首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
2.
Epigenome-wide association studies of disease widely use DNA methylation measured in blood as a surrogate tissue. Cell proportions can vary between people and confound associations of exposure or outcome. An adequate reference panel for estimating cell proportions from adult whole blood for DNA methylation studies is available, but an analogous cord blood cell reference panel is not yet available. Cord blood has unique cell types and the epigenetic signatures of standard cell types may not be consistent throughout the life course. Using magnetic bead sorting, we isolated cord blood cell types (nucleated red blood cells, granulocytes, monocytes, natural killer cells, B cells, CD4+T cells, and CD8+T cells) from 17 live births at Johns Hopkins Hospital. We confirmed enrichment of the cell types using fluorescence assisted cell sorting and ran DNA from the separated cell types on the Illumina Infinium HumanMethylation450 BeadChip array. After filtering, the final analysis was on 104 samples at 429,794 probes. We compared cell type specific signatures in cord to each other and methylation at 49.2% of CpG sites on the array differed by cell type (F-test P < 10?8). Differences between nucleated red blood cells and the remainder of the cell types were most pronounced (36.9% of CpG sites at P < 10?8) and 99.5% of these sites were hypomethylated relative to the other cell types. We also compared the mean-centered sorted cord profiles to the available adult reference panel and observed high correlation between the overlapping cell types for granulocytes and monocytes (both r=0.74), and poor correlation for CD8+T cells and NK cells (both r=0.08). We further provide an algorithm for estimating cell proportions in cord blood using the newly developed cord reference panel, which estimates biologically plausible cell proportions in whole cord blood samples.  相似文献   

3.
李红东  洪贵妮  郭政 《遗传》2015,37(2):165-173
机体老化与癌症、神经退行性疾病等许多复杂疾病相关。目前,研究者已在外周全血中识别了大量的与老化相关的DNA甲基化标记,这些标记可能反映外周血白细胞在机体老化过程中发生的变化,也可能反映外周血中与年龄相关的细胞构成比例的变化。文章利用3组正常个体外周全血DNA甲基化谱,采用Spearman秩相关分析识别了与老化相关的CpG甲基化位点(age-related DNA methylation CpG sites, arCpGs)并评价了其可重复性;利用去卷积算法估计了各外周血样本中髓性和淋巴性细胞的比例并分析了其与年龄的相关性;比较了在外周全血、CD4+T细胞和CD14+单核细胞中识别的arCpGs的一致性。结果显示,在独立外周全血数据中识别的arCpGs具有显著的可重复性(超几何检验,P=1.65×10-11)。外周血髓性和淋巴性细胞的比例分别与年龄显著正、负相关(Spearman秩相关检验,P<0.05,r≤0.22),它们间DNA甲基化水平差异较大的CpG位点倾向于在外周全血中被识别为arCpGs。在CD4+T细胞中识别的arCpGs与在外周全血中识别的arCpGs显著交叠(超几何检验,P=6.14×10-12),且99.1%的交叠位点在CD4+T细胞及外周全血中的DNA甲基化水平与年龄的正、负相关性一致。尽管在CD14+单核细胞中识别的arCpGs与在外周全血中识别的arCpGs并不显著交叠,但是在交叠的51个arCpGs中,有90.1%的位点在CD14+单核细胞、外周全血以及CD4+T细胞中的DNA甲基化水平与年龄的正、负相关性一致,提示它们可能主要反映细胞间共同的改变。在外周全血中识别的arCpGs主要反映某些白细胞共同或特异的DNA甲基化改变,但是也有一部分反映外周血细胞比例构成的变化。  相似文献   

4.
《Epigenetics》2013,8(5):774-782
Prenatal arsenic exposure is associated with increased risk of disease in adulthood. This has led to considerable interest in arsenic’s ability to disrupt fetal programming. Many studies report that arsenic exposure alters DNA methylation in whole blood but these studies did not adjust for cell mixture. In this study, we examined the relationship between arsenic in maternal drinking water collected ≤ 16 weeks gestational age and DNA methylation in cord blood (n = 44) adjusting for leukocyte-tagged differentially methylated regions. DNA methylation was quantified using the Infinium HumanMethylation 450 BeadChip array. Recursively partitioned mixture modeling examined the relationship between arsenic and methylation at 473,844 CpG sites. Median arsenic concentration in water was 12 µg/L (range < 1- 510 µg/L). Log10 arsenic was associated with altered DNA methylation across the epigenome (P = 0.002); however, adjusting for leukocyte distributions attenuated this association (P = 0.013). We also observed that arsenic had a strong effect on the distribution of leukocytes in cord blood. In adjusted models, every log10 increase in maternal drinking water arsenic exposure was estimated to increase CD8+ T cells by 7.4% (P = 0.0004) and decrease in CD4+ T cells by 9.2% (P = 0.0002). These results show that prenatal exposure to arsenic had an exposure-dependent effect on specific T cell subpopulations in cord blood and altered DNA methylation in cord blood. Future research is needed to determine if these small changes in DNA methylation alter gene expression or are associated with adverse health effects.  相似文献   

