首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Nitrite was recognized as a potent vasodilator >130 years and has more recently emerged as an endogenous signaling molecule and modulator of gene expression. Understanding the molecular mechanisms that regulate nitrite metabolism is essential for its use as a potential diagnostic marker as well as therapeutic agent for cardiovascular diseases. In this study, we have identified human cystathionine ß-synthase (CBS) as a new player in nitrite reduction with implications for the nitrite-dependent control of H2S production. This novel activity of CBS exploits the catalytic property of its unusual heme cofactor to reduce nitrite and generate NO. Evidence for the possible physiological relevance of this reaction is provided by the formation of ferrous-nitrosyl (FeII-NO) CBS in the presence of NADPH, the human diflavin methionine synthase reductase (MSR) and nitrite. Formation of FeII-NO CBS via its nitrite reductase activity inhibits CBS, providing an avenue for regulating biogenesis of H2S and cysteine, the limiting reagent for synthesis of glutathione, a major antioxidant. Our results also suggest a possible role for CBS in intracellular NO biogenesis particularly under hypoxic conditions. The participation of a regulatory heme cofactor in CBS in nitrite reduction is unexpected and expands the repertoire of proteins that can liberate NO from the intracellular nitrite pool. Our results reveal a potential molecular mechanism for cross-talk between nitrite, NO and H2S biology.  相似文献   

2.
Cystathionine β-synthase (CBS) is a key enzyme in human (patho)physiology with a central role in hydrogen sulfide metabolism. The enzyme is composed of a pyridoxal 5′-phosphate-binding catalytic domain, flanked by the following two domains: a heme-binding N-terminal domain and a regulatory C-terminal domain binding S-adenosyl-l-methionine (AdoMet). CO or NO binding at the ferrous heme negatively modulates the enzyme activity. Conversely, AdoMet binding stimulates CBS activity. Here, we provide experimental evidence for a functional communication between the two domains. We report that AdoMet binding significantly enhances CBS inhibition by CO. Consistently, we observed increased affinity (∼5-fold) and faster association (∼10-fold) of CO to the ferrous heme at physiological AdoMet concentrations. NO binding to reduced CBS was also enhanced by AdoMet, although to a lesser extent (∼2-fold higher affinity) as compared with CO. Importantly, CO and NO binding was unchanged by AdoMet in a truncated form of CBS lacking the C-terminal regulatory domain. These unprecedented observations demonstrate that CBS activation by AdoMet puzzlingly sensitizes the enzyme toward inhibition by exogenous ligands, like CO and NO. This further supports the notion that CBS regulation is a complex process, involving the concerted action of multiple physiologically relevant effectors.  相似文献   

3.
The hexa-coordinate heme in the H2S-generating human enzyme cystathionine β-synthase (CBS) acts as a redox-sensitive regulator that impairs CBS activity upon binding of NO or CO at the reduced iron. Despite the proposed physiological relevance of this inhibitory mechanism, unlike CO, NO was reported to bind at the CBS heme with very low affinity (Kd = 30–281 μm). This discrepancy was herein reconciled by investigating the NO reactivity of recombinant human CBS by static and stopped-flow UV-visible absorption spectroscopy. We found that NO binds tightly to the ferrous CBS heme, with an apparent Kd ≤0.23 μm. In line with this result, at 25 °C, NO binds quickly to CBS (kon ∼ 8 × 103 m−1 s−1) and dissociates slowly from the enzyme (koff ∼ 0.003 s−1). The observed rate constants for NO binding were found to be linearly dependent on [NO] up to ∼ 800 μm NO, and >100-fold higher than those measured for CO, indicating that the reaction is not limited by the slow dissociation of Cys-52 from the heme iron, as reported for CO. For the first time the heme of human CBS is reported to bind NO quickly and tightly, providing a mechanistic basis for the in vivo regulation of the enzyme by NO. The novel findings reported here shed new light on CBS regulation by NO and its possible (patho)physiological relevance, enforcing the growing evidence for an interplay among the gasotransmitters NO, CO, and H2S in cell signaling.  相似文献   

