首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 10 毫秒
1.
The endosomal sorting complexes required for transport (ESCRT) are responsible for multivesicular body biogenesis, membrane abscission during cytokinesis, and retroviral budding. They function as transiently assembled molecular complexes on the membrane, and their disassembly requires the action of the AAA-ATPase Vps4. Vps4 is regulated by a multitude of ESCRT and ESCRT-related proteins. Binding of these proteins to Vps4 is often mediated via the microtubule-interacting and trafficking (MIT) domain of Vps4. Recently, a new Vps4-binding protein Vfa1 was identified in a yeast genetic screen, where overexpression of Vfa1 caused defects in vacuolar morphology. However, the function of Vfa1 and its role in vacuolar biology were largely unknown. Here, we provide the first detailed biochemical and biophysical study of Vps4-Vfa1 interaction. The MIT domain of Vps4 binds to the C-terminal 17 residues of Vfa1. This interaction is of high affinity and greatly stimulates the ATPase activity of Vps4. The crystal structure of the Vps4-Vfa1 complex shows that Vfa1 adopts a canonical MIT-interacting motif 2 structure that has been observed previously in other Vps4-ESCRT interactions. These findings suggest that Vfa1 is a novel positive regulator of Vps4 function.  相似文献   

2.
The potato (Solanum tuberosum) disease resistance protein Rx has a modular arrangement that contains coiled-coil (CC), nucleotide-binding (NB), and leucine-rich repeat (LRR) domains and mediates resistance to potato virus X. The Rx N-terminal CC domain undergoes an intramolecular interaction with the Rx NB-LRR region and an intermolecular interaction with the Rx cofactor RanGAP2 (Ran GTPase-activating protein 2). Here, we report the crystal structure of the Rx CC domain in complex with the Trp-Pro-Pro (WPP) domain of RanGAP2. The structure reveals that the Rx CC domain forms a heterodimer with RanGAP2, in striking contrast to the homodimeric structure of the CC domain of the barley disease resistance protein MLA10. Structure-based mutagenesis identified residues from both the Rx CC domain and the RanGAP2 WPP domain that are crucial for their interaction and function in vitro and in vivo. Our results reveal the molecular mechanism underlying the interaction of Rx with RanGAP2 and identify the distinct surfaces of the Rx CC domain that are involved in intramolecular and intermolecular interactions.  相似文献   

3.
4.
Exocrine gland-secreting peptide 1 (ESP1) is a sex pheromone that is released in male mouse tear fluids and enhances female sexual receptive behavior. ESP1 is selectively recognized by a specific class C G-protein-coupled receptor (GPCR), V2Rp5, among the hundreds of receptors expressed in vomeronasal sensory neurons (VSNs). The specific sensing mechanism of the mammalian peptide pheromone by the class C GPCR remains to be elucidated. Here we identified the minimal functional region needed to retain VSN-stimulating activity in ESP1 and determined its three-dimensional structure, which adopts a helical fold stabilized by an intramolecular disulfide bridge with extensive charged patches. We then identified the amino acids involved in the activation of VSNs by a structure-based mutational analysis, revealing that the highly charged surface is crucial for the ESP1 activity. We also demonstrated that ESP1 specifically bound to an extracellular region of V2Rp5 by an in vitro pulldown assay. Based on homology modeling of V2Rp5 using the structure of the metabotropic glutamate receptor, we constructed a docking model of the ESP1-V2Rp5 complex in which the binding interface exhibited good electrostatic complementarity. These experimental results, supported by the molecular docking simulations, reveal that charge-charge interactions determine the specificity of ESP1 binding to V2Rp5 in the large extracellular region characteristic of class C GPCRs. The present study provides insights into the structural basis for the narrowly tuned sensing of mammalian peptide pheromones by class C GPCRs.  相似文献   

5.
Much of our knowledge of protein binding pathways is derived from extremely stable complexes that interact very tightly, with lifetimes of hours to days. Much less is known about weaker interactions and transient complexes because these are challenging to characterize experimentally. Nevertheless, these types of interactions are ubiquitous in living systems. The combination of NMR relaxation dispersion Carr–Purcell–Meiboom–Gill (CPMG) experiments and isothermal titration calorimetry allows the quantification of rapid binding kinetics for complexes with submillisecond lifetimes that are difficult to study using conventional techniques. We have used this approach to investigate the binding pathway of the Src homology 3 (SH3) domain from the Fyn tyrosine kinase, which forms complexes with peptide targets whose lifetimes are on the order of about a millisecond. Long range electrostatic interactions have been shown to play a critical role in the binding pathways of tightly binding complexes. The role of electrostatics in the binding pathways of transient complexes is less well understood. Similarly to previously studied tight complexes, we find that SH3 domain association rates are enhanced by long range electrostatics, whereas short range interactions are formed late in the docking process. However, the extent of electrostatic association rate enhancement is several orders of magnitudes less, whereas the electrostatic-free basal association rate is significantly greater. Thus, the SH3 domain is far less reliant on electrostatic enhancement to achieve rapid association kinetics than are previously studied systems. This suggests that there may be overall differences in the role played by electrostatics in the binding pathways of extremely stable versus transient complexes.  相似文献   

