首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用盆栽控水试验,研究了3个水分处理,即田间持水量(FC)的(75±5)%、(55±5)%和(35±5)%,对丁香、黄刺梅、连翘的叶、茎、极细根(0~1 mm)、细根(1~2 mm)和粗根(>2 mm)化学计量特征的影响.结果表明:3种灌木相同器官间氮(N)和磷(P)含量以及C∶N、C∶P、N∶P均存在显著差异.随着干...  相似文献   

2.
BACKGROUND AND AIMS: Since salinity and drought stress can occur together, an assessment was made of their interacting effects on leaf water relations, osmotic adjustment and net gas exchange in seedlings of the relatively chloride-sensitive Carrizo citrange, Citrus sinensis x Poncirus trifoliata. METHODS: Plants were fertilized with nutrient solution with or without additional 100 mm NaCl (salt and no-salt treatments). After 7 d, half of the plants were drought stressed by withholding irrigation water for 10 d. Thus, there were four treatments: salinized and non-salinized plants under drought-stress or well-watered conditions. After the drought period, plants from all stressed treatments were re-watered with nutrient solution without salt for 8 d to study recovery. Leaf water relations, gas exchange parameters, chlorophyll fluorescence, proline, quaternary ammonium compounds and leaf and root concentrations of Cl(-) and Na(+) were measured. KEY RESULTS: Salinity increased leaf Cl(-) and Na(+) concentrations and decreased osmotic potential (Psi(pi)) such that leaf relative water content (RWC) was maintained during drought stress. However, in non-salinized drought-stressed plants, osmotic adjustment did not occur and RWC decreased. The salinity-induced osmotic adjustment was not related to any accumulation of proline, quaternary ammonium compounds or soluble sugars. Net CO(2) assimilation rate (A(CO2)) was reduced in leaves from all stressed treatments but the mechanisms were different. In non-salinized drought-stressed plants, lower A(CO2) was related to low RWC, whereas in salinized plants decreased A(CO2) was related to high levels of leaf Cl(-) and Na(+). A(CO2) recovered after irrigation in all the treatments except in previously salinized drought-stressed leaves which had lower RWC and less chlorophyll but maintained high levels of Cl(-), Na(+) and quaternary ammonium compounds after recovery. High leaf levels of Cl(-) and Na(+) after recovery apparently came from the roots. CONCLUSIONS: Plants preconditioned by salinity stress maintained a better leaf water status during drought stress due to osmotic adjustment and the accumulation of Cl(-) and Na(+). However, high levels of salt ions impeded recovery of leaf water status and photosynthesis after re-irrigation with non-saline water.  相似文献   

3.
闫海龙  张希明  许浩  刘英 《生态学报》2010,30(10):2519-2528
利用Li-6400光合作用系统在沙漠腹地测定分析塔里木沙漠公路防护林植物梭梭(Haloxylon ammodendron)、多枝柽柳(Tamarix ramosissima)和乔木状沙拐枣(Calligonum arborescens)光合特性对干旱胁迫的响应,探讨了水分亏缺对防护林植物光合积累的影响作用。结果显示:沙拐枣的净光合速率、蒸腾速率、水分利用效率、光能利用效率及潜在光合作用能力对水分亏缺最敏感,而柽柳则最不敏感;不同处理下3种植物光合特性变化的差异表明,不同植物对水分亏缺有着不同的响应变化和适应方式;此外,干旱胁迫未提高3种植物的水分利用效率,反而降低了其光能利用效率;C3植物多枝柽柳在干旱高温条件下保持着比C4植物梭梭和沙拐枣更为稳定的光合积累和水分利用效率,说明部分C3植物具备不弱于C4荒漠植物的干旱耐受适应能力;虽然水分亏缺对3种植物的光合作用能力均存在不同程度抑制作用,但未对其光合积累造成不可逆转的影响。可见3种植物都有很强的干旱适应与耐受能力,这种能力表明沙漠公路防护林的灌溉管理还有进一步的节水空间。  相似文献   