4.
Human cystathionine β-synthase (CBS) is a unique pyridoxal 5′-phosphate (PLP)-dependent enzyme that has a regulatory heme cofactor. Previous studies have demonstrated the importance of Arg-266, a residue at the heme pocket end of α-helix 8, for communication between the heme and PLP sites. In this study, we have examined the role of the conserved Thr-257 and Thr-260 residues, located at the other end of α-helix 8 on the heme electronic environment and on activity. The mutations at the two positions destabilize PLP binding, leading to lower PLP content and ∼2- to ∼500-fold lower activity compared with the wild-type enzyme. Activity is unresponsive to PLP supplementation, consistent with the pyridoxine-nonresponsive phenotype of the T257M mutation in a homocystinuric patient. The H2S-producing activities, also impacted by the mutations, show a different pattern of inhibition compared with the canonical transsulfuration reaction. Interestingly, the mutants exhibit contrasting sensitivities to the allosteric effector, S-adenosylmethionine (AdoMet); whereas T257M and T257I are inhibited, the other mutants are hyperactivated by AdoMet. All mutants showed an increased propensity of the ferrous heme to form an inactive species with a 424 nm Soret peak and exhibited significantly reduced enzyme activity in the ferrous and ferrous-CO states. Our results provide the first evidence for bidirectional transmission of information between the cofactor binding sites, suggest the additional involvement of this region in allosteric communication with the regulatory AdoMet-binding domain, and reveal the potential for independent modulation of the canonical transsulfuration versus H2S-generating reactions catalyzed by CBS.  相似文献   

5.
Cystathionine β-synthase (CBS) is a pyridoxal phosphate-dependent enzyme that catalyzes the condensation of homocysteine with serine or with cysteine to form cystathionine and either water or hydrogen sulfide, respectively. Human CBS possesses a noncatalytic heme cofactor with cysteine and histidine as ligands, which in its oxidized state is relatively unreactive. Ferric CBS (Fe(III)-CBS) can be reduced by strong chemical and biochemical reductants to Fe(II)-CBS, which can bind carbon monoxide (CO) or nitric oxide (NO), leading to inactive enzyme. Alternatively, Fe(II)-CBS can be reoxidized by O2 to Fe(III)-CBS, forming superoxide radical anion (O2˙̄). In this study, we describe the kinetics of nitrite (NO2) reduction by Fe(II)-CBS to form Fe(II)NO-CBS. The second order rate constant for the reaction of Fe(II)-CBS with nitrite was obtained at low dithionite concentrations. Reoxidation of Fe(II)NO-CBS by O2 showed complex kinetic behavior and led to peroxynitrite (ONOO) formation, which was detected using the fluorescent probe, coumarin boronic acid. Thus, in addition to being a potential source of superoxide radical, CBS constitutes a previously unrecognized source of NO and peroxynitrite.  相似文献   

6.

Background

Hydrogen sulfide (H2S) has recently been shown to play an important role in the digestive system, but the role of endogenous H2S produced locally in the gallbladder is unknown. The aim of this study was to investigate whether gallbladder possesses the enzymatic machinery to synthesize H2S, and whether H2S synthesis is changed in gallbladder inflammation during acute acalculous cholecystitis (AC).

Methods

Adult male guinea pigs underwent either a sham operation or common bile duct ligation (CBDL). One, two, or three days after CBDL, the animals were sacrificed separately. Hematoxylin and eosin-stained slides of gallbladder samples were scored for inflammation. H2S production rate in gallbladder tissue from each group was determined; immunohistochemistry and western blotting were used to determine expression levels of the H2S-producing enzymes cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE) in gallbladder.

Results

There was a progressive inflammatory response after CBDL. Immunohistochemistry analysis showed that CBS and CSE were expressed in the gallbladder epithelium, muscular layer, and blood vessels and that the expression increased progressively with increasing inflammation following CBDL. The expression of CBS protein as well as the H2S-production rate was significantly increased in the animals that underwent CBDL, compared to those that underwent the sham operation.