6.
7.
Vacuolar protein sorting 30 (Vps30)/autophagy-related protein 6 (Atg6) is a common component of two distinct phosphatidylinositol 3-kinase complexes. In complex I, Atg14 links Vps30 to Vps34 lipid kinase and exerts its specific role in autophagy, whereas in complex II, Vps38 links Vps30 to Vps34 and plays a crucial role in vacuolar protein sorting. However, the molecular role of Vps30 in each pathway remains unclear. Here, we report the crystal structure of the carboxyl-terminal domain of Vps30. The structure is a novel globular fold comprised of three β-sheet-α-helix repeats. Truncation analyses showed that the domain is dispensable for the construction of both complexes, but is specifically required for autophagy through the targeting of complex I to the pre-autophagosomal structure. Thus, the domain is named the β-α repeated, autophagy-specific (BARA) domain. On the other hand, the N-terminal region of Vps30 was shown to be specifically required for vacuolar protein sorting. These structural and functional investigations of Vps30 domains, which are also conserved in the mammalian ortholog, Beclin 1, will form the basis for studying the molecular functions of this protein family in various biological processes.  相似文献   

8.
We examined the interaction of ECM1 (extracellular matrix protein 1) using yeast two-hybrid screening and identified the type II transmembrane protein, PLSCR1 (phospholipid scramblase 1), as a binding partner. This interaction was then confirmed by in vitro and in vivo co-immunoprecipitation experiments, and additional pull-down experiments with GST-tagged ECM1a fragments localized this interaction to occur within the tandem repeat region of ECM1a. Furthermore, immunohistochemical staining revealed a partial overlap of ECM1 and PLSCR1 in human skin at the basal epidermal cell layer. Moreover, in human skin equivalents, both proteins are expressed at the basal membrane in a dermal fibroblast-dependent manner. Next, immunogold electron microscopy of ultrathin human skin sections showed that ECM1 and PLSCR1 co-localize in the extracellular matrix, and using antibodies against ECM1 or PLSCR1 cross-linked to magnetic immunobeads, we were able to demonstrate PLSCR1-ECM1 interaction in human skin extracts. Furthermore, whereas ECM1 is secreted by the endoplasmic/Golgi-dependent pathway, PLSCR1 release from HaCaT keratinocytes occurs via a lipid raft-dependent mechanism, and is deposited in the extracellular matrix. In summary, we here demonstrate that PLSCR1 interacts with the tandem repeat region of ECM1a in the dermal epidermal junction zone of human skin and provide for the first time experimental evidence that PLSCR1 is secreted by an unconventional secretion pathway. These data suggest that PLSCR1 is a multifunctional protein that can function both inside and outside of the cell and together with ECM1 may play a regulatory role in human skin.  相似文献   

9.
An α-2,8-linked polysialic acid (polySia) capsule confers immune tolerance to neuroinvasive, pathogenic prokaryotes such as Escherichia coli K1 and Neisseria meningitidis and supports host infection by means of molecular mimicry. Bacteriophages of the K1 family, infecting E. coli K1, specifically recognize and degrade this polySia capsule utilizing tailspike endosialidases. While the crystal structure for the catalytic domain of the endosialidase of bacteriophage K1F (endoNF) has been solved, there is yet no structural information on the mode of polySia binding and cleavage available. The crystal structure of activity deficient active-site mutants of the homotrimeric endoNF cocrystallized with oligomeric sialic acid identified three independent polySia binding sites in each endoNF monomer. The bound oligomeric sialic acid displays distinct conformations at each site. In the active site, a Sia3 molecule is bound in an extended conformation representing the enzyme-product complex. Structural and biochemical data supported by molecular modeling enable to propose a reaction mechanism for polySia cleavage by endoNF.  相似文献   

