首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The authors previously observed blunted phase-shift responses to morning bright light in women with premenstrual dysphoric disorder (PMDD). The aim of this study was to determine if these findings could be replicated using a higher-intensity, shorter-duration light pulse and to compare these results with the effects of an evening bright-light pulse. In 17 PMDD patients and 14 normal control (NC) subjects, the authors measured plasma melatonin at 30-min intervals from 18:00 to 10:00 h in dim (<30 lux) or dark conditions the night before (Night 1) and after (Night 3) a bright-light pulse (administered on Night 2) in both follicular and luteal menstrual cycle phases. The bright light (either 3000 lux for 6 h or 6000 lux for 3 h) was given either in the morning (AM light), 7 h after the dim light melatonin onset (DLMO) measured the previous month, or in the evening (PM light), 3 h after the DLMO. In the luteal, but not in the follicular, phase, AM light advanced melatonin offset between Night 1 and Night 3 significantly less in PMDD than in NC subjects. The effects of PM light were not significant, nor were there significant effects of the light pulse on melatonin measures of onset, duration, peak, or area under the curve. These findings replicated the authors' previous finding of a blunted phase-shift response to morning bright light in the luteal, but not the follicular, menstrual cycle phase in PMDD compared with NC women, using a brighter (6000 vs. 3000 lux) light pulse for a shorter duration (3 vs. 6 h). As the effect of PM bright light on melatonin phase-shift responses did not differ between groups or significantly alter other melatonin measures, these results suggest that in PMDD there is a luteal-phase subsensitivity or an increased resistance to morning bright-light cues that are critical in synchronizing human biological rhythms. The resulting circadian rhythm malsynchonization may contribute to the occurrence of luteal phase depressive symptoms in women with PMDD.  相似文献   

2.
The authors previously observed blunted phase-shift responses to morning bright light in women with premenstrual dysphoric disorder (PMDD). The aim of this study was to determine if these findings could be replicated using a higher-intensity, shorter-duration light pulse and to compare these results with the effects of an evening bright-light pulse. In 17 PMDD patients and 14 normal control (NC) subjects, the authors measured plasma melatonin at 30-min intervals from 18:00 to 10:00?h in dim (<30 lux) or dark conditions the night before (Night 1) and after (Night 3) a bright-light pulse (administered on Night 2) in both follicular and luteal menstrual cycle phases. The bright light (either 3000 lux for 6?h or 6000 lux for 3?h) was given either in the morning (AM light), 7?h after the dim light melatonin onset (DLMO) measured the previous month, or in the evening (PM light), 3?h after the DLMO. In the luteal, but not in the follicular, phase, AM light advanced melatonin offset between Night 1 and Night 3 significantly less in PMDD than in NC subjects. The effects of PM light were not significant, nor were there significant effects of the light pulse on melatonin measures of onset, duration, peak, or area under the curve. These findings replicated the authors’ previous finding of a blunted phase-shift response to morning bright light in the luteal, but not the follicular, menstrual cycle phase in PMDD compared with NC women, using a brighter (6000 vs. 3000 lux) light pulse for a shorter duration (3 vs. 6?h). As the effect of PM bright light on melatonin phase-shift responses did not differ between groups or significantly alter other melatonin measures, these results suggest that in PMDD there is a luteal-phase subsensitivity or an increased resistance to morning bright-light cues that are critical in synchronizing human biological rhythms. The resulting circadian rhythm malsynchonization may contribute to the occurrence of luteal phase depressive symptoms in women with PMDD. (Author correspondence: )  相似文献   

3.
Melatonin in circadian sleep disorders in the blind   总被引:2,自引:0,他引:2  
Assessment of sleep patterns in blind people demonstrates a high prevalence of sleep disorders. Our studies have shown that subjects with no conscious light perception (NPL) have a higher occurrence and more severe sleep disorders than those with some degree of light perception (LP). A detailed study of 49 blind individuals showed that those with NPL are likely to have free-running (FR) circadian rhythms (aMT6s, cortisol) including sleep. Non-24-hour (or FR) sleep-wake disorder, characterised by periods of good and bad sleep is a condition that may benefit from melatonin treatment. Melatonin has been administered to NPL subjects with FR circadian rhythms and compared with placebo (or the no-treatment baseline) sleep parameters improved. The results suggest that prior knowledge of the subject's type of circadian rhythm, and timing of treatment in relation to the individual's circadian phase, may improve the efficacy of melatonin.  相似文献   

