletal muscle (Cheng, A., Fitzgerald, T. J., and Carlson, G. M. (1985) J. Biol. Chem. 260, 2535-2542). The specificity of the allosteric site for nucleoside diphosphates is further investigated in this study. Only purine nucleoside diphosphates are capable of causing allosteric activation, and an amino group at position 2 or 6 of the purine ring is required. Comparisons are made of the abilities of 5'-diphosphate analogs of ADP, including phosphorothioates, to activate, to bind, and to induce in the enzyme's beta subunits conformational changes associated with activation. Binding is measured by competition titrations utilizing fluorescence polarization of lin-benzo-ADP, itself an allosteric activator; and conformational changes are measured by partial proteolysis and chemical cross-linking. When measured at an identical percentage of saturation at the allosteric site, the abilities of ADP analogs to induce conformational changes in the beta subunits parallel their abilities to activate the holoenzyme. An unmodified beta-phosphate of ADP, although not necessary for binding at the allosteric site, is needed to fully drive the activating conformational transition. The activating nucleoside diphosphate appears to be the free species, as opposed to its Mg2+ complex.  相似文献   

19.
Long-range coupling between distant functional elements of proteins may rely on allosteric communication trajectories lying along the protein structure, as described in the case of the Shaker voltage-activated potassium (Kv) channel model allosteric system. Communication between the distant Kv channel activation and slow inactivation pore gates was suggested to be mediated by a network of local pairwise and higher-order interactions among the functionally unique residues that constitute the allosteric trajectory. The mechanism by which conformational changes propagate along the Kv channel allosteric trajectory to achieve pore opening, however, remains unclear. Such conformational changes may propagate in either a concerted or a sequential manner during the reaction coordinate of channel opening. Residue-level structural information on the transition state of channel gating is required to discriminate between these possibilities. Here, we combine patch-clamp electrophysiology recordings of Kv channel gating and analysis using linear free-energy relations, focusing on a select set of residues spanning the allosteric trajectory of the Kv channel pore. We show that all allosteric trajectory residues tested exhibit an open-like conformation in the transition state of channel opening, implying that coupling interactions occur along the trajectory break in a concerted manner upon moving from the closed to the open state. Energetic coupling between the Kv channel gates thus occurs in a concerted fashion in both the spatial and the temporal dimensions, strengthening the notion that such trajectories correspond to pathways of mechanical deformation along which conformational changes propagate.  相似文献   

20.
Amino acid replacements in the active site of glucosamine-6-P deaminase from Escherichia coli (GlcN6P deaminase, EC 3.5.99.6) involving the residues D141 and E148 produce atypical allosteric kinetics. These residues are located in the chain segment 139-156 which is part of the active site and which also forms several intersubunit contacts close to the allosteric site. In the D141N and E148Q mutant forms of this deaminase, there is an inversion of the effect of its physiological allosteric effector, N-acetylglucosamine 6-P, which becomes an inhibitor at substrate concentrations above a critical value. For both mutants, this particular point appears at low substrate concentration and the inhibition by the allosteric activator is the dominant effect in velocity versus substrate curves. These effects are analyzed as a particular case of the concerted allosteric model, assuming that the R state, the conformer displaying the higher affinity for the substrate, is the less catalytic state, thus producing an inverted allosteric response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号