首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An alternative protocol for freeze-substitution is described. Araldite/Epon embedding medium (20% in acetone) is first used as a stabilizer (as e.g., OsO(4)) and then as embedding medium. The major components of the Araldite/Epon resin formulation react with proteins and lipids and provide for an excellent preservation and reasonable visualisation of the ultrastructure. The ultrastructural appearance can be deliberately influenced with the standard freeze-substitution procedure [Van Harreveld, A., Crowell, J., 1964. Electron microscopy after rapid freezing on a metal surface and substitution fixation. Anat. Rec. 149, 381-386.] using OsO(4) as stabilizing agent by protocols which degrade cytoplasmic and membrane proteins. Epoxy stabilized and embedded samples may become an important tool to get information about the effects of different reagents and protocols used in freeze-substitution. We believe that an in-depth understanding of the procedures is required to correctly interpret images and to complement studies of dynamic processes by light microscopy with reliable, highly detailed ultrastructural information. The block face of epoxy stabilized samples after ultrathin sectioning is highly suited for the analysis of the ultrastructure by AFM.  相似文献   

2.
Amplification of immunological signals with catalyzed reporter deposition (CARD) allows improved detection of scarce tissue antigens in light and electron microscopy. The technique takes advantage of the oxidation ability of horseradish peroxidase (HRP), in the presence of hydrogen peroxide, to yield the accumulation of one of its specific reporter-tagged substrates. This immunocytochemical approach continues to be improved by the introduction of new reporter molecules tagged to tyramine or to other HRP substrates. In this study we introduced a novel HRP substrate tagged to Nanogold particles. The amplification protocol is based on the application of a specific primary antibody, a biotinylated secondary antibody, streptavidin-HRP, and an HRP substrate coupled to Nanogold, followed by silver intensification. In addition to amplification of immunological signals of high resolution, direct accumulation of Nanogold particles at target sites by enzymatic activity of HRP improves the efficiency of the technique compared to other amplification protocols. Moreover, this approach combines the CARD amplification potentials with the ultrasmall gold probe and the silver intensification method. Immunolabeling obtained by light and electron microscopy, as well as immunodot assay using this new amplification strategy, appear to be highly sensitive, specific, and of enhanced intensity.  相似文献   

3.
An improved method is described in which tissue areas can be initially identified in thick sections by light microscopy and isolated for subsequent ultrathin sections and observation by electron microscopy. This is achieved by embedding in hard Epon which can be sectioned at 25-150 μm on a sliding microtome after softening the blockface by applying a 60-70 C tacking iron to its surface immediately before each section is taken. The thick sections are then mounted on plastic slides to enable light microscopic selection of areas to be observed by electron microscopy. The selected areas are remounted on faced Epon blanks and resectioned at less than 50 nm. This technique makes it possible to obtain thick sections while maintaining an Epon hard enough for good serial ultrathin sections.  相似文献   

4.
The organization of the nucleoplasm in Escherichia coli was studied by comparing the results obtained by freeze fracturing and thin sectioning. In addition to exponentially growing cells, we used chloramphenicol-treated cells which show a well-defined nucleoplasm, in the phase-contrast light microscope and can therefore function as a control for treatments necessary for electron microscopy. Two factors were found to determine the visibility of the nucleoplasm in freeze fractures: first, the state of lateral aggregation of deoxyribonucleic and fibrils, which is enhanced by postfixation with OsO4 according to the Ryter-Kellenberger technique; second, the presence of ice crystals. When their formation is prevented by the use of high concentration of freeze-protecting agents, the nucleoplasm appears as a smooth region in cells that have been prefixed. In unfixed cells, however, the freeze-protecting agent causes disappearance of the nucleoplasm by rearrangement of structures within the cell. This observation makes it hard to determine whether the deoxyribonucleic acid in vivo dispersed, as found after glutaraldehyde prefixation, or compact, as after OsO4 prefixation.  相似文献   