Conclusions

Both CBS and CSE are expressed in gallbladder tissues. The expression of these enzymes, as well as H2S synthesis, was up-regulated in the context of inflammation during AC.  相似文献   

7.
Smith AT  Su Y  Stevens DJ  Majtan T  Kraus JP  Burstyn JN 《Biochemistry》2012,51(32):6360-6370
Cystathionine β-synthase (CBS) is an essential pyridoxal 5'-phosphate (PLP)-dependent enzyme of the transsulfuration pathway that condenses serine with homocysteine to form cystathionine; intriguingly, human CBS also contains a heme b cofactor of unknown function. Herein we describe the enzymatic and spectroscopic properties of a disease-associated R266K hCBS variant, which has an altered hydrogen-bonding environment. The R266K hCBS contains a low-spin, six-coordinate Fe(III) heme bearing a His/Cys ligation motif, like that of WT hCBS; however, there is a geometric distortion that exists at the R266K heme. Using rR spectroscopy, we show that the Fe(III)-Cys(thiolate) bond is longer and weaker in R266K, as evidenced by an 8 cm(-1) downshift in the ν(Fe-S) resonance. Presence of this longer and weaker Fe(III)-Cys(thiolate) bond is correlated with alteration of the fluorescence spectrum of the active PLP ketoenamine tautomer. Activity data demonstrate that, relative to WT, the R266K variant is more impaired in the alternative cysteine-synthesis reaction than in the canonical cystathionine-synthesis reaction. This diminished cysteine synthesis activity and a greater sensitivity to exogenous PLP correlate with the change in PLP environment. Fe-S(Cys) bond weakening causes a nearly 300-fold increase in the rate of ligand switching upon reduction of the R266K heme. Combined, these data demonstrate cross talk between the heme and PLP active sites, consistent with previous proposals, revealing that alteration of the Arg(266)-Cys(52) interaction affects PLP-dependent activity and dramatically destabilizes the ferrous thiolate-ligated heme complex, underscoring the importance of this hydrogen-bonding residue pair.  相似文献   

8.
Human cystathionine β-synthase (CBS) catalyzes the first irreversible step in the transsulfuration pathway and commits homocysteine to the synthesis of cysteine. Mutations in CBS are the most common cause of severe hereditary hyperhomocysteinemia. A yeast two-hybrid approach to screen for proteins that interact with CBS had previously identified several components of the sumoylation pathway and resulted in the demonstration that CBS is a substrate for sumoylation. In this study, we demonstrate that sumoylation of CBS is enhanced in the presence of human polycomb group protein 2 (hPc2), an interacting partner that was identified in the initial yeast two-hybrid screen. When the substrates for CBS, homocysteine and serine for cystathionine generation and homocysteine and cysteine for H2S generation, are added to the sumoylation mixture, they inhibit the sumoylation reaction, but only in the absence of hPc2. Similarly, the product of the CBS reaction, cystathionine, inhibits sumoylation in the absence of hPc2. Sumoylation in turn decreases CBS activity by ∼28% in the absence of hPc2 and by 70% in its presence. Based on these results, we conclude that hPc2 serves as a SUMO E3 ligase for CBS, increasing the efficiency of sumoylation. We also demonstrate that γ-cystathionase, the second enzyme in the transsulfuration pathway is a substrate for sumoylation under in vitro conditions. We speculate that the role of this modification may be for nuclear localization of the cysteine-generating pathway under conditions where nuclear glutathione demand is high.  相似文献   

