首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Spontaneous preterm birth (PTB, <37 weeks gestation) is a major public health concern, and children born preterm have a higher risk of morbidity and mortality throughout their lives. Recent studies suggest that fetal DNA methylation of several genes varies across a range of gestational ages (GA), but it is not yet clear if fetal epigenetic changes associate with PTB. The objective of this study is to interrogate methylation patterns across the genome in fetal leukocyte DNA from African Americans with early PTB (241/7–340/7 weeks; N = 22) or term births (390/7–406/7weeks; N = 28) and to evaluate the association of each CpG site with PTB and GA. DNA methylation was assessed across the genome with the HumanMethylation450 BeadChip. For each individual sample and CpG site, the proportion of DNA methylation was estimated. The associations between methylation and PTB or GA were evaluated by fitting a separate linear model for each CpG site, adjusting for relevant covariates. Overall, 29 CpG sites associated with PTB (FDR<.05; 5.7×10−10<p<2.9×10−6) independent of GA. Also, 9637 sites associated with GA (FDR<.05; 9.5×10−16<p<1.0×10−3), with 61.8% decreasing in methylation with shorter GA. GA-associated CpG sites were depleted in the CpG islands of their respective genes (p<2.2×10−16). Gene set enrichment analysis (GSEA) supported enrichment of GA-associated CpG sites in genes that play a role in embryonic development as well as the extracellular matrix. Additionally, this study replicated the association of several CpG sites associated with gestational age in other studies (CRHBP, PIK3CD and AVP). Dramatic differences in fetal DNA methylation are evident in fetuses born preterm versus at term, and the patterns established at birth may provide insight into the long-term consequences associated with PTB.  相似文献   

4.
5.
There is a growing body of evidence that epigenetic alterations are involved in the pathological mechanisms of many chronic disorders linked to fetal programming. Angiotensin-converting enzyme (ACE) appears as one candidate gene that brings new insights into the epigenetic control and later development of diseases. In this view, we have postulated that epigenetic modifications in the ACE gene might show different interactions between birth weight (BW), blood pressure levels, plasma ACE activity and ACE I/D polymorphism. To explore this hypothesis, we performed a cross-sectional study to evaluate the DNA methylation of 3 CpG sites using pyrosequencing within the ACE gene promoter of peripheral blood leukocytes from 45 LBW children compared with 70 NBW children. Our results have revealed that LBW children have lower methylation levels (P<0.001) in parallel with a higher ACE activity (P = 0.001). Adjusting for prematurity, gender, age, body mass index, and family history of cardiovascular disease did not alter these findings. We have also performed analyses of individual CpG sites. The frequency of DNA methylation was significantly different at two CpG sites (site 1: nucleotide position +555; and site 3: nucleotide position +563). In addition, we have found a significant inverse correlation between degree of DNA methylation and both ACE activity (P<0.001) and systolic blood pressure levels (P<0.001). We also observed that the methylation level was significantly lower in LBW children who are carriers of the DD genotype compared to NBW children with DD genotype (P<0.024). In conclusion, we are able to demonstrate that the hypomethylation in the 3 CpG sites of ACE gene promoter is associated with LBW in 6 to 12 year-old children. The magnitude of these epigenetic changes appears to be clinically important, which is supported by the observation that discrete changes in DNA methylation can affect systolic blood pressure and ACE protein activity levels.  相似文献   

6.
7.
Methylation of a CpG island is a faithful marker of silencing of its associated gene. Different approaches report the methylation status of a CpG island based on the determination of one or a few CpG sites by assuming the homogeneity of methylation along the element. This strategy is frequently applied in both locus-specific and genome-wide studies, but often without a validation of the representativeness of the interrogated CpG site compared with the whole element. We have evaluated the predictive informativeness of the HpaII sites located in CpG islands using data from high-resolution methylome maps, which offer the possibility to assess the methylation homogeneity of each CpG island and to determine the reporter accuracy of single sites as surrogate markers. An excellent correlation was observed between the HpaII and CpG island methylation levels (r > 0.93). At the qualitative level, the predictive sensitivity of HpaII was >95% with >92% specificity for methylated CpG islands and >90% sensitivity with >95% specificity for unmethylated CpG islands. This analysis provides a global validation framework for strategies based on the use of the methylation-sensitive HpaII restriction enzyme.  相似文献   