4.
Disruption of the maternal environment during pregnancy is a key contributor to offspring diseases that develop in adult life. To explore the impact of chronodisruption during pregnancy in primates, we exposed pregnant capuchin monkeys to constant light (eliminating the maternal melatonin rhythm) from the last third of gestation to term. Maternal temperature and activity circadian rhythms were assessed as well as the newborn temperature rhythm. Additionally we studied the effect of daily maternal melatonin replacement during pregnancy on these rhythms. Ten pregnant capuchin monkeys were exposed to constant light from 60% of gestation to term. Five received a daily oral dose of melatonin (250 µg kg/body weight) at 1800 h (LL+Mel) and the other five a placebo (LL). Six additional pregnant females were maintained in a 14∶10 light:dark cycles and their newborns were used as controls (LD). Rhythms were recorded 96 h before delivery in the mother and at 4–6 days of age in the newborn. Exposure to constant light had no effect on the maternal body temperature rhythm however it delayed the acrophase of the activity rhythm. Neither rhythm was affected by melatonin replacement. In contrast, maternal exposure to constant light affected the newborn body temperature rhythm. This rhythm was entrained in control newborns whereas LL newborns showed a random distribution of the acrophases over 24-h. In addition, mean temperature was decreased (34.0±0.6 vs 36.1±0.2°C, in LL and control, respectively P<0.05). Maternal melatonin replacement during pregnancy re-synchronized the acrophases and restored mean temperature to the values in control newborns. Our findings demonstrate that prenatal melatonin is a Zeitgeber for the newborn temperature rhythm and supports normal body temperature maintenance. Altogether these prenatal melatonin effects highlight the physiological importance of the maternal melatonin rhythm during pregnancy for the newborn primate.  相似文献   

5.
Although it's been reported that women with premenstrual dysphoric disorder (PMDD) have increased negative mood, appetite (food cravings and food intake), alcohol intake and cognitive deficits premenstrually, few studies have examined these changes concurrently within the same group of women or compared to women without PMDD. Thus, to date, there is not a clear understanding of the full range of PMDD symptoms. The present study concurrently assessed mood and performance tasks in 29 normally cycling women (14 women who met DSM-IV criteria for PMDD and 15 women without PMDD). Women had a total of ten sessions: two practice sessions, 4 sessions during the follicular phase and 4 sessions during the late luteal phase of the menstrual cycle. Each session, participants completed mood and food-related questionnaires, a motor coordination task, performed various cognitive tasks and ate lunch. There was a significant increase in dysphoric mood during the luteal phase in women with PMDD compared to their follicular phase and compared to Control women. Further, during the luteal phase, women with PMDD showed impaired performance on the Immediate and Delayed Word Recall Task, the Immediate and Delayed Digit Recall Task and the Digit Symbol Substitution Test compared to Control women. Women with PMDD, but not Control women, also showed increased desire for food items high in fat during the luteal phase compared to the follicular phase and correspondingly, women with PMDD consumed more calories during the luteal phase (mostly derived from fat) compared to the follicular phase. In summary, women with PMDD experience dysphoric mood, a greater desire and actual intake of certain foods and show impaired cognitive performance during the luteal phase. An altered serotonergic system in women with PMDD may be the underlying mechanism for the observed symptoms; correspondingly, treatment with specific serotonin reuptake inhibitors (SSRIs) remains the preferred treatment at this time.  相似文献   

6.