5.
Prenatal arsenic exposure is associated with increased risk of disease in adulthood. This has led to considerable interest in arsenic’s ability to disrupt fetal programming. Many studies report that arsenic exposure alters DNA methylation in whole blood but these studies did not adjust for cell mixture. In this study, we examined the relationship between arsenic in maternal drinking water collected ≤ 16 weeks gestational age and DNA methylation in cord blood (n = 44) adjusting for leukocyte-tagged differentially methylated regions. DNA methylation was quantified using the Infinium HumanMethylation 450 BeadChip array. Recursively partitioned mixture modeling examined the relationship between arsenic and methylation at 473,844 CpG sites. Median arsenic concentration in water was 12 µg/L (range < 1- 510 µg/L). Log10 arsenic was associated with altered DNA methylation across the epigenome (P = 0.002); however, adjusting for leukocyte distributions attenuated this association (P = 0.013). We also observed that arsenic had a strong effect on the distribution of leukocytes in cord blood. In adjusted models, every log10 increase in maternal drinking water arsenic exposure was estimated to increase CD8+ T cells by 7.4% (P = 0.0004) and decrease in CD4+ T cells by 9.2% (P = 0.0002). These results show that prenatal exposure to arsenic had an exposure-dependent effect on specific T cell subpopulations in cord blood and altered DNA methylation in cord blood. Future research is needed to determine if these small changes in DNA methylation alter gene expression or are associated with adverse health effects.  相似文献   

6.
Methylation of cytosines at CpG sites is a common epigenetic DNA modification that can be measured by a large number of methods, now even in a genome-wide manner for hundreds of thousands of sites. The application of DNA methylation analysis is becoming widely popular in complex disorders, for example, to understand part of the "missing heritability". The DNA samples most readily available for methylation studies are derived from whole blood. However, blood consists of many functionally and developmentally distinct cell populations in varying proportions. We studied whether such variation might affect the interpretation of methylation studies based on whole blood DNA. We found in healthy male blood donors there is important variation in the methylation profiles of whole blood, mononuclear cells, granulocytes, and cells from seven selected purified lineages. CpG methylation between mononuclear cells and granulocytes differed for 22% of the 8252 probes covering the selected 343 genes implicated in immune-related disorders by genome-wide association studies, and at least one probe was differentially methylated for 85% of the genes, indicating that whole blood methylation results might be unintelligible. For individual genes, even if the overall methylation patterns might appear similar, a few CpG sites in the regulatory regions may have opposite methylation patterns (i.e., hypo/hyper) in the main blood cell types. We conclude that interpretation of whole blood methylation profiles should be performed with great caution and for any differences implicated in a disorder, the differences resulting from varying proportions of white blood cell types should be considered.  相似文献   

7.
8.
9.
10.
11.
12.
We have observed extensive interindividual differences in DNA methylation of 8590 CpG sites of 6229 genes in 153 human adult cerebellum samples, enriched in CpG island “shores” and at further distances from CpG islands. To search for genetic factors that regulate this variation, we performed a genome-wide association study (GWAS) mapping of methylation quantitative trait loci (mQTLs) for the 8590 testable CpG sites. cis association refers to correlation of methylation with SNPs within 1 Mb of a CpG site. 736 CpG sites showed phenotype-wide significant cis association with 2878 SNPs (after permutation correction for all tested markers and methylation phenotypes). In trans analysis of methylation, which tests for distant regulation effects, associations of 12 CpG sites and 38 SNPs remained significant after phenotype-wide correction. To examine the functional effects of mQTLs, we analyzed 85 genes that were with genetically regulated methylation we observed and for which we had quality gene expression data. Ten genes showed SNP-methylation-expression three-way associations—the same SNP simultaneously showed significant association with both DNA methylation and gene expression, while DNA methylation was significantly correlated with gene expression. Thus, we demonstrated that DNA methylation is frequently a heritable continuous quantitatively variable trait in human brain. Unlike allele-specific methylation, genetic polymorphisms mark both cis- and trans-regulatory genetic sites at measurable distances from their CpG sites. Some of the genetically regulated DNA methylation is directly connected with genetically regulated gene expression variation.  相似文献   

