首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proper development of the hypothalamic-pituitary axis requires precise neuronal signaling to establish a network that regulates homeostasis. The developing hypothalamus and pituitary utilize similar signaling pathways for differentiation in embryonic development. The Notch signaling effector gene Hes1 is present in the developing hypothalamus and pituitary and is required for proper formation of the pituitary, which contains axons of arginine vasopressin (AVP) neurons from the hypothalamic paraventricular nucleus (PVN) and supraoptic nucleus (SON). We hypothesized that Hes1 is necessary for the generation, placement and projection of AVP neurons. We found that Hes1 null mice show no significant difference in cell proliferation or death in the developing diencephalon at embryonic day 10.5 (e10.5) or e11.5. By e16.5, AVP cell bodies are formed in the SON and PVN, but are abnormally placed, suggesting that Hes1 may be necessary for the migration of AVP neurons. GAD67 immunoreactivity is ectopically expressed in Hes1 null mice, which may contribute to cell body misplacement. Additionally, at e18.5 Hes1 null mice show continued misplacement of AVP cell bodies in the PVN and SON and additionally exhibit abnormal axonal projection. Using mass spectrometry to characterize peptide content, we found that Hes1 null pituitaries have aberrant somatostatin (SS) peptide, which correlates with abnormal SS cells in the pituitary and misplaced SS axon tracts at e18.5. Our results indicate that Notch signaling facilitates the migration and guidance of hypothalamic neurons, as well as neuropeptide content.  相似文献   

2.
3.
4.
5.
6.
Wnt signaling is important in organogenesis, and aberrant signaling in mature cells is associated with tumorigenesis. Several members of the Wnt family of signaling molecules are expressed in the developing pituitary gland. Wnt5a is expressed in the neuroectoderm that induces pituitary gland development and has been proposed to influence pituitary cell specification. We discovered that mice deficient in Wnt5a display abnormal morphology in the dorsal part of the developing pituitary. The expression of downstream effectors of the canonical Wnt pathway is not altered, and expression of genes in other signaling pathways such as Shh, Fgf8, Fgf10 and Fgfr2b is intact. Prop1 and Hesx1 are also important for normal shape of the pituitary primordium, but their expression is unaltered in the Wnt5a mutants. Specification of the hormone-producing cell types of the mature anterior pituitary gland occurs appropriately. This study suggests that the primary role of Wnt5a in the developing pituitary gland is in establishment of the shape of the gland.  相似文献   

7.
M T Fiorenza  M Mukhopadhyay  H Westphal 《Gene》2001,278(1-2):125-130
Thg-1pit, a novel mouse gene, was detected in a screen for genes that are differentially expressed in the developing pituitary of wild-type and Lhx3 null mutant embryos. The predicted translation product of the Thg-1pit gene contains a C-terminal TSC-box adjacent to a leucine zipper motif. These features are characteristic for the TSC-22/DIP/bun family of proteins. The onset of prominent Thg-1pit expression coincides with Lhx3 activation at early stages of pituitary development. Expression is further enhanced as cells begin to differentiate within the developing pituitary gland. No expression is observed in the pituitary rudiment of mutants that lack Lhx3 function. A possible role is thus suggested for Lhx3 activities in the regulation of Thg-1pit function during early steps of pituitary organogenesis.  相似文献   

8.
9.
10.
Fibroblast growth factor (FGF) signaling is essential for vertebrate organogenesis, including mammary gland development. The mechanism whereby FGF signaling is regulated in the mammary gland, however, has remained unknown. Using a combination of mouse genetics and 3D ex vivo models, we tested the hypothesis that Spry2 gene, which encodes an inhibitor of signaling via receptor tyrosine kinases (RTKs) in certain contexts, regulates FGF signaling during mammary branching. We found that Spry2 is expressed at various stages of the developing mammary gland. Targeted removal of Spry2 function from mammary epithelium leads to accelerated epithelial invasion. Spry2 is up-regulated by FGF signaling activities and its loss sensitizes mammary epithelium to FGF stimulation, as indicated by increased expression of FGF target genes and epithelia invasion. By contrast, Spry2 gain-of-function in the mammary epithelium results in reduced FGF signaling, epithelial invasion, and stunted branching. Furthermore, reduction of Spry2 expression is correlated with tumor progression in the MMTV-PyMT mouse model. Together, the data show that FGF signaling modulation by Spry2 is essential for epithelial morphogenesis in the mammary gland and it functions to protect the epithelium against tumorigenesis.  相似文献   

11.
Patterning of neural crest (NC) for the formation of specific structures along the anterio-posterior (A-P) body axis is governed by a combinatorial action of Hox genes, which are expressed in the neuroepithelium at the time of NC induction. Hoxb5 was expressed in NC at both induction and migratory stages, and our previous data suggested that Hoxb5 played a role in the NC development. However, the underlying mechanisms by which Hoxb5 regulates the early NC development are largely unknown. Current study showed that both the human and mouse Foxd3 promoters were bound and trans-activated by Hoxb5 in NC-derived neuroblastoma cells. The binding of Hoxb5 to Foxd3 promoter in vivo was further confirmed in the brain and neural tube of mouse embryos. Moreover, Wnt1-Cre mediated perturbation of Hoxb5 signaling at the dorsal neural tube in mouse embryos resulted in Foxd3 down-regulation. In ovo, Foxd3 alleviated the apoptosis of neural cells induced by perturbed Hoxb5 signaling, and Hoxb5 induced ectopic Foxd3 expression in the chick neural tube. This study demonstrated that Hoxb5 (an A-P patterning gene) regulated the NC development by directly inducing Foxd3 (a NC specifier and survival gene).  相似文献   