Background

Bipolar disorder patients often display abnormalities in circadian rhythm, and they are sensitive to irregular diurnal rhythms. CRY2 participates in the core clock that generates circadian rhythms. CRY2 mRNA expression in blood mononuclear cells was recently shown to display a marked diurnal variation and to respond to total sleep deprivation in healthy human volunteers. It was also shown that bipolar patients in a depressive state had lower CRY2 mRNA levels, nonresponsive to total sleep deprivation, compared to healthy controls, and that CRY2 gene variation was associated with winter depression in both Swedish and Finnish cohorts.

Principal Findings

Four CRY2 SNPs spanning from intron 2 to downstream 3′UTR were analyzed for association to bipolar disorder type 1 (n = 497), bipolar disorder type 2 (n = 60) and bipolar disorder with the feature rapid cycling (n = 155) versus blood donors (n = 1044) in Sweden. Also, the rapid cycling cases were compared with bipolar disorder cases without rapid cycling (n = 422). The haplotype GGAC was underrepresented among rapid cycling cases versus controls and versus bipolar disorder cases without rapid cycling (OR = 0.7, P = 0.006−0.02), whereas overrepresentation among rapid cycling cases was seen for AAAC (OR = 1.3−1.4, P = 0.03−0.04) and AGGA (OR = 1.5, P = 0.05). The risk and protective CRY2 haplotypes and their effect sizes were similar to those recently suggested to be associated with winter depression in Swedes.

Conclusions

We propose that the circadian gene CRY2 is associated with rapid cycling in bipolar disorder. This is the first time a clock gene is implicated in rapid cycling, and one of few findings showing a molecular discrimination between rapid cycling and other forms of bipolar disorder.  相似文献   

7.
Exposure to light is a major determinant of sleep timing and hormonal rhythms. The role of retinal cones in regulating circadian physiology remains unclear, however, as most studies have used light exposures that also activate the photopigment melanopsin. Here, we tested the hypothesis that exposure to alternating red light and darkness can enhance circadian resetting responses in humans by repeatedly activating cone photoreceptors. In a between-subjects study, healthy volunteers (n = 24, 21–28 yr) lived individually in a laboratory for 6 consecutive days. Circadian rhythms of melatonin, cortisol, body temperature, and heart rate were assessed before and after exposure to 6 h of continuous red light (631 nm, 13 log photons cm−2 s−1), intermittent red light (1 min on/off), or bright white light (2,500 lux) near the onset of nocturnal melatonin secretion (n = 8 in each group). Melatonin suppression and pupillary constriction were also assessed during light exposure. We found that circadian resetting responses were similar for exposure to continuous versus intermittent red light (P = 0.69), with an average phase delay shift of almost an hour. Surprisingly, 2 subjects who were exposed to red light exhibited circadian responses similar in magnitude to those who were exposed to bright white light. Red light also elicited prolonged pupillary constriction, but did not suppress melatonin levels. These findings suggest that, for red light stimuli outside the range of sensitivity for melanopsin, cone photoreceptors can mediate circadian phase resetting of physiologic rhythms in some individuals. Our results also show that sensitivity thresholds differ across non-visual light responses, suggesting that cones may contribute differentially to circadian resetting, melatonin suppression, and the pupillary light reflex during exposure to continuous light.  相似文献   

8.
Selmaoui B  Touitou Y 《Life sciences》2003,73(26):3339-3349
Plasma melatonin and cortisol are characterized by a marked circadian rhythm, but little information is available about the reproducibility and stability of these rhythms over several weeks in the same subjects. This study examined the characteristics of these rhythms in 31 healthy human subjects 20 to 30 years of age. They were synchronized with a diurnal activity from 0800 to 2300 and nocturnal rest. They participated in three 24-hour sessions (S1, S2, and S3): S2 took place two weeks after S1 and S3 4 weeks after S2. Blood samples were taken during each session at 3-hour intervals from 1100 to 2000 and hourly from 2200 to 0800. Comparison of the circadian rhythms between groups used repeated measures 2-way ANOVA, the cosinor method, and Bingham's test. Intraindividual variations were compared by the cosinor method and Bingham's test. The groups did not differ, but a slight difference in the amplitude or acrophase of individual circadian rhythms was observed in 5 of 31 subjects for melatonin and 1 of 31 for cortisol. The circadian means did not differ over the three sessions. These results show that the circadian profile of cortisol and melatonin are highly reproducible over a six-week period, in both individuals and groups. Our study clearly shows that these hormones can be considered to be stable markers of the circadian time structure and therefore useful tools to validate rhythms' synchronisation of human subjects.  相似文献   