5.
Silver enlargement of small colloidal gold particles has been extensively used for the light microscopical visualization of gold probes. Very recently, a few investigators have employed physical developers in electron microscopy (both pre-embedding and on-grid staining methods). We now demonstrate that physical development of small colloidal gold particles advantageously can be exploited for labelling biological surfaces in scanning electron microscopy. This novel application of silver enhancement of colloidal gold particles is characterized by a high detection efficiency. Thus, specimens are labelled with small gold probes affording high immunocytochemical efficiency but being impossible to detect with the present scanning microscopes. These particles are subsequently scanning electronmicroscopically visualized by silver enhancement.  相似文献   

6.
We have developed methods to locate individual ligands that can be used for electron microscopy studies of dynamic events during endocytosis and subsequent intracellular trafficking. The methods are based on enlargement of 1.4 nm Nanogold attached to an endocytosed ligand. Nanogold, a small label that does not induce misdirection of ligand-receptor complexes, is ideal for labeling ligands endocytosed by live cells, but is too small to be routinely located in cells by electron microscopy. Traditional pre-embedding enhancement protocols to enlarge Nanogold are not compatible with high pressure freezing/freeze substitution fixation (HPF/FSF), the most accurate method to preserve ultrastructure and dynamic events during trafficking. We have developed an improved enhancement procedure for chemically fixed samples that reduced auto-nucleation, and a new pre-embedding gold enlarging technique for HPF/FSF samples that preserved contrast and ultrastructure and can be used for high-resolution tomography. We evaluated our methods using labeled Fc as a ligand for the neonatal Fc receptor. Attachment of Nanogold to Fc did not interfere with receptor binding or uptake, and gold-labeled Fc could be specifically enlarged to allow identification in 2D projections and in tomograms. These methods should be broadly applicable to many endocytosis and transcytosis studies.  相似文献   

7.
A new application of the Giemsa stain to demonstrate endocrine cells in deplasticized sections of Epon embedded material is described. Its application to the pancreas of Rana temporaria is illustrated. The technique does not require postfixation with OsO4 and is easily performed in 30 min. It allows the easy identification of three types of endocrine cells (A, B, and D). A cells, preferentially located at the islet periphery, stain purple-blue. B cells, which occupy the interior of the islet, display a lilac color. D cells give a strong purple color; they are located both in the periphery of the islets and scattered among acinar cells. Positive identification of the cell types was made by immunocytochemistry and electron microscopy.  相似文献   

8.
Ultrastructural localization of growth hormone in rat anterior pituitary and of muscle-specific actin in rabbit arterial smooth muscle cells was accomplished with a post-embedment procedure using colloidal gold. Plastic sections (2 microns) were mounted on slides, deplasticized, immunostained with immunoglobulin-colloidal gold particles, re-embedded in Epon, and sectioned for electron microscopy. This procedure enabled light and electron microscopic localization of these intracellular antigens on the same section. Positive immunostaining was demonstrated with this procedure with a muscle-specific actin antibody which previously failed to localize antigenic sites by EM. The procedure described yielded staining of high specificity, with minimal background and well-preserved ultrastructure. This re-embedding technique is useful in situations where problems with post-embedding EM immunostaining exist and where correlative LM and EM immunostaining is essential.  相似文献   

9.
New frontiers in gold labeling.   总被引:7,自引:0,他引:7  
Recent advances in gold technology have led to probes with improved properties and performance for cell biologists: higher labeling density, better sensitivity, and greater penetration into tissues. Gold clusters, such as the 1.4-nm Nanogold, are gold compounds that can be covalently linked to Fab' antibody fragments, making small and stable probes. Silver enhancement then makes these small gold particles easily visible by EM, LM, and directly by eye. Another advance is the combination of fluorescent and gold probes for correlative microscopy. Chemical crosslinking of gold particles to many biologically active molecules has made possible many novel probes, such as gold-lipids, gold-Ni-NTA, and gold-ATP.  相似文献   