4.
3个树种对不同程度土壤干旱的生理生化响应   总被引:4,自引:0,他引:4  
吴芹  张光灿  裴斌  方立东 《生态学报》2013,33(12):3648-3656
利用盆栽试验和采用人工浇水后持续自然耗水的方法,研究了3年生山杏(Prunus sibirica)、沙棘(Hippophae rhamnoides)、油松(Pinus tabulaeformis)对土壤干旱胁迫的生理生化响应过程。结果表明:随着干旱程度加剧,3个树种叶片相对含水量(LRWC)及叶绿素(Chl)含量持续下降,细胞膜透性逐渐增大;其中,以山杏和沙棘变化幅度较大,油松最小;3个指标发生显著变化的土壤相对含水量(RWC)临界值,油松为54.7%、山杏和沙棘分别为46.7%和48.4%。3个树种超氧化物歧化酶(SOD)与过氧化物酶(POD)两种抗氧化酶活性,随RWC降低先升高后降低;维持较高抗氧化酶活性的RWC范围,油松为32.9%—76.4%、山杏和沙棘分别为46.7%—77.9%和35.8%—78.2%;在不同土壤干旱程度下,油松的抗氧化酶活性水平高于沙棘和山杏。3个树种两种渗透调节物质脯氨酸(Pro)与可溶性糖(Ss)的含量随RWC降低而增加,油松的增加幅度大于山杏和沙棘;Pro含量的增加速度大于Ss含量。结论:3个树种可通过渗透调节、抗氧化酶活性升高等途径增强对干旱逆境的耐受性和适应性;3个树种的抗旱能力为油松>沙棘>山杏。  相似文献   

5.
6.
In wild species of almond (Prunus spp.), the activities of ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), and glutathione reductase (GR), as well as the levels of ascorbate/glutathione pools and H2O2 were subjected to water deficit and shade conditions. After 60 days of water shortage, the species were subjected to a rewatering treatment. During water recovery, leaves exposed to sunlight and leaves under shade conditions of about 20–35% of environmental irradiance were sampled. After 70 days without irrigation, mean predawn leaf water potential of all the species fell from −0.32 to −2.30 MPa and marked decreases in CO2 uptake and transpiration occurred. The activities of APX, MDHAR, DHAR, and GR increased in relation to the severity of drought stress in all the wild species studied. Generally, APX, MDHAR, DHAR, and GR were down-regulated during the rewatering phase and their activities decreased faster in shaded leaves than in sun-exposed leaves. The levels in total ascorbate, glutathione, and H2O2 were directly related to the increase in drought stress and subsequently decreased during rewatering. The antioxidant response of wild almond species to drought stress limits cellular damage caused by reactive oxygen species during periods of water deficit and may be of key importance for the selection of drought-resistant rootstocks for cultivated almond.  相似文献   

7.
The capability to withstand and to recover from severe summer droughts is becoming an important issue for tree species in central Europe, as dry periods are predicted to occur more frequently over the coming decades. Changes in leaf gas exchange, chlorophyll a fluorescence and leaf compounds related to photoprotection were analysed in young Quercus pubescens trees under field conditions during two summers (2004 and 2005) of progressive drought and subsequent rewatering. Photochemistry was reversibly down-regulated and dissipation of excess energy was enhanced during the stress phase, while contents of leaf pigments and antioxidants were almost unaltered. Plant water status was restored immediately after rewatering. Net photosynthesis (P(n)) measured at ambient CO2 recovered from inhibition by drought within 4 wk. P(n) measured at elevated CO2--to overcome stomatal limitations--was restored after a few days. A network of photoprotective mechanisms acted in preserving the potential functionality of the photosynthetic apparatus during severe drought, leading to a rapid recovery of photosynthetic activity after rewatering. Thus, Q. pubescens seems to be capable of withstanding and surviving extreme drought events.  相似文献   

8.
The responses of steady-state CO2 assimilation rate (A), transpiration rate (E), and stomatal conductance (gs) to changes in leaf-to-air vapour pressure difference (δW) on one hand and to increasing soil drought on the other hand were examined in 2-year-old seedlings of Pseudotsuga menziesii, Pseudotsuga macrocarpa and Cedrus atlantica. Analysing the data through A vs intercellular CO2 molar fraction (ci) graphs, we could determine stomatal and mesophyll contributions to changes in A as δW or soil drought were increased. Increasing soil drought affected gs and mesophyll photosynthesis independently, since clearly distinct predawn leaf water potential (ψp) regions appeared in which either stomatal or mesophyll effects prevailed for explaining the changes in A. The two Pseudotsuga species exhibited a large ψP range (between ca -0.8 and -1.5 to -1.9 MPa) in which only stomata were responsible for the decrease in A. A dramatic decline in mesophyll photosynthesis was noticed starting from values as high as -1.2 MPa ( C. atlantica ), -1.5 MPa ( P. macrocarpa ) and -1.9 MPa ( P. menziesii ). Increasing ΔW at high soil water content led to a sharp decline in A primarily due to an alteration of mesophyll photosynthesis. Stomatal conductance for CO2 diffusion was affected in a lesser extent and in close correlation with the changes in mesophyll photosynthesis, which could suggest the existence of a functional linkage between mesophyll photosynthesis and stomata. Surprisingly, the drought resistant P. macrocarpa exhibited the least conservative water use efficiency in response to the two types of drought. In this species drought adaptation seems to be mainly due to its high root growth and soil prospection ability.  相似文献   