9.
The current scientific literature is replete with investigations providing information on the molecular mechanisms governing the regulation of circadian rhythms by neurons in the suprachiasmatic nucleus (SCN), the master circadian generator. Virtually every function in an organism changes in a highly regular manner during every 24-hour period. These rhythms are believed to be a consequence of the SCN, via neural and humoral means, regulating the intrinsic clocks that perhaps all cells in organisms possess. These rhythms optimize the functions of cells and thereby prevent or lower the incidence of pathologies. Since these cyclic events are essential for improved cellular physiology, it is imperative that the SCN provide the peripheral cellular oscillators with the appropriate time cues. Inasmuch as the 24-hour light:dark cycle is a primary input to the central circadian clock, it is obvious that disturbances in the photoperiodic environment, e.g., light exposure at night, would cause disruption in the function of the SCN which would then pass this inappropriate information to cells in the periphery. One circadian rhythm that transfers time of day information to the organism is the melatonin cycle which is always at low levels in the blood during the day and at high levels during darkness. With light exposure at night the amount of melatonin produced is compromised and this important rhythm is disturbed. Another important source of melatonin is the gastrointestinal tract (GIT) that also influences the circulating melatonin is the generation of this hormone by the entero-endocrine (EE) cells in the gut following ingestion of tryptophan-containing meal. The consequences of the altered melatonin cycle with the chronodisruption as well as the alterations of GIT melatonin that have been linked to a variety of pathologies, including those of the gastrointestinal tract.  相似文献   

10.
In passerine birds, the periodic secretion of melatonin by the pineal organ represents an important component of the pacemaker that controls overt circadian functions. The daily phase of low melatonin secretion generally coincides with the phase of intense activity, but the precise relationship between the melatonin and the behavioral rhythms has not been studied. Therefore, we investigated in European starlings (Sturnus vulgaris) (1) the temporal relationship between the circadian plasma melatonin rhythm and the rhythms in locomotor activity and feeding; (2) the persistence of the melatonin rhythm in constant conditions; and (3) the effects of light intensity on synchronized and free-running melatonin and behavioral rhythms. There was a marked rhythm in plasma melatonin with high levels at night and/or the inactive phase of the behavioral cycles in almost all birds. Like the behavioral rhythms, the melatonin rhythm persisted for at least 50 days in constant dim light. In the synchronized state, higher daytime light intensity resulted in more tightly synchronized rhythms and a delayed melatonin peak. While all three rhythms usually assumed a rather constant phase relationship to each other, in one bird the two behavioral rhythms dissociated from each other. In this case, the melatonin rhythm retained the appropriate phase relationship with the feeding rhythm. Accepted: 10 December 1999  相似文献   

11.
Effects of light on human circadian rhythms.   总被引:2,自引:0,他引:2  
Blind subjects with defective retinal processing provide a good model to study the effects of light (or absence of light) on the human circadian system. The circadian rhythms (melatonin, cortisol, timing of sleep/wake) of individuals with different degrees of light perception (n = 67) have been studied. Blind subjects with some degree of light perception (LP) mainly have normally entrained circadian rhythms, whereas subjects with no conscious light perception (NPL) are more likely to exhibit disturbed circadian rhythms. All subjects who were bilaterally enucleated showed free running melatonin and cortisol rhythms. Studies assessing the light-induced suppression of melatonin show the response to be intensity and wavelength dependent. In contrast to ocular light exposure, extraocular light failed to suppress night-time melatonin. Thus, ocular light appears to be the predominant time cue and major determinant of circadian rhythm type. Optimisation of the light for entrainment (intensity, duration, wavelength, time of administration) requires further study.  相似文献   