10.
We describe a method based on fluorescence in situ hybridisation (FISH) that allows the identification of individual cells by electron microscopy. We hybridised universal and specific fluorescein-labelled oligonucleotide probes to the ribosomal RNA of prokaryotic microorganisms in heterogeneous cell mixtures. We then used antibodies against fluorescein coupled to sub-nanometer gold particles to label the hybridised probes in the ribosome. After increasing the diameter of the metal particles by silver enhancement, the specific gold-silver signal was visualised by optical microscopy, transmission electron microscopy (TEM) and scanning electron microscopy (SEM). It is the first time that SEM is applied to the detection of gold nanoparticles hybridised to an intracellular target, such as the ribosome. The possibility to couple phylogenetic identification by FISH to cell surface and ultrastructure observation at electron microscopy resolution has promising potential applications in microbial ecology.  相似文献   

11.
Multiple correlative immunolabeling permits colocalization of molecular species for sequential observation of the same sample in light microscopy (LM) and electron microscopy (EM). This technique allows rapid evaluation of labeling via LM, prior to subsequent time-consuming preparation and observation with transmission electric microscopy (TEM). The procedure also yields two different complementary data sets. In LM, different fluorophores are distinguished by their respective excitation and emission wavelengths. In EM, colloidal metal nanoparticles of different elemental composition can be differentiated and mapped by energy-filtering transmission electron microscopy with electron spectroscopic imaging. For the highest level of spatial resolution in TEM, colloidal metal particles were conjugated directly to primary antibodies. For LM, fluorophores were conjugated to secondary antibodies, which did not affect the spatial resolution attainable by fluorescence microscopy but placed the fluorophore at a sufficient distance from the metal particle to limit quenching of the fluorescence signal. It also effectively kept the fluorophore at a sufficient distance from the colloidal metal particles, which resulted in limiting quenching of the fluorescent signal. Two well-defined model systems consisting of myosin and alpha-actinin bands of skeletal muscle tissue and also actin and alpha-actinin of human platelets in ultrathin Epon sections were labeled using both fluorophores (Cy2 and Cy3) as markers for LM and equally sized colloidal gold (cAu) and colloidal palladium (cPd) particles as reporters for TEM. Each sample was labeled by a mixture of conjugates or labels and observed by LM, then further processed for TEM.  相似文献   

12.
This study reveals a green process for the production of multi-morphological silver (Ag NPs) and gold (Au NPs) nanoparticles, synthesized using an agro-industrial residue cashew nut shell liquid. Aqueous solutions of Ag+ ions for silver and chloroaurate ions for gold were treated with cashew nut shell extract for the formation of Ag and Au NPs. The nano metallic dispersions were characterized by measuring the surface plasmon absorbance at 440 and 546 nm for Ag and Au NPs. Transmission electron microscopy showed the formation of nanoparticles in the range of 5–20 nm for silver and gold with assorted morphologies such as round, triangular, spherical and irregular. Scanning electron microscopy with energy dispersive spectroscopy and X-ray diffraction analyses of the freeze-dried powder confirmed the formation of metallic Ag and Au NPs in crystalline form. Further analysis by Fourier transform infrared spectroscopy provided evidence for the presence of various biomolecules, which might be responsible for the reduction of silver and gold ions. The obtained Ag and Au NPs had significant antibacterial activity, minimum inhibitory concentration and minimum bactericidal concentration on bacteria associated with fish diseases.  相似文献   

13.
A simple method is described allowing the enhancement of the visibility of small gold probes for the electron microscopy. This method, which allows the silver intensification of gold directly on epon-embedded ultrathin sections, was used for the electron microscopic localization of Mouse Mammary Tumor Virus (MMTV) antigens in cultured cells derived from GR and BALB/cfRIII mouse mammary tumors. After the immunostaining with the preembedding protein A-gold technique, the ultrathin sections, placed on 200 mesh copper grids, were rehydrated and exposed to a photographic developer containing silver nitrate. During this physical development gold particles are incapsulated in growing shells of metallic silver, which gradually become more and more visible. We were able to obtain a heavy labelling of the viral particles, well visible even at low magnification, with a negligeable background staining. The present technique can be useful whenever it is necessary to use the smallest gold probes today available.  相似文献   