13.
14.
Most epigenome-wide association studies (EWAS) quantify DNA methylation (DNAm) in peripheral tissues such as whole blood to identify positions in the genome where variation is statistically associated with a trait or exposure. As whole blood comprises a mix of cell types, it is unclear whether trait-associated DNAm variation is specific to an individual cellular population. We collected three peripheral tissues (whole blood, buccal epithelial and nasal epithelial cells) from thirty individuals. Whole blood samples were subsequently processed using fluorescence-activated cell sorting (FACS) to purify five constituent cell-types (monocytes, granulocytes, CD4+ T cells, CD8+ T cells, and B cells). DNAm was profiled in all eight sample-types from each individual using the Illumina EPIC array. We identified significant differences in both the level and variability of DNAm between different sample types, and DNAm data-derived estimates of age and smoking were found to differ dramatically across sample types from the same individual. We found that for the majority of loci variation in DNAm in individual blood cell types was only weakly predictive of variance in DNAm measured in whole blood, although the proportion of variance explained was greater than that explained by either buccal or nasal epithelial samples. Covariation across sample types was much higher for DNAm sites influenced by genetic factors. Overall, we observe that DNAm variation in whole blood is additively influenced by a combination of the major blood cell types. For a subset of sites, however, variable DNAm detected in whole blood can be attributed to variation in a single blood cell type providing potential mechanistic insight about EWAS findings. Our results suggest that associations between whole blood DNAm and traits or exposures reflect differences in multiple cell types and our data will facilitate the interpretation of findings in epigenetic epidemiology.  相似文献   

15.

Background

Allergic inflammation is commonly observed in a number of conditions that are associated with atopy including asthma, eczema and rhinitis. However, the genetic, environmental or epigenetic factors involved in these conditions are likely to be different. Epigenetic modifications, such as DNA methylation, can be influenced by the environment and result in changes to gene expression.

Objectives

To characterize the DNA methylation pattern of airway epithelial cells (AECs) compared to peripheral blood mononuclear cells (PBMCs) and to discern differences in methylation within each cell type amongst healthy, atopic and asthmatic subjects.

Methods

PBMCs and AECs from bronchial brushings were obtained from children undergoing elective surgery for non-respiratory conditions. The children were categorized as atopic, atopic asthmatic, non-atopic asthmatic or healthy controls. Extracted DNA was bisulfite treated and 1505 CpG loci across 807 genes were analyzed using the Illumina GoldenGate Methylation Cancer Panel I. Gene expression for a subset of genes was performed using RT-PCR.

Results

We demonstrate a signature set of CpG sites that are differentially methylated in AECs as compared to PBMCs regardless of disease phenotype. Of these, 13 CpG sites were specific to healthy controls, 8 sites were only found in atopics, and 6 CpGs were unique to asthmatics. We found no differences in the methylation status of PBMCs between disease phenotypes. In AECs derived from asthmatics compared to atopics, 8 differentially methylated sites were identified including CpGs in STAT5A and CRIP1. We demonstrate STAT5A gene expression is decreased whereas CRIP1 gene expression is elevated in the AECs from asthmatic compared to both healthy and atopic subjects.

Discussion

We characterized a cell specific DNA methylation signature for AECs compared to PBMCs regardless of asthmatic or atopic status. Our data highlight the importance of understanding DNA methylation in the epithelium when studying the epithelial contribution to asthma.  相似文献   

16.
Epigenome-wide association studies of prenatal exposure to different environmental factors are becoming increasingly common. These studies are usually performed in umbilical cord blood. Since blood comprises multiple cell types with specific DNA methylation patterns, confounding caused by cellular heterogeneity is a major concern. This can be adjusted for using reference data consisting of DNA methylation signatures in cell types isolated from blood. However, the most commonly used reference data set is based on blood samples from adult males and is not representative of the cell type composition in neonatal cord blood. The aim of this study was to generate a reference data set from cord blood to enable correct adjustment of the cell type composition in samples collected at birth. The purity of the isolated cell types was very high for all samples (>97.1%), and clustering analyses showed distinct grouping of the cell types according to hematopoietic lineage. We explored whether this cord blood and the adult peripheral blood reference data sets impact the estimation of cell type composition in cord blood samples from an independent birth cohort (MoBa, n = 1092). This revealed significant differences for all cell types. Importantly, comparison of the cell type estimates against matched cell counts both in the cord blood reference samples (n = 11) and in another independent birth cohort (Generation R, n = 195), demonstrated moderate to high correlation of the data. This is the first cord blood reference data set with a comprehensive examination of the downstream application of the data through validation of estimated cell types against matched cell counts.  相似文献   