12.
Our aim was to investigate how circadian adaptation to night shift work affects psychomotor performance, sleep, subjective alertness and mood, melatonin levels, and heart rate variability (HRV). Fifteen healthy police officers on patrol working rotating shifts participated to a bright light intervention study with 2 participants studied under two conditions. The participants entered the laboratory for 48 h before and after a series of 7 consecutive night shifts in the field. The nighttime and daytime sleep periods were scheduled during the first and second laboratory visit, respectively. The subjects were considered “adapted” to night shifts if their peak salivary melatonin occurred during their daytime sleep period during the second visit. The sleep duration and quality were comparable between laboratory visits in the adapted group, whereas they were reduced during visit 2 in the non-adapted group. Reaction speed was higher at the end of the waking period during the second laboratory visit in the adapted compared to the non-adapted group. Sleep onset latency (SOL) and subjective mood levels were significantly reduced and the LF∶HF ratio during daytime sleep was significantly increased in the non-adapted group compared to the adapted group. Circadian adaptation to night shift work led to better performance, alertness and mood levels, longer daytime sleep, and lower sympathetic dominance during daytime sleep. These results suggest that the degree of circadian adaptation to night shift work is associated to different health indices. Longitudinal studies are required to investigate long-term clinical implications of circadian misalignment to atypical work schedules.  相似文献   

13.
Among the most co-occurring conditions in autism spectrum disorders (ASD), there are sleep disorders which may exacerbate associated behavioral disorders and lead to intensification of existing autistic symptoms. Several studies investigating the use of melatonin in the treatment of sleep disorders in ASD have shown comparative efficiency in sleep with little or no side effects. Here we report a case of ASD with non-24-hour rhythm and the effect of melatonin in circadian parameters by actigraphy. Visual analysis of the first 10 days recorded and the periodogram suggest that this patient showed a non-24-hour rhythm. This ASD subject showed before melatonin administration an activity/rest rhythm lower than 24 hours. The results show that melatonin increased approximately 4.7 times the regularity of circadian activity rhythm and resting staying on average between 00:00 and 06:00 and showed positive effects in improving the quality of sleep and behavior. So, the actigraphy showed an ASD subject with a non-24-hour activity/rest rhythm which changed this rhythm to a 24-hour rhythm after melatonin administration. This result reinforces the prospect of therapy with melatonin for synchronization (increased regularity) of endogenous rhythms and improve sleep quality and hence behavior and indicates the actigraphy as a choice tool to characterize several parameters of the activity/rest rhythm of ASD individuals.  相似文献   

14.
Liu HY  Bao AM  Zhou JN  Liu RY 《生理学报》2005,57(3):389-394
目前有关月经周期对睡眠影响的研究结果并不一致,而对月经周期中昼夜睡眠-觉醒及静息-活动节律尚缺乏系统性的研究.本研究旨在观察正常育龄期女性月经周期中睡眠-觉醒及静息-活动昼夜节律的变化.我们采用静息-活动监测仪(actigraphy)和睡眠日志,调查了12个自然生活状态下健康育龄期妇女在月经周期不同阶段,即行经期、围排卵期、黄体早期及黄体晚期中睡眠与活动节律的变化.结果显示,睡眠-觉醒节律参数在四期之间无统计学显著差异;而静息-活动节律方面,所有受试女性静息-活动节律的平均日周期长度为(24.01±0.29)h,并且四期之间无显著性差异.行经期日间稳定系数(interdaily stability,IS)比黄体早期显著增加(P<0.05).黄体早期日间活动开始时间明显较黄体晚期提前(P<0.05);黄体早期的活动峰值时相比围排卵期显著提前(P<0.05).月经周期可以影响静息-活动昼夜节律时相.而总体静息-活动数量与质量未发生显著变化;健康育龄期妇女在月经周期的各阶段中睡眠-觉醒节律亦无明显变异.  相似文献   