14.
Correlative microscopy is an important approach for bridging the resolution gap between fluorescence and electron microscopy. We have employed FluoroNanogold (FNG) as the detection system in these types of studies. This immunoprobe consists of a gold cluster compound to which a fluorochrome-labeled antibody is covalently linked. In these preparations, the fluorescence signal from FNG is first recorded then the gold cluster compound is subjected to a silver enhancement reaction before examination by electron microscopy. Potential complications are those associated with photochemical reactions that occur during fluorescence microscopy. We have evaluated this and some anti-photobleaching agents (i.e., 1,4-diazabicyclo[2.2.2]octane [DABCO],p-phenylenediamine [PPD], and N-propyl gallate [NPG]) for their utility with FNG in correlative microscopy. When DABCO was employed, the gold signal from FNG was dramatically diminished but the fluorescence signal was unaffected. The gold signal of DABCO-treated samples decreased to approximately 30% of that of the other samples. On the other hand, PPD and NPG did not adversely affect the FNG labeling. We recommend that either PPD or NPG be used and that DABCO be avoided as an antiphotobleaching reagent for this technique.  相似文献   

15.
Summary A simple method is described allowing the enhancement of the visibility of small gold probes for the electron microscopy.This method, which allows the silver intensification of gold directly on epon-embedded ultrathin sections, was used for the electron microscopic localization of Mouse Mammary Tumor Virus (MMTV) antigens in cultured cells derived from GR and BALB/cfRIII mouse mammary tumors. After the immunostaining with the preembedding protein A-gold technique, the ultrathin sections, placed on 200 mesh copper grids, were rehydrated and exposed to a photographic developer containing silver nitrate. During this physical development gold particles are incapsulated in growing shells of metallic silver, which gradually become more and more visible. We were able to obtain a heavy labelling of the viral particles, well visible even at low magmfication, with a negligeable background staining.The present technique can be useful whenever it is necessary to use the smallest gold probes today available.Supported by contract No. 85.02038.44 from the National Research Council, Rome, Progetto Finalizzato Oncologia  相似文献   

16.
Addition of six histidines to recombinant proteins has proved useful in their purification by nickel-affinity columns. This technology was adapted by synthesizing the chelator for nickel (nitrilotriacetic acid, NTA) onto the surface of gold clusters. These Ni-NTA-gold clusters were shown to specifically target the 6His region of tagged proteins. Results were verified by column chromatography, dot and overlay blots, UV-Vis spectroscopy, and scanning transmission electron microscopy. A 6His-tagged adenovirus "knob" protein was also shown to maintain receptor binding activity after gold labeling. Two types of gold clusters were used: 1.4-nm Nanogold and a new 1.8-nm "PeptideGold" coated with an NTA-dipeptide-thiol. These novel labels should be useful in site-specific high-resolution EM labeling, as well as in metallographic development, detection in the light microscope, or direct visualization.  相似文献   