9.
Cystathionine β-synthase (CBS) is a key enzyme in sulfur metabolism, and its inherited deficiency causes homocystinuria. Mammalian CBS is modulated by the binding of S-adenosyl-l-methionine (AdoMet) to its regulatory domain, which activates its catalytic domain. To investigate the underlying mechanism, we performed x-ray crystallography, mutagenesis, and mass spectrometry (MS) on human CBS. The 1.7 Å structure of a AdoMet-bound CBS regulatory domain shows one AdoMet molecule per monomer, at the interface between two constituent modules (CBS-1, CBS-2). AdoMet binding is accompanied by a reorientation between the two modules, relative to the AdoMet-free basal state, to form interactions with AdoMet via residues verified by mutagenesis to be important for AdoMet binding (Phe443, Asp444, Gln445, and Asp538) and for AdoMet-driven inter-domain communication (Phe443, Asp538). The observed structural change is further supported by ion mobility MS, showing that as-purified CBS exists in two conformational populations, which converged to one in the presence of AdoMet. We therefore propose that AdoMet-induced conformational change alters the interface and arrangement between the catalytic and regulatory domains within the CBS oligomer, thereby increasing the accessibility of the enzyme active site for catalysis.  相似文献   

10.
In mammals, the two enzymes in the trans-sulfuration pathway, cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE), are believed to be chiefly responsible for hydrogen sulfide (H2S) biogenesis. In this study, we report a detailed kinetic analysis of the human and yeast CBS-catalyzed reactions that result in H2S generation. CBS from both organisms shows a marked preference for H2S generation by β-replacement of cysteine by homocysteine. The alternative H2S-generating reactions, i.e. β-elimination of cysteine to generate serine or condensation of 2 mol of cysteine to generate lanthionine, are quantitatively less significant. The kinetic data were employed to simulate the turnover numbers of the various CBS-catalyzed reactions at physiologically relevant substrate concentrations. At equimolar concentrations of CBS and CSE, the simulations predict that H2S production by CBS would account for ∼25–70% of the total H2S generated via the trans-sulfuration pathway depending on the extent of allosteric activation of CBS by S-adenosylmethionine. The relative contribution of CBS to H2S genesis is expected to decrease under hyperhomocysteinemic conditions. CBS is predicted to be virtually the sole source of lanthionine, and CSE, but not CBS, efficiently cleaves lanthionine. The insensitivity of the CBS-catalyzed H2S-generating reactions to the grade of hyperhomocysteinemia is in stark contrast to the responsiveness of CSE and suggests a previously unrecognized role for CSE in intracellular homocysteine management. Finally, our studies reveal that the profligacy of the trans-sulfuration pathway results not only in a multiplicity of H2S-yielding reactions but also yields novel thioether metabolites, thus increasing the complexity of the sulfur metabolome.Hydrogen sulfide (H2S)2 elicits an array of physiological effects, including modulation of blood pressure and reduction of ischemia reperfusion injury (1, 2). Other novel effects of H2S include induction of a state of suspended animation in mouse by decreasing oxygen consumption and drastically reducing the metabolic rate (3) and synchronizing ultradian metabolic oscillation in yeast (4). Under conditions of metabolic cycling in yeast, H2S production is catalyzed by sulfite reductase in the sulfur assimilation pathway (4). Inhibition of sulfite reductase reduces H2S production and in turn perturbs metabolic oscillations. H2S is a specific and potent inhibitor of cytochrome c oxidase in the electron transport chain (3).Although concentrations of H2S have been reported to range from 50 to 160 μm in brain (57) and 30–50 μm in the peripheral system (8), these appear to be grossly overestimated (9). Significantly lower H2S concentrations of 17 and 14 nm in liver and brain, respectively, have been reported recently (9). The very significant discrepancy between these and the previous estimates of H2S levels presumably derives from the earlier use of acidic conditions that led to the release