15.
The circadian rhythm of hexobarbital sleeping time and lipids content in liver and serum were studied in 226 male Sprague-Dawley rats pretreated daily at 0800-0900 with 70 mg/kg (study 1 or 3) or 50 mg/kg (study 2) phenobarbital (PB) orally for 7 days. Thereafter, eight (study 1) or five (study 2 and 3) rats each were studied at 4-hr intervals at 1000, 1400, 1800, 2200, 0200, 0600 and 1000 through the following day. The lighting schedule in the colony was 12:12 ± light:dark (light from 0600 to 1800). The hexobarbital sleeping times of PB-pretreated rats were generally shortened compared to the controls and no circadian rhythm was observed. PB-treatment increased slightly the liver content of cholesterol, and significantly that of triglycerides and phospholipids. Liver cholesterol and phospholipids showed circadian rhythms with peaks during the dark phase. No circadian rhythm of liver triglycerides existed. In serum, levels of triglycerides and phospholipids were slightly lowered by PB-treatment, while levels of cholesterol and beta-lipoprotein were not influenced. Serum values did not exhibit circadian rhythms.  相似文献   

16.
Biological circadian clocks oscillate with an approximately 24-hour period, are ubiquitous, and presumably confer a selective advantage by anticipating the transitions between day and night. The circadian rhythms of sleep, melatonin secretion and body core temperature are thought to be generated by the suprachiasmatic nucleus of the hypothalamus, the anatomic locus of the mammalian circadian clock. Autosomal semi-dominant mutations in rodents with fast or slow biological clocks (that is, short or long endogenous period lengths; tau) are associated with phase-advanced or delayed sleep-wake rhythms, respectively. These models predict the existence of familial human circadian rhythm variants but none of the human circadian rhythm disorders are known to have a familial tendency. Although a slight 'morning lark' tendency is common, individuals with a large and disabling sleep phase-advance are rare. This disorder, advanced sleep-phase syndrome, is characterized by very early sleep onset and offset; only two cases are reported in young adults. Here we describe three kindreds with a profound phase advance of the sleep-wake, melatonin and temperature rhythms associated with a very short tau. The trait segregates as an autosomal dominant with high penetrance. These kindreds represent a well-characterized familial circadian rhythm variant in humans and provide a unique opportunity for genetic analysis of human circadian physiology.  相似文献   

17.
Cancer patients may exhibit normal or altered circadian rhythms in tumor and healthy tissues. Four rhythms known to reflect circadian clock function were studied in 18 patients with metastatic colorectal cancer and good performance status. Rest-activity was monitored by wrist actigraphy for 72 h before treatment, and its circadian rhythm was estimated by an autocorrelation coefficient at 24h and a dichotomy index that compared the activity level when in and out of bed. Blood samples (9-11 time points, 3-6 h apart) were drawn on day 1 and day 4 of the first course of chronochemotherapy (5-fluorouracil: 800 mg/m2/day; folinic acid: 300 mg/m2/day; oxaliplatin: 25 mg/m2/day). Group 24h rhythms were validated statistically for plasma concentrations of melatonin, 6-alpha-sulfatoxymelatonin, and cortisol and for lymphocyte counts. Significant individual 24h rhythms were displayed in melatonin by 15 patients, cortisol by seven patients, lymphocytes by five patients, and prominent circadian rhythms in activity were displayed by 10 patients; only one patient exhibited significant rhythms in all the variables. The results suggest the rhythms of melatonin, cortisol, lymphocytes, and rest/activity reflect different components of the circadian system, which may be altered differently during cancer processes. Such 24h rhythm alterations appeared to be independent of conventional clinical factors.  相似文献   