8.
9.
10.
Trihalomethanes (THM) are undesired disinfection byproducts (DBPs) formed during water treatment. Mice exposed to DBPs showed global DNA hypomethylation and c-myc and c-jun gene-specific hypomethylation, while evidence of epigenetic effects in humans is scarce. We explored the association between lifetime THM exposure and DNA methylation through an epigenome-wide association study. We selected 138 population-based controls from a case-control study of colorectal cancer conducted in Barcelona, Spain, exposed to average lifetime THM levels ≤85 μg/L vs. >85 μg/L (N = 68 and N = 70, respectively). Mean age of participants was 70 years, and 54% were male. Average lifetime THM level in the exposure groups was 64 and 130 µg/L, respectively. DNA was extracted from whole blood and was bisulphite converted to measure DNA methylation levels using the Illumina HumanMethylation450 BeadChip. Data preprocessing was performed using RnBeads. Methylation was compared between exposure groups using empirical Bayes moderated linear regression for CpG sites and Gaussian kernel for CpG regions. ConsensusPathDB was used for gene set enrichment. Statistically significant differences in methylation between exposure groups was found in 140 CpG sites and 30 gene-related regions, after false discovery rate <0.05 and adjustment for age, sex, methylation first principal component, and blood cell proportion. The annotated genes were localized to several cancer pathways. Among them, 29 CpGs had methylation levels associated with THM levels (|Δβ|≥0.05) located in 11 genes associated with cancer in other studies. Our results suggest that THM exposure may affect DNA methylation in genes related to tumors, including colorectal and bladder cancers. Future confirmation studies are required.  相似文献   

11.
African Americans are at increased risk for spontaneous preterm birth (PTB). Though PTB is heritable, genetic studies have not identified variants that account for its intergenerational risk, prompting the hypothesis that epigenetic factors may also contribute. The objective of this study was to evaluate DNA methylation from maternal leukocytes to identify patterns specific to PTB and its intergenerational risk. DNA from peripheral leukocytes from African American women that delivered preterm (24–34 weeks; N = 16) or at term (39–41 weeks; N = 24) was assessed for DNA methylation using the HumanMethylation450 BeadChip. In maternal samples, 17,829 CpG sites associated with PTB, but no CpG site remained associated after correction for multiple comparisons. Examination of paired maternal-fetal samples identified 5,171 CpG sites in which methylation of maternal samples correlated with methylation of her respective fetus (FDR < 0.05). These correlated sites were enriched for association with PTB in maternal leukocytes. The majority of correlated CpG sites could be attributed to one or more genetic variants. They were also significantly more likely to be in genes involved in metabolic, cardiovascular, and immune pathways, suggesting a role for genetic and environmental contributions to PTB risk and chronic disease. The results of this study may provide insight into the factors underlying intergenerational risk for PTB and its consequences.  相似文献   

12.
Prenatal exposure both to maternal psychiatric illness and psychiatric medication has been linked with adverse child outcomes that affect physiological, emotional and psychiatric development. Studies suggest that epigenetic mechanisms, such as DNA methylation, may facilitate these effects. In this report, we explore the association between maternal psychiatric illness and treatment during pregnancy and neonatal DNA methylation patterns in a prospectively-characterized clinical cohort of 201 dyads. Associations between the percent of umbilical cord blood DNA methylated at 27,578 CpG sites and maternal psychiatric diagnosis, symptoms and antidepressant use were evaluated by fitting a separate linear mixed effects model for each CpG site. There were no significant changes in neonatal DNA methylation attributable to maternal psychiatric diagnosis or depressive symptoms during pregnancy. Exposure to an antidepressant medication was associated with differential methylation of CpG sites in TNFRSF21 and CHRNA2 (false discovery rate < 0.05), but the average difference in methylation for both CpG sites was less than 3% between each group. The results were not specific to type of antidepressant or duration of the exposure. This study suggests that there are no large effects of maternal psychiatric illness, depressive symptoms or prenatal exposure to antidepressants on neonatal DNA methylation. Delineation of the influence of maternal psychiatric illness and pharmacological exposures on the developing fetuses has critical implications for clinical care during pregnancy.  相似文献   

13.
DNA methylation can be affected by systemic exposures, such as cigarette smoking and genetic sequence variation; however, the relative impact of each on the epigenome is unknown. We aimed to assess if cigarette smoking and genetic variation are associated with overlapping or distinct sets of DNA methylation marks and pathways. We selected 85 Caucasian current and former smokers with genome-wide single nucleotide polymorphism (SNP) genotyping available from the COPDGene study.  Genome-wide methylation was obtained on DNA from whole blood using the Illumina HumanMethylation27 platform. To determine the impact of local sequence variation on DNA methylation (mQTL), we examined the association between methylation and SNPs within 50 kb of each CpG site.  To examine the impact of cigarette smoking on DNA methylation, we examined the differences in methylation by current cigarette smoking status. We detected 770 CpG sites annotated to 708 genes associated at an FDR < 0.05 in the cis-mQTL analysis and 1,287 CpG sites annotated to 1,242 genes, which were nominally associated in the smoking-CpG association analysis (Punadjusted < 0.05). Forty-three CpG sites annotated to 40 genes were associated with both SNP variation and current smoking; this overlap was not greater than that expected by chance. Our results suggest that cigarette smoking and genetic variants impact distinct sets of DNA methylation marks, the further elucidation of which may partially explain the variable susceptibility to the health effects of cigarette smoking. Ascertaining how genetic variation and systemic exposures differentially impact the human epigenome has relevance for both biomarker identification and therapeutic target development for smoking-related diseases.  相似文献   