9.
Olive ( Olea europaea L. cv. Frantoio) plants grown hydroponically in a glasshouse were supplied with half-strength Hoagland solutions containing 0, 50, 100, and 200 m M NaCl for 4 weeks and subsequently supplied with the standard solution without NaCl to relieve salinity stress. Two complete stress-relief cycles were repeated on the same plant material during one growing season. Growth was inhibited at all salt levels, but most growth parameters of plants treated with 50 or 100 m M NaCl returned to control levels after 4 weeks of relief. More severely stressed plants (200 m M NaCl) recovered to only 60% of the growth of the controls after 4 weeks. During relief, plants treated with 50 and 100 m M NaCl had net photosynthetic rates and stomatal conductances higher than the controls. Increasing the NaCl concentration of the external solution from 0 to 200 m M decreased both leaf pre-dawn water potential (from -0.3 to -1.0 MPa) and osmotic potential (from -2.1 to -2.7 MPa). The sodium concentration in the leaves of plants treated with 200 m M NaCl reached maximum levels of 211 and 388 m M (expressed on a tissue water basis) at the end of the first salinity and relief periods, respectively. Leaf chloride concentrations were 359 and 223 m M at the same sampling dates. These data indicate that the inhibitory effects of salinization on growth and gas exchange of the salt-tolerant olive cv. Frantoio can be readily reversed when salinity is relieved, despite the marked accumulation of potentially toxic ions (Na+. Cl) in the leaf.  相似文献   

10.
不同CO2浓度下长白山3种树木幼苗的光合特性   总被引:16,自引:9,他引:16  
选取长白山针叶树红松 (Pinuskoraiensis)、长白赤松 (Pinussylvestriformis)和阔叶树水曲柳(Fraxinusmandshurica)幼苗为研究对象 ,以开顶箱的方式控制CO2 浓度为 5 0 0和 70 0 μmol·mol-1,经过 3个生长季CO2 处理后 ,分别测定了 3个树种的 3年生幼苗在高浓度CO2 和大气CO2 浓度下的光合特性 .结果表明 ,前两个生长季高浓度CO2 处理增强了 3个树种幼苗的光合能力 ;不同树种在相同CO2 浓度下 ,最大净光合速率及光响应参数值不同 ;第 3个生长季 ,除 5 0 0 μmol·mol-1CO2 下生长的长白赤松外 ,各树种的幼苗在高浓度CO2 下并未发生“光合驯化”现象 ;最大净光合速率及光响应参数值随CO2 处理时间的延长有不同幅度的增减 ;高浓度CO2 改变了树木幼苗对强光和弱光的利用能力 .  相似文献   

11.
Proteomic analysis of rice leaves during drought stress and recovery   总被引:6,自引:0,他引:6  
Three-week old plants of rice (Oryza sativa L. cv CT9993 and cv IR62266) developed gradual water stress over 23 days of transpiration without watering, during which period the mid-day leaf water potential declined to approximately -2.4 MPa, compared with approximately -1.0 MPa in well-watered controls. More than 1000 protein spots that were detected in leaf extracts by proteomic analysis showed reproducible abundance within replications. Of these proteins, 42 spots showed a significant change in abundance under stress, with 27 of them exhibiting a different response pattern in the two cultivars. However, only one protein (chloroplast Cu-Zn superoxide dismutase) changed significantly in opposite directions in the two cultivars in response to drought. The most common difference was for proteins to be up-regulated by drought in CT9993 and unaffected in IR62266; or down-regulated by drought in IR62266 and unaffected in CT9993. By 10 days after rewatering, all proteins had returned completely or largely to the abundance of the well-watered control. Mass spectrometry helped to identify 16 of the drought-responsive proteins, including an actin depolymerizing factor, which was one of three proteins detectable under stress in both cultivars but undetectable in well-watered plants or in plants 10 days after rewatering. The most abundant protein up-regulated by drought in CT9993 and IR62266 was identified only after cloning of the corresponding cDNA. It was found to be an S-like RNase homologue but it lacked the two active site histidines required for RNase activity. Four novel drought-responsive mechanisms were revealed by this work: up-regulation of S-like RNase homologue, actin depolymerizing factor and rubisco activase, and down-regulation of isoflavone reductase-like protein.  相似文献   