12.
Recent studies have reported that supernumerary teeth were observed in the maxillary incisor area in several Pax6 homozygous mutant mouse and rat strains. To date, it remains unknown whether Pax6 is expressed during tooth development in any species. The study aimed to analyze the expression of Pax6 during mouse incisor and molar development. C57BL/6J mouse embryos on days E12.5, E13.5, E14.5, E16.5 and E18.5 were produced. Heads from these embryos, as well as from P1.5 mice, were processed for paraffin wax embedding (N ≥ 3 for each stage) and prepared for immunohistochemistry. Pax6 immunostaining was found in all tooth germs examined. At the E12.5 dental placode, E13.5 bud stage, E14.5 cap stage and E16.5 early bell stage, Pax6 was expressed in ectodermally derived tissues of tooth germs and oral epithelia adjacent to the tooth germs. Cells in the underlying dental ectomesenchyme that showed Pax9 expression were Pax6 negative. At E18.5 and P1.5, Pax6 was expressed in more differentiated ameloblasts and cells of the stratum intermedium and stellate reticulum that were derived from the oral epithelium, as well as in mesenchyme-derived differentiated odontoblasts. Pax6 expression was also observed in the submandibular gland, tongue filiform papilla and hair follicle at E16.5 and P1.5. The present study demonstrated that Pax6 was expressed in incisor and molar germs during mouse tooth development. The results provide a basis for exploring the function of Pax6 during tooth development.  相似文献   

13.
Bone morphogenetic protein (Bmp) signaling is critical for the development and patterning of the mouse pituitary from the initial induction of Rathke's pouch to cell specification in the anterior lobe. We examined the regulation of Bmp signaling during pituitary development by analyzing null embryos for noggin, a Bmp 2 and 4 antagonist. Noggin is expressed in the ventral diencephalon during Rathke's pouch induction, in the underlying cartilage plate during cell specification and in the adult anterior pituitary gland. Noggin null embryos have a variable pituitary phenotype, which ranges from a rostrally displaced Rathke's pouch to induction of secondary pituitary tissue. While cell specification in the anterior pituitary appears normal, patterning in the ventral diencephalon is disrupted; Bmp4 activity is expanded resulting in Fibroblast growth factor 10 repression and in a rostral shift in the boundary between the Bmp4 and Sonic hedgehog expression domains. The expanded domain of Bmp4 activity also results in additional invaginations of oral ectoderm and can shift the position of Rathke's pouch or create secondary pituitary tissue. This work demonstrates the importance of attenuating the activity of Bmp signaling during pituitary induction in order to maintain the proper balance of signaling factors necessary for pituitary organogenesis.  相似文献   

14.

Introduction

The function of Glycogen Synthase Kinases 3β (GSK-3β) has previously been shown to be necessary for normal secondary palate development. Using GSK-3ß null mouse embryos, we examine the potential coordinate roles of Wnt and Hedgehog signaling on palatal ossification.

Methods

Palates were harvested from GSK-3β, embryonic days 15.0–18.5 (e15.0–e18.5), and e15.5 Indian Hedgehog (Ihh) null embryos, and their wild-type littermates. The phenotype of GSK-3β null embryos was analyzed with skeletal whole mount and pentachrome stains. Spatiotemporal regulation of osteogenic gene expression, in addition to Wnt and Hedgehog signaling activity, were examined in vivo on GSK-3β and Ihh +/+ and −/− e15.5 embryos using in situ hybridization and immunohistochemistry. To corroborate these results, expression of the same molecular targets were assessed by qRT-PCR of e15.5 palates, or e13.5 palate cultures treated with both Wnt and Hedgehog agonists and anatagonists.

Results

GSK-3β null embryos displayed a 48 percent decrease (*p<0.05) in palatine bone formation compared to wild-type littermates. GSK-3β null embryos also exhibited decreased osteogenic gene expression that was associated with increased Wnt and decreased Hedgehog signaling. e13.5 palate culture studies demonstrated that Wnt signaling negatively regulates both osteogenic gene expression and Hedgehog signaling activity, while inhibition of Wnt signaling augments both osteogenic gene expression and Hedgehog signaling activity. In addition, no differences in Wnt signaling activity were noted in Ihh null embryos, suggesting that canonical Wnt may be upstream of Hedgehog in secondary palate development. Lastly, we found that GSK-3β −/− palate cultures were “rescued” with the Wnt inhibitor, Dkk-1.

Conclusions

Here, we identify a critical role for GSK-3β in palatogenesis through its direct regulation of canonical Wnt signaling. These findings shed light on critical developmental pathways involved in palatogenesis and may lead to novel molecular targets to prevent cleft palate formation.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号