of acid-labile sulfur from iron-sulfur centers.In mammals, the primary catalysts for H2S generation are reported to be the two pyridoxal phosphate (PLP)-dependent enzymes involved in the trans-sulfuration pathway, cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE) (10, 11). The trans-sulfuration pathway operates in the reverse direction in mammals serving to convert homocysteine to cysteine (Fig. 1), although in yeast and bacteria the pathway is involved in sulfur assimilation from sulfate to cysteine. CBS is widely assumed to be the major contributor to H2S production in the brain because of its relatively high expression in this organ (10). However, a recent study reported that 3-mercaptopyruvate sulfurtransferase together with cysteine aminotransferase might also generate H2S in brain (12). The relative contributions of these enzymes and of CSE, which is also present in brain (13, 14), to H2S production remain to be assessed. Genetic disruption of CSE in mouse leads to cardiac deficits, including pronounced hypertension and reduced endothelium-dependent vasorelaxation, consistent with a major role for CSE in the peripheral system (1). However, brain H2S levels are reportedly unchanged in CSE−/− mice.Open in a separate windowFIGURE 1.Diversity of reactions catalyzed by the trans-sulfuration pathway. The turnover numbers (v/[E]) estimated at physiological substrate concentrations, i.e. 10 μm homocysteine, 100 μm cysteine, 560 μm serine, and 5 μm cystathionine, are shown in parentheses for each reaction. The thick arrows highlight reactions that are sensitive to elevated levels of homocysteine. The fold change represents the fold increase in the turnover number of a given reaction under conditions of severe hyperhomocysteinemia (200 μm homocysteine).Despite the growing recognition of the varied physiological effects of H2S, our understanding of its regulation and mechanism of its biosynthesis is poor. We have recently reported on the complex kinetics of H2S generation by human CSE (15). The profligacy of the human enzyme affords H2S generation by a multiplicity of routes involving cysteine and/or homocysteine as substrates. Kinetic simulations predict an increasingly important contribution of homocysteine to H2S generation with increasing grade of hyperhomocysteinemia, a risk factor for cardiovascular and neurodegenerative diseases (1618). In addition to H2S, a variety of products is generated in these reactions, including two novel sulfur metabolites, lanthionine and homolanthionine, which represent the condensation products between 2 mol of cysteine and homocysteine, respectively. Although the steady-state kinetic parameters for H2S generation from cysteine and homocysteine have been reported for human CBS (hCBS) (19), a comparable detailed kinetic analysis of H2S generation by CBS by multiple pathways and their sensitivity to the grade of hyperhomocysteinemia is not known. Furthermore, the relative contributions of CBS and CSE to H2S and lanthionine generation at physiologically relevant concentrations of substrate are not known.Human CBS is a unique heme containing PLP-dependent enzyme (20) that catalyzes the β-replacement of serine by homocysteine to produce cystathionine. The latter is further metabolized by CSE in an α,γ-elimination reaction to produce cysteine. Although yeast and human CBS are highly homologous and catalyze the same chemical reaction with similar kinetic parameters, the yeast enzyme lacks heme and is not allosterically regulated by S-adenosylmethionine (AdoMet) (21).In this study, we have elucidated the kinetics of H2S biogenesis by yeast and human CBS and used simulations to estimate the relative contributions of CBS and CSE to H2S production at physiologically relevant concentrations of substrate. We find that CBS and CSE share a common feature, i.e. catalytic promiscuity. However, in contrast to CSE, which is proficient at catalyzing reactions at the β- and γ-carbons of substrates (15), CBS activity is confined to chemical transformations at the β-position. Our studies provide new insights into the existence of alternative trans-sulfuration reactions that can be a source of diverse sulfur metabolites, viz. H2S, lanthionine, and homolanthionine increasing the diversity of the sulfur metabolome.  相似文献   