12.
Ferns flourish in many habitats, from epiphytic to terrestrial and from sunny to shady, and such varied conditions require contrasting photosynthetic strategies to cope with drought. Four species of temperate ferns from different habitats were subjected to drought by withholding irrigation in order to investigate their photosynthetic responses. Lepisorus thunbergianus (epiphytic) had low stomatal density and showed high water-use efficiency (WUE) retaining photosynthetic activity with low relative frond water content under drought stress, which suggested their high adaptation to drought. On the other hand, low WUE with low light-saturated photosynthetic rate in Adiantum pedatum (terrestrial, shady environment) was associated with much lower photosynthesis than in the other species under drought stress, suggesting lower adaptation to drought-prone habitats. Morphological stomatal traits such as stomatal density and photosynthetic response to drought in ferns involved species-specific adaptation to survive and grow in their natural habitats with different levels of drought.  相似文献   

13.
We investigated the photosynthetic characteristics of Chorispora bungeana under conditions of drought stress caused by different concentrations of polyethylene glycol-6000 (PEG; 0, 5, 20, and 40%) and various concentrations of exogenous glycine (0, 5, 10, and 20 mM) with 20% PEG. We showed that moderate and severe drought stress of PEG reduced the chlorophyll (Chl) content (both Chl a and b), maximal quantum yield of PSII photochemistry (Fv/Fm), actual photochemical efficiency of PSII in light (YII), and quantum yield of regulated energy dissipation (YNPQ), while Chl a/b and quantum yield of nonregulated energy dissipation (YNO) increased. The low and moderate drought stress increased Mg2+ and Fe3+ contents, while a decrease in Mg2+ and Fe3+ was found under severe drought stress. Compared to sole PEG stress, the addition of exogenous 10 mM glycine increased Chl, Mg2+ and Fe3+ contents, Fv/Fm, YII, and YNPQ, and reduced YNO. On the contrary, 20 mM glycine showed an opposite effect, except for YNO. Our results proved that Chl contents and fluorescence parameters are reliable indicators for drought tolerance of C. bungeana. We suggest that a proper glycine content can relieve the effect of drought stress on C. bungeana.  相似文献   

14.
干旱胁迫和CO2浓度升高条件下白羊草的光合特征   总被引:1,自引:0,他引:1  
采用盆栽控制试验,研究了黄土丘陵区乡土种白羊草在不同水分水平(80% FC和40% FC)和CO2浓度(375和750 μmol·m-2·s-1)处理下的光合生理变化特征.结果表明:干旱胁迫使白羊草的最大净光合速率(Pnmax)、表观量子效率(AQE)、气孔导度(gs)、蒸腾速率(Tt)、最大光化学效率(Fv/Fm)、潜在光化学效率(Fv/Fo)和光合色素含量降低,丙二醛(MDA)和脯氨酸(Pro)含量升高.水分充足条件下,与正常大气CO2浓度相比,大气CO2浓度倍增下白羊草的PnmaxMDA和Pro含量无显著差异.干旱胁迫下,CO2浓度升高提高了白羊草的最大荧光(Fm)、Fv/Fm、Fv/Fo、叶绿素含量和AQE,Pnmax比正常CO2浓度下高23.3%,差异达到显著水平,而MDA和Pro含量均显著降低.CO2浓度升高对干旱胁迫引起的白羊草光合能力下降有一定的补偿作用,减轻了干旱胁迫对白羊草的伤害.  相似文献   

