首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
3.
4.
Recent studies have demonstrated that non-coding RNAs (ncRNAs) play important roles during development and evolution. Chicken, the first genome-sequenced non-mammalian amniote, possesses unique features for developmental and evolutionary studies. However, apart from microRNAs, information on chicken ncRNAs has mainly been obtained from computational predictions without experimental validation. In the present study, we performed a systematic identification of intermediate size ncRNAs (50–500 nt) by ncRNA library construction and identified 125 chicken ncRNAs. Importantly, through the bioinformatics and expression analysis, we found the chicken ncRNAs has several novel features: (i) comparative genomic analysis against 18 sequenced vertebrate genomes revealed that the majority of the newly identified ncRNA candidates is not conserved and most are potentially bird/chicken specific, suggesting that ncRNAs play roles in lineage/species specification during evolution. (ii) The expression pattern analysis of intronic snoRNAs and their host genes suggested the coordinated expression between snoRNAs and their host genes. (iii) Several spatio-temporal specific expression patterns suggest involvement of ncRNAs in tissue development. Together, these findings provide new clues for future functional study of ncRNAs during development and evolution.  相似文献   

5.
6.
7.
8.
RNA sequence elements involved in the regulation of pre-mRNA splicing have previously been identified in vertebrate genomes by computational methods. Here, we apply such approaches to predict splicing regulatory elements in Drosophila melanogaster and compare them with elements previously found in the human, mouse, and pufferfish genomes. We identified 99 putative exonic splicing enhancers (ESEs) and 231 putative intronic splicing enhancers (ISEs) enriched near weak 5' and 3' splice sites of constitutively spliced introns, distinguishing between those found near short and long introns. We found that a significant proportion (58%) of fly enhancer sequences were previously reported in at least one of the vertebrates. Furthermore, 20% of putative fly ESEs were previously identified as ESEs in human, mouse, and pufferfish; while only two fly ISEs, CTCTCT and TTATAA, were identified as ISEs in all three vertebrate species. Several putative enhancer sequences are similar to characterized binding-site motifs for Drosophila and mammalian splicing regulators. To provide additional evidence for the function of putative ISEs, we separately identified 298 intronic hexamers significantly enriched within sequences phylogenetically conserved among 15 insect species. We found that 73 putative ISEs were among those enriched in conserved regions of the D. melanogaster genome. The functions of nine enhancer sequences were verified in a heterologous splicing reporter, demonstrating that these sequences are sufficient to enhance splicing in vivo. Taken together, these data identify a set of predicted positive-acting splicing regulatory motifs in the Drosophila genome and reveal regulatory sequences that are present in distant metazoan genomes.  相似文献   

9.
10.
11.
12.
In the human HOXA locus a number of ncRNAs are transcribed from the intergenic regions in the opposite direction to HOXA mRNAs. We observed that the genomic organization of genes for the ncRNAs and HOXA proteins is highly conserved between human and mouse. We examined the expression profiles of these ncRNAs and HOXA mRNAs in various human tissues. The expression patterns of ncRNAs in human tissues coincide with those of the adjacent HOXA mRNAs that are collinearly expressed along the anteroposterior axis. This coordinated expression was observed even in transformed tumors and cancer cell lines, suggesting that the expression of ncRNAs is prerequisite for the regulated expression of HOXA genes. HIT18844 ncRNA transcribed from the most upstream position of the HOXA cluster possesses an ultra-conserved short stretch which potentially forms an evolutionarily conserved secondary structure. Our data suggest a critical role for ncRNAs in the regulation of HOXA gene expression.  相似文献   

13.
14.
Lineage-specific regulatory elements underlie adaptation of species and play a role in disease susceptibility. We compared functionally conserved and lineage-specific enhancers by cross-mapping 5042 human and 6564 mouse heart enhancers. Of these, 79 per cent are lineage-specific, lacking a functional orthologue. Heart enhancers tend to cluster and, commonly, there are multiple heart enhancers in a heart locus providing a regulatory stability to the locus. We observed little cross-clustering, however, between lineage-specific and functionally conserved heart enhancers suggesting regulatory function acquisition and development in loci previously lacking heart activity. We also identified 862 human-specific heart enhancers: 417 featuring sequence conservation with mouse (class II) and 445 with neither sequence nor function conservation (class III). Ninety-eight per cent of class III enhancers were deleted from the mouse genome, and we estimated a similar-sized enhancer gain in the human lineage. Human-specific enhancers display no detectable decrease in the negative selection pressure and are strongly associated with genes partaking in the heart regulatory programmes. The loss of a heart enhancer could be compensated by activity of a redundant heart enhancer; however, we observed redundancy in only 15 per cent of class II and III enhancer loci indicating a large-scale reprogramming of the heart regulatory programme in mammals.  相似文献   

15.
16.
17.
18.
Long noncoding RNAs (lncRNAs) have been shown to play important roles in gene regulatory networks acting in early development. There has been rapid turnover of lncRNA loci during vertebrate evolution, with few human lncRNAs conserved beyond mammals. The sequences of these rare deeply conserved lncRNAs are typically not similar to each other. Here, we characterize HOXA-AS3 and HOXB-AS3, lncRNAs produced from the central regions of the HOXA and HOXB clusters. Sequence-similar orthologs of both lncRNAs are found in multiple vertebrate species and there is evident sequence similarity between their promoters, suggesting that the production of these lncRNAs predates the duplication of the HOX clusters at the root of the vertebrate lineage. This conservation extends to similar expression patterns of the two lncRNAs, in particular in cells transiently arising during early development or in the adult colon. Functionally, the RNA products of HOXA-AS3 and HOXB-AS3 regulate the expression of their overlapping HOX5–7 genes both in HT-29 cells and during differentiation of human embryonic stem cells. Beyond production of paralogous protein-coding and microRNA genes, the regulatory program in the HOX clusters therefore also relies on paralogous lncRNAs acting in restricted spatial and temporal windows of embryonic development and cell differentiation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号