首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
To investigate the role of miR-27b in sheep skeletal muscle development, here we first cloned the sequence of sheep pre-miR-27b, then further investigated its expression pattern in sheep skeletal muscle in vivo, the relationship of miR-27b expression and sheep skeletal muscle satellite cell proliferation and differentiation in vitro, and then finally confirmed its target gene during this development process. MiR-27b sequence, especially its mature sequence, was conservative among different species. MiR-27b highly expressed in sheep skeletal muscle than other tissues. In skeletal muscle of Suffolk and Bashbay sheep, miR-27b was upregulated during foetal period and downregulated during postnatal period significantly (\(P{<}0.01\)), but it still kept a relatively higher expression level in skeletal muscle of postnatal Suffolk sheep than Bashbay. There is a potential target site of miR-27b on \(3^\prime \)-UTR of sheep myostatin (MSTN) mRNA, and the double luciferase reporter assay proved that miR-27b could successfully bind on this site. When sheep satellite cells were in the proliferation status, miR-27b was upregulated and MSTN was downregulated significantly (\(P{<}0.01\)). When miR-27b mimics was transfected into sheep satellite cells, the cell proliferation was promoted and the protein level of MSTN was significantly downregulated (\(P{<}0.01\)). Moreover, miR-27b regulated its target gene MSTN by translation repression at an early step, and followed by inducing mRNA degradation in sheep satellite cells. Based on these results, we confirm that miR-27b could promote sheep skeletal muscle satellite cell proliferation by targeting MSTN and suppressing its expression.  相似文献   

4.
Li  Ruiqiang  Zeng  Wu  Ma  Miao  Wei  Zixuan  Liu  Hongbo  Liu  Xiaofeng  Wang  Min  Shi  Xuan  Zeng  Jianhua  Yang  Linfang  Mo  Delin  Liu  Xiaohong  Chen  Yaosheng  He  Zuyong 《Transgenic research》2020,29(1):149-163

Myostatin (MSTN), a member of the transforming growth factor-β superfamily, is a negative regulator of muscle growth and development. Disruption of the MSTN gene in various mammalian species markedly promotes muscle growth. Previous studies have mainly focused on the disruption of the MSTN peptide coding region in pigs but not on the modification of the signal peptide region. In this study, the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9) system was used to successfully introduce two mutations (PVD20H and GP19del) in the MSTN signal peptide region of the indigenous Chinese pig breed, Liang Guang Small Spotted pig. Both mutations in signal peptide increased the muscle mass without inhibiting the production of mature MSTN peptide in the cells. Histological analysis revealed that the enhanced muscle mass in MSTN+/PVD20H pig was mainly due to an increase in the number of muscle fibers. The expression of MSTN in the longissimus dorsi muscle of MSTN+/PVD20H and MSTNKO/PVD20H pigs was significantly downregulated, whereas that of myogenic regulatory factors, including MyoD, Myogenin, and Myf-5, was significantly upregulated when compared to those in the longissimus dorsi muscle of wild-type pigs. Meanwhile, the mutations also activated the PI3K/Akt pathway. The results of this study indicated that precise editing of the MSTN signal peptide can enhance porcine muscle development without markedly affecting the expression of mature MSTN peptide, which could exert other beneficial biological functions in the edited pigs.

  相似文献   

5.
In addition to altering the phenotypes of gene-modified animals, transgenesis also has the potential to facilitate access to the various mechanisms underlying the development and functioning of specific phenotypes and genes, respectively. Myostatin (MSTN) is implicated in double-muscling when mutated in mammals, indicating that MSTN is a negative regulator of skeletal muscle formation. In order to elucidate the role of an MSTN equivalent in fish muscle formation, we created a transgenic medaka strain that expresses dominant-negative MSTN exclusively in skeletal muscle, d-rR-Tg(OlMA1C315YMSTNhrGFPIIFLAG). The transgenic fish exhibited increased production of skeletal muscle fibers at the adult stage (hyperplasia), although gross muscle mass was not altered. During embryogenesis, ectopic accumulation and misalignment of muscle fibers, possibly due to muscle-fiber hypertrophy, were observed in the transgenic medaka. Our findings suggest that MSTN function is required for regulating the appropriate growth of skeletal muscle in medaka. Unlike in mammals, MSTN loss-of-function failed to induce double-muscling in medaka, despite the highly conserved nature of MSTN function among taxa.  相似文献   