15.
Photosynthesis, chlorophyll fluorescence, and leaf water parameters were measured in six Portuguese maize (Zea mays L.) cultivars during and following a period of drought stress. The leaf relative water content (RWC) responded differently among cultivars but except for cultivar PB369, recovered close to initial values after watering was restored. Photosynthetic rate and stomatal conductance decreased with drought but more slowly in cultivars PB269 and PB260 than in cultivars AD3R, PB64, PB304 and PB369. Water use efficiency (WUE) decreased during the water stress treatment although with cultivar PB260 the decrease was marked only when the RWC fell below 40%. Recovery of WUE was seen with all cultivars except PB369. The maximum quantum efficiency of photosystem II, the photochemical quenching coefficient, the electron transport rate in PSII and the estimated functional plastoquinone pool tended to decrease with drought, while the non-photochemical quenching coefficient increased. The parameters estimated from chlorophyll fluorescence did not recover in PB369, during re-watering. The results show that PB260 and PB269 were the most tolerant and PB369 was the least tolerant cultivars to water stress. The variation found among the cultivars tested suggests the existence of valuable genetic resources for crop improvement in relation to drought tolerance.  相似文献   

16.
Young plants of Panicum bisulcatum (C(3)), Zuloagaea bulbosa [NADP-malic enzyme (ME)-C(4)], P. miliaceum (NAD-ME-C(4)) and Urochloa maxima [phosphoenolpyruvate carboxykinase (PCK)-C(4)] were subjected to drought stress (DS) in soil for 6?days. The C(3) species showed severe wilting symptoms at higher soil water potential (-1.1?MPa) and relative leaf water content (77?%) than in the case of the C(4) species (-1.5 to -1.7?MPa; 58-64?%). DS decreased photosynthesis, both under atmospheric and under saturating CO(2). Stomatal limitation of net photosynthesis (P (N)) in the C(3), but not in the C(4) species was indicated by P (N)/C (o) curves. Chlorophyll fluorescence of photosystem II, resulting from different cell types in the four species, indicated NADPH accumulation and non-stomatal limitation of photosynthesis in all four species, even under high CO(2). In the NAD-ME-C(4) and the PCK-C(4) species, DS plants showed increased violaxanthin de-epoxidase rates. Biochemical analyses of carboxylating enzymes and in vitro enzyme activities of the C(4) enzymes identified the most likely non-stomatal limiting steps of photosynthesis. In P. bisulcatum, declining RubisCO content and activity would explain the findings. In Z. bulbosa, all photosynthesis enzymes declined significantly; photosynthesis is probably limited by the turnover rate of the PEPC reaction. In P. miliaceum, all enzyme levels remained fairly constant under DS, but photosynthesis can be limited by feedback inhibition of the Calvin cycle, resulting in asp inhibition of PEPC. In U. maxima, declines of in vivo PEPC activity and feedback inhibition of the Calvin cycle are the main candidates for non-stomatal limitation of photosynthesis under DS.  相似文献   

17.
18.
Triazine-resistant (R) and susceptible (S) biotypes of Chenopodium album, Conyza bonaeriensis and Setaria glauca were compared in terms of photosynthetic activity, chloroplast ultrastructure, and polar-lipid composition of thylakoid membranes. Concerning photosynthetic activity, R relative to S biotypes showed lower rates in photosystem II electron transport (R/S ratios in the 0.3-0.5 range), which were correlated with increases in the ratio of I to P levels of the fluorescence emission curve, but similar rates in both whole-chain electron transport by thylakoids and photosynthetic oxygen evolution at different light intensities and at temperatures of 20 and 30°C by leaf discs. Concerning chloroplast structural characteristics, R and S biotypes did not show differences in degree of thylakoid appression and chlorophyll a/b ratio. However, thylakoid polar-lipids of R biotypes exhibited a higher degree of unsaturation, specially, in its monogalactosyl diglyceride fraction; they were richer in trans-hexadecenoic acid in its phospholipid fraction and they had higher contents in monoglactosyl diglyceride. The above results are discussed in relation to possible differences in photosynthetic performance between R and S plants.  相似文献   