11.
Cystathionine β-synthase (CBS) catalyzes the first step in the transsulfuration pathway in mammals, i.e., the condensation of serine and homocysteine to produce cystathionine and water. Recently, we have reported a steady-state kinetic analysis of the three hydrogen sulfide (H(2)S)-generating reactions that are catalyzed by human and yeast CBS [Singh, S., et al. (2009) J. Biol. Chem. 284, 22457-22466]. In the study presented here, we report a pre-steady-state kinetic analysis of intermediates in the H(2)S-generating reactions catalyzed by yeast CBS (yCBS). Because yCBS does not have a heme cofactor, in contrast to human CBS, it is easier to observe reaction intermediates with yCBS. The most efficient route for H(2)S generation by yCBS is the β-replacement of the cysteine thiol with homocysteine. In this reaction, yCBS first reacts with cysteine to release H(2)S and forms an aminoacrylate intermediate (k(obs) of 1.61 ± 0.04 mM(-1) s(-1) at low cysteine concentrations and 2.8 ± 0.1 mM(-1) s(-1) at high cysteine concentrations, at 20 °C), which has an absorption maximum at 465 nm. Homocysteine binds to the E·aminoacrylate intermediate with a bimolecular rate constant of 142 mM(-1) s(-1) and rapidly condenses to form the enzyme-bound external aldimine of cystathionine. The reactions could be partially rate limited by release of the products, cystathionine and H(2)S.  相似文献   

12.
Novel carbonyl-stabilized bis-sulfonium ylids I, II and III, were synthesized for the purpose of revealing their physicochemical properties as well as exploiting their synthetic application. The treatment of these ylides with phenylisocyanate gave stable bis-carbamoyl sulfomum ylids. The reaction with some α,β-unsaturated carbonyl compounds resulted in the Michael type addition to afford the corresponding bis-cyclopropane derivatives. The solvent polarity dependence of stereochemistry of the cyclopropane formation was observed in the reaction of ylids with chalcone.  相似文献   

13.
Purification and characterization of β2-microglobulin from human urine was performed. The yield was 30.1%, and 150.4 mg of β2-microglobulin was obtained. The final preparation of β2-microglobulin obtained showed three bands on disc gel electrophoresis at pH 9.5, and all of them have immunological activity. However, these three bands migrated as a single band on disc gel electrophoresis at pH 4.3. It is concluded that the three bands observed on disc gel electrophoresis at pH 9.5 were charge isomers. The isoelectric points of isomers were determined by isotachophoresis and two of them were 5.4 and 5.9 respectively, while the other one was not determined.  相似文献   

14.
A β-galactosidase activity has recently been used as a histochemical marker of replicative senescence in human fibroblasts and keratinocytes. To establish whether this marker could be used to detect senescence of vascular cells, we have investigated its presence in cultures of serially passaged human umbilical vein endothelial cells and rabbit aortic smooth muscle cells. β-Galactosidase activity was detected by light microscopy using the chromogenic substrate 5-bromo-4-chloro-3-indolyl β- -galactopyranoside. In endothelial cell cultures, lysosomal β-galactosidase activity, which is detected at pH 4.0, was present in all cells regardless of their replicative age. In contrast, senescence-associated β-galactosidase activity, which is detected at pH 6.0, was absent in the majority of cells in early passage cultures (<15 cumulative population doublings), but was present in a large proportion of cells (up to 62%) in late passage cultures (>30 cumulative population doublings); in intermediate passage cultures (15–30 cumulative population doublings) it was found in fewer than 15% of the cells. The increase in the percentage of senescence-associated β-galactosidase-positive cells correlated with a decrease in the cell density at confluence and with a marked increase in cell size. Counterstaining with an antibody directed against the endothelial cell marker CD31 showed that senescent cells retained the expression of this antigen. Senescence-associated β-galactosidase was also detected in serially passaged, but not in primary explant cultures of rabbit aortic vascular smooth muscle cells. The presence of senescence-associated β-galactosidase in cultured vascular smooth muscle cells and endothelial cells suggests that this marker could be used to study the role of cellular senescence in vascular disease.  相似文献   

15.
By means of the immunohistochemical method, the presence and distribution of cystathionine β-synthase (CBS) was studied in nerve cells of the spinal cord and brainstem nuclei in eight men aged 18–44 years who had died as a result of causes not connected with damage to the central nervous system. CBS-positive neurons are revealed in all studied brain parts, in which their content varied in different nuclei from 0.9 to 17%. Large cells of motor nuclei more often had high and very high density of the reaction product deposition. In sensory nuclei the high portion was of small neurons with low intensity of the enzymatic reaction.  相似文献   