17.
Vertically transmitted HIV disease constitutes a significant problem in pediatrics. In order to characterize some of the possible host factors involved in HIV replication in fetuses and newborns, we surveyed the HIV-1 LTR binding factors present in nuclear extracts from cord blood mononuclear cells. A series of electrophoretic mobility shift assays (EMSAs) showed that protein extracts from cord blood interacted with several regions of the HIV LTR. The most prominent binding activities involved the NF-kB sites, but other regions of the LTR also showed factor binding with the cord blood extracts. Some of these cord blood extract binding activities displayed qualitative differences when compared to adult peripheral blood mononuclear cell extracts in EMSA and UV cross-linking studies. Transient transfection experiments indicated that the NF-kB and Sp1 sequences were important for wild type levels of expression in cord blood cells, but that additional sequences 5 to the NF-kB sites also contributed activity. Thus, factors that interact with many of the well-known HIV LTR regulatory sites are present in cord blood cells. However, certain qualitative differences distinguished cord blood and adult peripheral blood binding activities and these may contribute to pathogenesis of HIV infection in neonates.  相似文献   

18.

Background

Differential expression of perforin (PRF1), a gene with a pivotal role in immune surveillance, can be attributed to differential methylation of CpG sites in its promoter region. A reproducible method for quantitative and CpG site-specific determination of perforin methylation is required for molecular epidemiologic studies of chronic diseases with immune dysfunction.

Findings

We developed a pyrosequencing based method to quantify site-specific methylation levels in 32 out of 34 CpG sites in the PRF1 promoter, and also compared methylation pattern in DNAs extracted from whole blood drawn into PAXgene blood DNA tubes (whole blood DNA) or DNA extracted from peripheral blood mononuclear cells (PBMC DNA) from the same normal subjects. Sodium bisulfite treatment of DNA and touchdown PCR were highly reproducible (coefficient of variation 1.63 to 2.18%) to preserve methylation information. Application of optimized pyrosequencing protocol to whole blood DNA revealed that methylation level varied along the promoter in normal subjects with extremely high methylation (mean 86%; range 82–92%) in the distal enhancer region (CpG sites 1–10), a variable methylation (range 49%–83%) in the methylation sensitive region (CpG sites 11–17), and a progressively declining methylation level (range 12%–80%) in the proximal promoter region (CpG sites 18–32) of PRF1. This pattern of methylation remained the same between whole blood and PBMC DNAs, but the absolute values of methylation in 30 out of 32 CpG sites differed significantly, with higher values for all CpG sites in the whole blood DNA.

Conclusion

This reproducible, site-specific and quantitative method for methylation determination of PRF1 based on pyrosequencing without cloning is well suited for large-scale molecular epidemiologic studies of diseases with immune dysfunction. PBMC DNA may be better suited than whole blood DNA for examining methylation levels in genes associated with immune function.  相似文献   

19.
Aberrant DNA methylation in the blood of patients with major depressive disorder (MDD) has been reported in several previous studies. However, no comprehensive studies using medication-free subjects with MDD have been conducted. Furthermore, the majority of these previous studies has been limited to the analysis of the CpG sites in CpG islands (CGIs) in the gene promoter regions. The main aim of the present study is to identify DNA methylation markers that distinguish patients with MDD from non-psychiatric controls. Genome-wide DNA methylation profiling of peripheral leukocytes was conducted in two set of samples, a discovery set (20 medication-free patients with MDD and 19 controls) and a replication set (12 medication-free patients with MDD and 12 controls), using Infinium HumanMethylation450 BeadChips. Significant diagnostic differences in DNA methylation were observed at 363 CpG sites in the discovery set. All of these loci demonstrated lower DNA methylation in patients with MDD than in the controls, and most of them (85.7%) were located in the CGIs in the gene promoter regions. We were able to distinguish patients with MDD from the control subjects with high accuracy in the discriminant analysis using the top DNA methylation markers. We also validated these selected DNA methylation markers in the replication set. Our results indicate that multiplex DNA methylation markers may be useful for distinguishing patients with MDD from non-psychiatric controls.  相似文献   

20.

Background

Epigenome-wide association studies of human disease and other quantitative traits are becoming increasingly common. A series of papers reporting age-related changes in DNA methylation profiles in peripheral blood have already been published. However, blood is a heterogeneous collection of different cell types, each with a very different DNA methylation profile.

Results

Using a statistical method that permits estimating the relative proportion of cell types from DNA methylation profiles, we examine data from five previously published studies, and find strong evidence of cell composition change across age in blood. We also demonstrate that, in these studies, cellular composition explains much of the observed variability in DNA methylation. Furthermore, we find high levels of confounding between age-related variability and cellular composition at the CpG level.

Conclusions

Our findings underscore the importance of considering cell composition variability in epigenetic studies based on whole blood and other heterogeneous tissue sources. We also provide software for estimating and exploring this composition confounding for the Illumina 450k microarray.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号