19.
The capacity of Argyroxiphium sandwicense (silverword) seedlings to acclimate photosynthetic processes to different growing temperatures, as well as the tolerance of A. sandwicense to temperatures ranging from –15 to 60° C, were analyzed in a combination of field and laboratory studies. Altitudinal changes in temperature were also analyzed in order to explain the observed spatial distribution of A. sandwicense. A. sandwicense (Asteraceae) is a giant rosette plant that grows at high elevation on two Hawaiian volcanoes, where nocturnal subzero temperatures frequently occur. In addition, the soil temperatures at midday in the open alpine vegetation can exceed 60° C. In marked contrast to this large diurnal temperature variation, the seasonal variation in temperature is very small due to the tropical maritime location of the Hawaiian archipelago. Diurnal changes of soil and air temperature as well as photosynthetic photon flux density were measured on Haleakala volcano during four months. Seedlings were grown in the laboratory, from seeds collected in ten different A. sandwicense populations on Haleakala volcano, and maintained in growth chambers at 15/5, 25/15, and 30/25° C day/night temperatures. Irreversible tissue damage was determined by measuring electrolyte leakage of leaf samples. For seedlings maintained at each of the three different day/night temperatures, tissue damage occurred at –10° C due to freezing and at about 50° C due to high temperatures. Tissue damage occurred immediately after ice nucleation suggesting that A. sandwicense seedlings tend to avoid ice formation by permanent supercooling. Seedlings maintained at different day/night temperatures had similar maximum photosynthetic rates (5 mol m–2 s–1) and similar optimum temperatures for photosynthesis (about 16° C). Leaf dark respiration rates compared at identical temperatures, however, were substantially higher for seedlings maintained at low temperatures, but almost perfect homeostasis is observed when compared at their respective growing conditions. The lack of acclimation in terms of frost resistance and tolerance to high temperatures, as well as in terms of the optimum temperature for photosynthesis, may contribute to the restricted altitudinal range of A. sandwicense. The small seasonal temperature variations in the tropical environment where this species grows may have prevented the development of mechanisms for acclimation to longterm temperature changes.  相似文献   

20.
《植物生态学报》2014,38(7):729
Aims In China, peanut (Arachis hypogaea) is mainly cultivated in the semi-arid and rain-fed areas, and drought is the most prominent environmental stress to its growth. However, studies on the physiological responses of different peanut cultivars to drought and re-watering are lacking. Our objectives were to investigate the relationship between photosynthetic characteristics and drought tolerance, and to explore the ability to recover from drought damage in different peanut cultivars.
Methods A pot experiment was conducted with artificial water stress treatment, and the photosynthetic characteristics were determined in twelve peanut cultivars under the conditions of drought stress and re-watering at the seedling stage. The drought tolerance was assessed by drought resistance coefficient of biomass in seedling. The recovery capacity was assessed by compensatory growth of plant.
Important findings Five cultivars, including ‘Shanhua 11’, ‘Rugaoxiyangsheng’, ‘A596’, ‘Shanhua 9’, and ‘Nongda 818’, showed over-compensatory growth after re-watering, and their capacity of compensatory growth had significant positive correlation with drought tolerance (p < 0.01). The net photosynthetic rate (Pn), stomatal conductance (Gs), intercellular CO2 concentration (Ci), maximum photochemical efficiency (Fv/Fm), PSII actual quantum yield (ΦPSII), and photochemical quenching coefficient (qP) all decreased over the course of drought stress, and then increased following re-watering, with the amplitude of changes being smaller in the more drought tolerant cultivars. Seven days of drought did not result in significant differences in the photosynthetic characteristics among majority of the peanut cultivars tested (p > 0.05). After 14 days of drought, the values of photosynthetic variables differed significantly among the peanut cultivars with different drought tolerance (p < 0.05). The values of Pn, Gs, ΦPSII, Fv/Fm, and qP in the cultivars ‘Shanhua 11’, ‘Rugaoxiyangsheng’, ‘A596’, and ‘Shanhua 9’fully recovered five days after re-watering, while those in the cultivars ‘79266’, ‘ICG6848’, ‘Baisha 1016’, and ‘Hua 17’ did not fully recover even after 10 days of re-watering; the values of those photosynthetic variables were significantly greater (p < 0.05) in the more drought tolerant cultivars following re-watering. Correlation analysis showed that the drought tolerance was significantly and positively correlated with Pn, ΦPSII, Fv/Fm, and qP after 14 days of drought stress and after five days of re-watering, respectively (p < 0.01). Therefore, under drought stress at 40% of relative water content (RWC) for 14 days and after five days of re-watering at the seedling stage, the Pn, ΦPSII, Fv/Fm, and qP could be used for identifying the level of damage and recovery capacity of peanut cultivars. The cultivar ‘Shanhua 11’ can be used as a reference for drought adaptability identification in peanut.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号