10.
The FIGL-1 (fidgetin like-1) protein is a homolog of fidgetin, a protein whose mutation leads to multiple developmental defects. The FIGL-1 protein contains an AAA (ATPase associated with various activities) domain and belongs to the AAA superfamily. However, the biological functions and developmental implications of this protein remain unknown. Here, we show that the AAA domain of the Caenorhabditis elegans FIGL-1 protein (CeFIGL-1-AAA), in clear contrast to homologous AAA domains, has an unusually high ATPase activity and forms a hexamer in solution. By determining the crystal structure of CeFIGL-1-AAA, we found that the loop linking helices α9 and α10 folds into the short helix α9a, which has an acidic surface and interacts with a positively charged surface of the neighboring subunit. Disruption of this charge interaction by mutagenesis diminishes both the ATPase activity and oligomerization capacity of the protein. Interestingly, the acidic residues in helix α9a of CeFIGL-1-AAA are not conserved in other homologous AAA domains that have relatively low ATPase activities. These results demonstrate that the sequence of CeFIGL-1-AAA has adapted to establish an intersubunit charge interaction, which contributes to its strong oligomerization and ATPase activity. These unique properties of CeFIGL-1-AAA distinguish it from other homologous proteins, suggesting that CeFIGL-1 may have a distinct biological function.  相似文献   

11.
Trehalases hydrolyze the non-reducing disaccharide trehalose amassed by cells as a universal protectant and storage carbohydrate. Recently, it has been shown that the activity of neutral trehalase Nth1 from Saccharomyces cerevisiae is mediated by the 14-3-3 protein binding that modulates the structure of both the catalytic domain and the region containing the EF-hand-like motif, whose role in the activation of Nth1 is unclear. In this work, the structure of the Nth1·14-3-3 complex and the importance of the EF-hand-like motif were investigated using site-directed mutagenesis, hydrogen/deuterium exchange coupled to mass spectrometry, chemical cross-linking, and small angle x-ray scattering. The low resolution structural views of Nth1 alone and the Nth1·14-3-3 complex show that the 14-3-3 protein binding induces a significant structural rearrangement of the whole Nth1 molecule. The EF-hand-like motif-containing region forms a separate domain that interacts with both the 14-3-3 protein and the catalytic trehalase domain. The structural integrity of the EF-hand like motif is essential for the 14-3-3 protein-mediated activation of Nth1, and calcium binding, although not required for the activation, facilitates this process by affecting its structure. Our data suggest that the EF-hand like motif-containing domain functions as the intermediary through which the 14-3-3 protein modulates the function of the catalytic domain of Nth1.  相似文献   

12.
Nck family proteins function as adaptors to couple tyrosine phosphorylation signals to actin cytoskeleton reorganization. Several lines of evidence indicate that Nck family proteins involve in regulating the activity of Rho family GTPases. In the present study, we characterized a novel interaction between Nck-1 with engulfment and cell motility 1 (ELMO1). GST pull-down and co-immunoprecipitation assay demonstrated that the Nck-1-ELMO1 interaction is mediated by the SH2 domain of Nck-1 and the phosphotyrosine residues at position 18, 216, 395, and 511 of ELMO1. A R308K mutant of Nck-1 (in which the SH2 domain was inactive), or a 4YF mutant of ELMO1 lacking these four phosphotyrosine residues, diminished Nck-1-ELMO1 interaction. Conversely, tyrosine phosphatase inhibitor treatment and overexpression of Src family kinase Hck significantly enhanced Nck-1-ELMO1 interaction. Moreover, wild type Nck-1, but not R308K mutant, significantly augmented the interaction between ELMO1 and constitutively active RhoG (RhoGV12A), thus promoted Rac1 activation and cell motility. Taken together, the present study characterized a novel Nck-1-ELMO1 interaction and defined a new role for Nck-1 in regulating Rac1 activity.  相似文献   

13.
Cellular inhibitor of apoptosis (cIAP) proteins, cIAP1 and cIAP2, are important regulators of tumor necrosis factor (TNF) superfamily (SF) signaling and are amplified in a number of tumor types. They are targeted by IAP antagonist compounds that are undergoing clinical trials. IAP antagonist compounds trigger cIAP autoubiquitylation and degradation. The TNFSF member TWEAK induces lysosomal degradation of TRAF2 and cIAPs, leading to elevated NIK levels and activation of non-canonical NF-κB. To investigate the role of the ubiquitin ligase RING domain of cIAP1 in these pathways, we used cIAP-deleted cells reconstituted with cIAP1 point mutants designed to interfere with the ability of the RING to dimerize or to interact with E2 enzymes. We show that RING dimerization and E2 binding are required for IAP antagonists to induce cIAP1 degradation and protect cells from TNF-induced cell death. The RING functions of cIAP1 are required for full TNF-induced activation of NF-κB, however, delayed activation of NF-κB still occurs in cIAP1 and -2 double knock-out cells. The RING functions of cIAP1 are also required to prevent constitutive activation of non-canonical NF-κB by targeting NIK for proteasomal degradation. However, in cIAP double knock-out cells TWEAK was still able to increase NIK levels demonstrating that NIK can be regulated by cIAP-independent pathways. Finally we show that, unlike IAP antagonists, TWEAK was able to induce degradation of cIAP1 RING mutants. These results emphasize the critical importance of the RING of cIAP1 in many signaling scenarios, but also demonstrate that in some pathways RING functions are not required.  相似文献   