6.
Genetically engineered zinc-finger nucleases (ZFNs) are useful for marker-free gene targeting using a one-step approach. We used ZFNs to efficiently disrupt bovine myostatin (MSTN), which was identified previously as the gene responsible for double muscling in cattle. The mutation efficiency of bovine somatic cells was approximately 20%, and the biallelic mutation efficiency was 8.3%. To evaluate the function of the mutated MSTN locus before somatic cell nuclear transfer, MSTN mRNA and protein expression was examined in four mutant cell colonies. We generated marker-gene-free cloned cattle, in which the MSTN biallelic mutations consisted of a 6-bp deletion in one of the alleles and a 117-bp deletion and 9-bp insertion in the other allele, resulting in at least four distinct mRNA splice variants. In the MSTN mutant cattle, the total amount of MSTN protein with the C-terminal domain was reduced by approximately 50%, and hypertrophied muscle fibers of the quadriceps and the double-muscled phenotype appeared at one month of age. Our proof-of-concept study is the first to produce MSTN mutations in cattle, and may allow the development of genetically modified strains of double-muscled cattle.  相似文献   

7.
8.
microRNAs (miRNAs) are small non-coding RNAs that regulate cellular processes by fine-tuning the levels of their target mRNAs. However, the regulatory elements determining cellular miRNA levels are not well studied. Previously, we had described an altered miRNA signature in the skeletal muscle of db/db mice. Here, we sought to explore the role of epigenetic mechanisms in altering these miRNAs. We show that histone deacetylase (HDAC) protein levels and activity are upregulated in the skeletal muscle of diabetic mice. In C2C12 cells, HDAC inhibition using suberoylanilide hydroxamic acid (SAHA) altered the levels of 24 miRNAs: 15 were downregulated and 9 were upregulated. miR-449a, an intronic miRNA localized within the Cdc20b gene, while being downregulated in the skeletal muscle of diabetic mice, was the most highly upregulated during HDAC inhibition. The host gene, Cdc20b, was also significantly upregulated during HDAC inhibition. Bioinformatics analyses identified a common promoter for both Cdc20b and miR-449a that harbors significant histone acetylation marks, suggesting the possibility of regulation by histone acetylation-deacetylation. These observations suggest an inverse correlation between miR-449a levels and HDAC activity, in both SAHA-treated skeletal muscle cells and db/db mice skeletal muscle. Further, in SAHA-treated C2C12 cells, we observed augmented occupancy of acetylated histones on the Cdc20b/miR-449a promoter, which possibly promotes their upregulation. In vivo injection of SAHA to db/db mice significantly restored skeletal muscle miR-449a levels. Our results provide insights into the potential regulatory role of epigenetic histone acetylation of the miR-449a promoter that may regulate its expression in the diabetic skeletal muscle.  相似文献   

9.
10.
11.
肌肉生长抑制因子(MSTN)是动物肌肉生长发育的一个重要的负调控主效基因。它的表达受其他肌肉发育的调控因子如MyoD,FoxO等的调控。MSTN原蛋白经蛋白酶修饰变成的活性蛋白存在于血液循环系统中,它可以结合到细胞膜表面受体,激活细胞内信号通路,与其他因子的协同作用对肌肉发育和脂肪生成产生不同生理效应。本文将对MSTN基因及其蛋白的结构特点,表达调控因子,细胞内信号传导,及其对组织发育的影响进行探讨。  相似文献   

12.
Myostatin (MSTN) is a member of the transforming growth factor-β (TGF-β) superfamily that functions as a negative regulator of skeletal muscle development and growth in mammals. However, few reports are available about the structure and function of MSTN in teleost. Here, the MSTN gene was cloned from sea perch (Lateolabrax japonicus) by homology cloning and genomic walking. In the 4873-bp genomic sequence, three exons, two introns, and 5′ and 3′ flanking sequences were identified. The sea perch MSTN gene encodes a 374-amino acid protein, including a signal peptide, conserved cysteine residues, and a RXXR proteolytic cleavage domain. Expression analysis of MSTN revealed that MSTN was highly expressed in eyes, brain, and muscle; intermediately in intestine; and weakly in gill, spleen, liver, and heart. It was demonstrated that MSTN mRNA was highly expressed in embryonic stem cell line (LJES1), but it was undetectable in several types of somatic cell lines from sea perch, including fibroblast-like cell, epithelioid cell, and lymphocyte-like cell. Further, it was demonstrated that the 5′ flanking region of the MSTN gene can drive the expression of green fluorescent protein (GFP) reporter gene in LJES1 cells and transgenic zebrafish (Danio rerio). This is the first report on the expression profile of MSTN gene in various types of cell cultures.  相似文献   