16.
Laminins are the major glycoproteins present in all basement membranes. Previously, we showed that perlecan is present during human development. Although an overview of mRNA-expression of the laminin β1 and β2 chains in various developing fetal organs is already available, a systematic localization of the laminin β1 and β2 chains on the protein level during embryonic and fetal human development is missing. Therefore, we studied the immunohistochemical expression and tissue distribution of the laminin β1 and β2 chains in various developing embryonic and fetal human organs between gestational weeks 8 and 12. The laminin β1 chain was ubiquitously expressed in the basement membrane zones of the brain, ganglia, blood vessels, liver, kidney, skin, pancreas, intestine, heart and skeletal system. Furthermore, the laminin β2 chain was present in the basement membrane zones of the brain, ganglia, skin, heart and skeletal system. The findings of this study support and expand upon the theory that these two laminin chains are important during human development.  相似文献   

17.
β-Poly-L-malate (PMA) is synthesized by plasmodia of Physarum polycephalum during growth and secreted into the culture medium. There it is degraded to L-malate after growth has ceased. Its concentration is highest in cell nuclei, where it probably performs a plasmodium-specific function.  相似文献   

18.
19.
The reaction between 2-amino-2-deoxyaldoses and β-dicarbonyl compounds yields polyhydroxyalkylpyrroles. Thus, 6,6-dimethyl-2-(D-galacto-pentitol-1-yl)-4,5,6,7-tetrahydroindol-4-one (4a), 6,6-dimethyl-2-(D-gluco-pentitol-1-yl)-4,5,6,7-tetrahydroindol-4-one (4b), and 6,6-dimethyl-2-(D-manno-pentitol-1-yl)-4,5,6,7-tetrahydroindol-4-one (4c) have been obtained from 5,5-dimethylcyclohexane-1,3-dione (2) and 2-amino-2-deoxyheptoses having D-glycero-L-gluco (1a), D-glycero-D-ido (1b), and D-glycero-D-talo (1c) configurations, respectively. 2-Amino-2-deoxy-D-glycero-L-manno-heptose (1d), the epimer of 1a, also reacts with 2, to yield 4a. In a similar way, 1a, 1b, and 1c react with cyclohexane-1,3-dione (3), to give 2-(D-galacto-pentitol-1-yl)-4,5,6,7-tetrahydroindol-4-one (5a), 2-D-gluco-pentitol-1-yl)-4,5,6,7-tetrahydroindol-4-one (5b), and 2-(D-manno-pentitol-1-yl)-4,5,6,7-tetrahydroindol-4-one (5c), respectively.  相似文献   

20.
Abstract

The adenylate cyclase-stimulatory β2-adrenergic receptor has been purified to apparent homogeneity from hamster lung. Partial amino acid sequence obtained from isolated CNBr peptides was used to clone the gene and cDNA for this receptor. The predicted amino acid sequence for the hamster β2-adrenergic receptor revealed that the protein consists of a single polypeptide chain of 418 aa with consensus N-glycosylation and phosphorylation sites predicted by previous in vitro data. The most striking feature of the receptor protein however, is that it contains seven stretches of hydrophobic residues similar to the proposed seven transmembrane segments of the light receptor rhodopsin. Significant amino acid homology (30-35%) can be found between the hamster β2-adrenergic receptor and rhodopsin within these putative membrane spanning regions. Using a hamster β2-adrenergic receptor probe, the gene and cDNA for the human β2-adrenergic receptor were isolated, revealing a high degree of homology (87%) between the two proteins from different species. Unlike the genes encoding the family of opsin pigments, of which rhodopsin is a member, the genes encoding both hamster and human β2-adrenergic receptors are devoid of introns in their coding as well as 5′ and 3′ untranslated nucleotide sequences. The cloning of the genes and the elucidation of the aa sequences for these G-protein coupled receptors should help to determine the structure-function as well as the evolutionary relationship of these proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号