18.
Although studies have reported the effects of the menstrual cycle on melatonin rhythmicity, none has investigated the effects of menopause on the melatonin rhythm. The circadian rhythm in melatonin and its relationship to subjective alertness was investigated in pre- and postmenopausal women under constant routine conditions (controlled posture, dim lighting, calorie intake, temperature, and prolonged wakefulness). Eleven healthy pre-menopausal (42+/-4 yr) and 10 postmenopausal women (55+/-2 yr) participated in the study. Salivary melatonin samples and subjective measures of alertness and sleepiness were assessed hourly during the 22 h constant routine protocol. Postmenopausal women had a significantly earlier melatonin acrophase (1.1+/-0.5 h clock time in decimal h; mean+/-SEM, p<0.05) compared to the pre-menopausal women (2.3+/-0.3 h). There was no significant difference between melatonin onset and amplitude between the pre-menopausal and postmenopausal women. Self-rated alertness declined in both study groups as the length of sleep deprivation increased. Melatonin onset preceded the onset of self-rated sleepiness in both groups. The time interval between melatonin onset and the onset of sleepiness and alertness offset was significantly greater in the postmenopausal women compared to the pre-menopausal women. In conclusion, under controlled experimental conditions the timing of the melatonin rhythm was advanced in postmenopausal women altering its phase relationship to subjective alertness and sleepiness.  相似文献   

19.
There is mounting evidence for the involvement of the sleep-wake cycle and the circadian system in the pathogenesis of major depression. However, only a few studies so far focused on sleep and circadian rhythms under controlled experimental conditions. Thus, it remains unclear whether homeostatic sleep pressure or circadian rhythms, or both, are altered in depression. Here, the authors aimed at quantifying homeostatic and circadian sleep-wake regulatory mechanisms in young women suffering from major depressive disorder and healthy controls during a multiple nap paradigm under constant routine conditions. After an 8-h baseline night, 9 depressed women, 8 healthy young women, and 8 healthy older women underwent a 40-h multiple nap protocol (10 short sleep-wake cycles) followed by an 8-h recovery night. Polysomnographic recordings were done continuously, and subjective sleepiness was assessed. In order to measure circadian output, salivary melatonin samples were collected during scheduled wakefulness, and the circadian modulation of sleep spindles was analyzed with reference to the timing of melatonin secretion. Sleep parameters as well as non-rapid eye movement (NREM) sleep electroencephalographic (EEG) spectra were determined for collapsed left, central, and right frontal, central, parietal, and occipital derivations for the night and nap-sleep episodes in the frequency range .75-25 Hz. Young depressed women showed higher frontal EEG delta activity, as a marker of homeostatic sleep pressure, compared to healthy young and older women across both night sleep episodes together with significantly higher subjective sleepiness. Higher delta sleep EEG activity in the naps during the biological day were observed in young depressed women along with reduced nighttime melatonin secretion as compared to healthy young volunteers. The circadian modulation of sleep spindles between the biological night and day was virtually absent in healthy older women and partially impaired in young depressed women. These data provide strong evidence for higher homeostatic sleep pressure in young moderately depressed women, along with some indications for impairment of the strength of the endogenous circadian output signal involved in sleep-wake regulation. This finding may have important repercussions on the treatment of the illness as such that a selective suppression of EEG slow-wave activity could promote acute mood improvement.  相似文献   

20.
Although studies have reported the effects of the menstrual cycle on melatonin rhythmicity, none has investigated the effects of menopause on the melatonin rhythm. The circadian rhythm in melatonin and its relationship to subjective alertness was investigated in pre‐ and postmenopausal women under constant routine conditions (controlled posture, dim lighting, calorie intake, temperature, and prolonged wakefulness). Eleven healthy pre‐menopausal (42±4 yr) and 10 postmenopausal women (55±2 yr) participated in the study. Salivary melatonin samples and subjective measures of alertness and sleepiness were assessed hourly during the 22 h constant routine protocol. Postmenopausal women had a significantly earlier melatonin acrophase (1.1±0.5 h clock time in decimal h; mean±SEM, p<0.05) compared to the pre‐menopausal women (2.3±0.3 h). There was no significant difference between melatonin onset and amplitude between the pre‐menopausal and postmenopausal women. Self‐rated alertness declined in both study groups as the length of sleep deprivation increased. Melatonin onset preceded the onset of self‐rated sleepiness in both groups. The time interval between melatonin onset and the onset of sleepiness and alertness offset was significantly greater in the postmenopausal women compared to the pre‐menopausal women. In conclusion, under controlled experimental conditions the timing of the melatonin rhythm was advanced in postmenopausal women altering its phase relationship to subjective alertness and sleepiness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号