13.
Craniofacial and trunk skeletal muscles are evolutionarily distinct and derive from cranial and somitic mesoderm, respectively. Different regulatory hierarchies act upstream of myogenic regulatory factors in cranial and somitic mesoderm, but the same core regulatory network – MyoD, Myf5 and Mrf4 – executes the myogenic differentiation program. Notch signaling controls self-renewal of myogenic progenitors as well as satellite cell homing during formation of trunk muscle, but its role in craniofacial muscles has been little investigated. We show here that the pool of myogenic progenitor cells in craniofacial muscle of Dll1LacZ/Ki mutant mice is depleted in early fetal development, which is accompanied by a major deficit in muscle growth. At the expense of progenitor cells, supernumerary differentiating myoblasts appear transiently and these express MyoD. The progenitor pool in craniofacial muscle of Dll1LacZ/Ki mutants is largely rescued by an additional mutation of MyoD. We conclude from this that Notch exerts its decisive role in craniofacial myogenesis by repression of MyoD. This function is similar to the one previously observed in trunk myogenesis, and is thus conserved in cranial and trunk muscle. However, in cranial mesoderm-derived progenitors, Notch signaling is not required for Pax7 expression and impinges little on the homing of satellite cells. Thus, Dll1 functions in satellite cell homing and Pax7 expression diverge in cranial- and somite-derived muscle.  相似文献   

14.
15.
16.
17.
The molecular mechanisms behind aging-related declines in muscle function are not well understood, but the growth factor myostatin (MSTN) appears to play an important role in this process. Additionally, epidemiological studies have identified a positive correlation between skeletal muscle mass and longevity. Given the role of myostatin in regulating muscle size, and the correlation between muscle mass and longevity, we tested the hypotheses that the deficiency of myostatin would protect oldest-old mice (28–30 months old) from an aging-related loss in muscle size and contractility, and would extend the maximum lifespan of mice. We found that MSTN+/− and MSTN−/− mice were protected from aging-related declines in muscle mass and contractility. While no differences were detected between MSTN+/+ and MSTN−/− mice, MSTN+/− mice had an approximately 15% increase in maximal lifespan. These results suggest that targeting myostatin may protect against aging-related changes in skeletal muscle and contribute to enhanced longevity.  相似文献   

18.
DNA methylation and histone deacetylation are two epigenetic mechanisms involved in the lack of estrogen receptor (ER) expression. Our previous studies demonstrated that mutant p53 along with repression complex proteins including DNMT1, HDAC1 and MeCP2 is associated with ER-negative promoter in MDA-MB-468 cells. To elucidate the molecular mechanism of estrogen receptor 1 (ESR1) gene silencing in these cells, we down-regulated DNMT1 and HDAC1 expression using siRNAs and studied the ability of DNMT1, HDAC1, MeCP2 and p53 in binding to ESR1 promoter CpG island. Our results showed that DNMT1 or HDAC1 down-regulation disassembled the repression complex proteins and mutant p53 from ER-negative promoter. The partial demethylation of ESR1 promoter and ER re-expression in down-regulated cells supports these findings. In vivo binding studies demonstrated that mutation of p53 protein in this cell line did not affect its binding capacity to DNMT1, HDAC1 and MeCP2 proteins. Our observations suggest that not only histone deacetylase activity of HDAC1 contributes to inactivation of methylated ESR1 gene but also HDAC1 presence on ESR1 promoter is important for assembly of DNMT1 in repression complex. In addition, our data revealed that mutant p53 protein binds to the promoter of ESR1 through direct interaction with HDAC1 and indirect interaction with DNMT1, MeCP2 proteins in the ER-negative MDA-MB-468 cells.  相似文献   

19.
We have previously shown that activation of Gαi2, an α subunit of the heterotrimeric G protein complex, induces skeletal muscle hypertrophy and myoblast differentiation. To determine whether Gαi2 is required for skeletal muscle growth or regeneration, Gαi2-null mice were analyzed. Gαi2 knockout mice display decreased lean body mass, reduced muscle size, and impaired skeletal muscle regeneration after cardiotoxin-induced injury. Short hairpin RNA (shRNA)-mediated knockdown of Gαi2 in satellite cells (SCs) leads to defective satellite cell proliferation, fusion, and differentiation ex vivo. The impaired differentiation is consistent with the observation that the myogenic regulatory factors MyoD and Myf5 are downregulated upon knockdown of Gαi2. Interestingly, the expression of microRNA 1 (miR-1), miR-27b, and miR-206, three microRNAs that have been shown to regulate SC proliferation and differentiation, is increased by a constitutively active mutant of Gαi2 [Gαi2(Q205L)] and counterregulated by Gαi2 knockdown. As for the mechanism, this study demonstrates that Gαi2(Q205L) regulates satellite cell differentiation into myotubes in a protein kinase C (PKC)- and histone deacetylase (HDAC)-dependent manner.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号