14.
The endosomal sorting complex required for transport (ESCRT) machinery is responsible for membrane remodeling in a number of biological processes including multivesicular body biogenesis, cytokinesis, and enveloped virus budding. In mammalian cells, efficient abscission during cytokinesis requires proper function of the ESCRT-III protein IST1, which binds to the microtubule interacting and trafficking (MIT) domains of VPS4, LIP5, and Spartin via its C-terminal MIT-interacting motif (MIM). Here, we studied the molecular interactions between IST1 and the three MIT domain-containing proteins to understand the structural basis that governs pairwise MIT-MIM interaction. Crystal structures of the three molecular complexes revealed that IST1 binds to the MIT domains of VPS4, LIP5, and Spartin using two different mechanisms (MIM1 mode versus MIM3 mode). Structural comparison revealed that structural features in both MIT and MIM contribute to determine the specific binding mechanism. Within the IST1 MIM sequence, two phenylalanine residues were shown to be important in discriminating MIM1 versus MIM3 binding. These observations enabled us to deduce a preliminary binding code, which we applied to provide CHMP2A, a protein that normally only binds the MIT domain in the MIM1 mode, the additional ability to bind the MIT domain of Spartin in the MIM3 mode.  相似文献   

15.

Background

Pulmonary emphysema is characterized histologically by destruction of alveolar walls and enlargement of air spaces due to lung epithelial cell apoptosis. Cell adhesion molecule 1 (CADM1) is an immunoglobulin superfamily member expressed in lung epithelial cells. CADM1 generates a membrane-associated C-terminal fragment, αCTF, through A disintegrin- and metalloprotease-10-mediated ectodomain shedding, subsequently releasing the intracellular domain (ICD) through γ-secretase-mediated intramembrane shedding of αCTF. αCTF localizes to mitochondria and induces apoptosis in lung epithelial cells. αCTF contributes to the development and progression of emphysema as a consequence of increased CADM1 ectodomain shedding. The purpose of this study was to examine whether the ICD makes a similar contribution.

Results

The ICD was synthesized as a 51-amino acid peptide, and its mutant was synthesized by substituting seven amino acids and deleting two amino acids. These peptides were labeled with fluorescein isothiocyanate and were introduced into various cell lines. ICD peptide-derived fluorescence was well visualized in lung epithelial cells at the site of Mitotracker mitochondrial labeling, but was detected in locations other than mitochondria in other cell types. Mutant peptide-derived fluorescence was detected in locations other than mitochondria, even in lung epithelial cells. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assays revealed that transduction of the ICD peptide increased the proportion of apoptotic cells 2- to 5-fold in the lung epithelial cell lines, whereas the mutant peptide did not. Abundance of the ICD was below the Western blot detection limit in emphysematous (n = 4) and control (n = 4) human lungs. However, the ICD was detected only in emphysematous lungs when it was immunoprecipitated with anti-CADM1 antibody (4/4 vs. 0/4, P = 0.029).

Conclusions

As the abundance of ICD molecules was sparse but present, increased CADM1 shedding appeared to contribute to the development of emphysema by generating αCTF and the ICD in lung epithelial cells.

Electronic supplementary material

The online version of this article (doi:10.1186/s12929-015-0173-8) contains supplementary material, which is available to authorized users.  相似文献   

16.
The Ubiquitin-Proteasome System (UPS) and the Autophagy-Lysosome Pathways (ALP) are key mechanisms for cellular homeostasis sustenance and protein clearance. A wide number of Neurodegenerative Diseases (NDs) are tied with UPS impairment and have been also described as proteinopathies caused by aggregate-prone proteins, not efficiently removed by proteasome. Despite the large knowledge on proteasome biological role, molecular mechanisms associated with its impairment are still blur. We have pursued a comprehensive proteomic investigation to evaluate the phenotypic rearrangements in protein repertoires associated with a UPS blockage. Different functional proteomic approaches have been employed to tackle UPS impairment impact on human NeuroBlastoma (NB) cell lines responsive to proteasome inhibition by Epoxomicin. 2-Dimensional Electrophoresis (2-DE) separation combined with Mass Spectrometry and Shotgun Proteomics experiments have been employed to design a thorough picture of protein profile. Unsupervised meta-analysis of the collected proteomic data revealed that all the identified proteins relate each other in a functional network centered on beta-estradiol. Moreover we showed that treatment of cells with beta-estradiol resulted in aggregate removal and increased cell survival due to activation of the autophagic pathway. Our data may provide the molecular basis for the use of beta-estradiol in neurodegenerative disorders by induction of protein aggregate removal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号