17.
Labeling with heavy atom clusters attached to antibody fragments is an attractive technique for determining the 3D distribution of specific proteins in cells using electron tomography. However, the small size of the labels makes them very difficult to detect by conventional bright-field electron tomography. Here, we evaluate quantitative scanning transmission electron microscopy (STEM) at a beam voltage of 300 kV for detecting 11-gold atom clusters (Undecagold) and 1.4 nm-diameter nanoparticles (Nanogold) for a variety of specimens and imaging conditions. STEM images as well as tomographic tilt series are simulated by means of the NIST Elastic-Scattering Cross-Section Database for gold clusters embedded in carbon. The simulations indicate that the visibility in 2D of Undecagold clusters in a homogeneous matrix is maximized for low inner collection semi-angles of the STEM annular dark-field detector (15–20 mrad). Furthermore, our calculations show that the visibility of Undecagold in 3D reconstructions is significantly higher than in 2D images for an inhomogeneous matrix corresponding to fluctuations in local density. The measurements demonstrate that it is possible to detect Nanogold particles in plastic sections of tissue freeze-substituted in the presence of osmium. STEM tomography has the potential to localize specific proteins in permeabilized cells using antibody fragments tagged with small heavy atom clusters. Our quantitative analysis provides a framework for determining the detection limits and optimal experimental conditions for localizing these small clusters.  相似文献   

18.
Labeling with heavy atom clusters attached to antibody fragments is an attractive technique for determining the 3D distribution of specific proteins in cells using electron tomography. However, the small size of the labels makes them very difficult to detect by conventional bright-field electron tomography. Here, we evaluate quantitative scanning transmission electron microscopy (STEM) at a beam voltage of 300 kV for detecting 11-gold atom clusters (Undecagold) and 1.4 nm-diameter nanoparticles (Nanogold) for a variety of specimens and imaging conditions. STEM images as well as tomographic tilt series are simulated by means of the NIST Elastic-Scattering Cross-Section Database for gold clusters embedded in carbon. The simulations indicate that the visibility in 2D of Undecagold clusters in a homogeneous matrix is maximized for low inner collection semi-angles of the STEM annular dark-field detector (15–20 mrad). Furthermore, our calculations show that the visibility of Undecagold in 3D reconstructions is significantly higher than in 2D images for an inhomogeneous matrix corresponding to fluctuations in local density. The measurements demonstrate that it is possible to detect Nanogold particles in plastic sections of tissue freeze-substituted in the presence of osmium. STEM tomography has the potential to localize specific proteins in permeabilized cells using antibody fragments tagged with small heavy atom clusters. Our quantitative analysis provides a framework for determining the detection limits and optimal experimental conditions for localizing these small clusters.  相似文献   

19.
Super-resolved cryogenic correlative light and electron tomography is an emerging method that provides both the single-molecule sensitivity and specificity of fluorescence imaging, and the molecular scale resolution and detailed cellular context of tomography, all in vitrified cells preserved in their native hydrated state. Technical hurdles that limit these correlative experiments need to be overcome for the full potential of this approach to be realized. Chief among these is sample heating due to optical excitation which leads to devitrification, a phase transition from amorphous to crystalline ice. Here we show that much of this heating is due to the material properties of the support film of the electron microscopy grid, specifically the absorptivity and thermal conductivity. We demonstrate through experiment and simulation that the properties of the standard holey carbon electron microscopy grid lead to substantial heating under optical excitation. In order to avoid devitrification, optical excitation intensities must be kept orders of magnitude lower than the intensities commonly employed in room temperature super-resolution experiments. We further show that the use of metallic films, either holey gold grids, or custom made holey silver grids, alleviate much of this heating. For example, the holey silver grids permit 20× the optical intensities used on the standard holey carbon grids. Super-resolution correlative experiments conducted on holey silver grids under these increased optical excitation intensities have a corresponding increase in the rate of single-molecule fluorescence localizations. This results in an increased density of localizations and improved correlative imaging without deleterious effects from sample heating.  相似文献   

20.
Comparative electron microscope and X-ray studies were made on the frog sciatic nerve myelin after freeze-drying technique. The specimens were fixed with OsO4 before and after freeze-drying. In the latter case, osmium was used as a hydrophobic solution (OsO4 in CCl4), or in the high vacuum during osmium sublimation. The results obtained in this study do not fit in the accepted mechanism operating during osmium fixation of membranes. Another mechanism is proposed by the authors, and the problem of osmium localization within the space of the myelin repeated unit is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号