14.
Food allergy is mediated by a combination of genetic and environmental risk factors, potentially mediated by epigenetic mechanisms. CD4+ T-cells are key drivers of the allergic response, and may therefore harbor epigenetic variation in association with the disease phenotype. Here we retrospectively examined genome-wide DNA methylation profiles (~450 000 CpGs) from CD4+ T-cells on a birth cohort of 12 children with IgE-mediated food allergy diagnosed at 12-months, and 12 non-allergic controls. DNA samples were available at two time points, birth and 12-months. Case:control comparisons of CD4+ methylation profiles identified 179 differentially methylated probes (DMP) at 12-months and 136 DMP at birth (FDR-adjusted P value < 0.05, delta β > 0.1). Approximately 30% of DMPs were coincident with previously annotated SNPs. A total of 96 allergy-associated non-SNP DMPs were present at birth when individuals were initially disease-free, potentially implicating these loci in the causal pathway. Pathway analysis of differentially methylated genes identified several MAP kinase signaling molecules. Mass spectrometry was used to validate 15 CpG sites at 3 candidate genes. Combined analysis of differential methylation with gene expression profiles revealed gene expression differences at some but not all allergy associated differentially methylated genes. Thus, dysregulation of DNA methylation at MAPK signaling-associated genes during early CD4+ T-cell development may contribute to suboptimal T-lymphocyte responses in early childhood associated with the development of food allergy.  相似文献   

15.
DNA methyltransferase 1 (Dnmt1) has a central role in copying the pattern of DNA methylation after replication which is one manifestation of epigenetic inheritance. With oligonculeotide substrates we show that mouse Dnmt1 has a 30- to 40-fold preference for hemimethylated DNA that is almost lost after addition of fully methylated oligonucleotides. Using long hemimethylated DNA substrates that carry defined methylation patterns and bisulfite analysis of the methylation reaction products, we show a 15-fold preference for hemimethylated CG sites. Dnmt1 moves along the DNA in a random walk methylating hemimethylated substrates with high processivity (>50 sites are visited on average which corresponds to linear diffusion over 6000 bp). The frequency of skipping sites is very low (<0.3%) and there is no detectable flanking sequence preference. CGCTC sites tend to terminate the processive methylation of DNA by Dnmt1. Unmethylated DNA is modified non-processively with a preference for methylation at CCGG sites. We simulate the propagation of methylation patterns using a stochastic model with the specificity of Dnmt1 observed here and conclude that either methylation of several sites is required to propagate the methylation information over several cellular generations or additional epigenetic information must be used.  相似文献   

16.
17.
In order to investigate whether DNA methylation marks could contribute to the incomplete penetrance of the FV Leiden mutation, a major genetic risk factor for venous thrombosis (VT), we measured genome-wide DNA methylation levels in peripheral blood samples of 98 VT patients carrying the mutation and 251 VT patients without the mutation using the dedicated Illumina HumanMethylation450 array. The genome-wide analysis of 388,120 CpG probes identified three sites mapping to the SLC19A2 locus whose DNA methylation levels differed significantly (p<3 10−8) between carriers and non-carriers. The three sites replicated (p<2 10−7) in an independent sample of 214 individuals from five large families ascertained on VT and FV Leiden mutation among which 53 were carriers and 161 were non-carriers of the mutation. In both studies, these three CpG sites were also associated (2.33 10−11<p<3.02 10−4) with biomarkers of the Protein C pathway known to be influenced by the FV Leiden mutation. A comprehensive linkage disequilibrium (LD) analysis of the whole locus revealed that the original associations were due to LD between the FV Leiden mutation and a block of single nucleotide polymorphisms (SNP) located in SLC19A2. After adjusting for this block of SNPs, the FV Leiden mutation was no longer associated with any CpG site (p>0.05). In conclusion, our work clearly illustrates some promises and pitfalls of DNA methylation investigations on peripheral blood DNA in large epidemiological cohorts. DNA methylation levels at SLC19A2 are influenced by SNPs in LD with FV Leiden, but these DNA methylation marks do not explain the incomplete penetrance of the FV Leiden mutation.  相似文献   

18.
The DNTM3A and DNMT3B de novo DNA methyltransferases (DNMTs) are responsible for setting genomic DNA methylation patterns, a key layer of epigenetic information. Here, using an in vivo episomal methylation assay and extensive bisulfite methylation sequencing, we show that human DNMT3A and DNMT3B possess significant and distinct flanking sequence preferences for target CpG sites. Selection for high or low efficiency sites is mediated by the base composition at the −2 and +2 positions flanking the CpG site for DNMT3A, and at the −1 and +1 positions for DNMT3B. This intrinsic preference reproducibly leads to the formation of specific de novo methylation patterns characterized by up to 34-fold variations in the efficiency of DNA methylation at individual sites. Furthermore, analysis of the distribution of signature methylation hotspot and coldspot motifs suggests that DNMT flanking sequence preference has contributed to shaping the composition of CpG islands in the human genome. Our results also show that the DNMT3L stimulatory factor modulates the formation of de novo methylation patterns in two ways. First, DNMT3L selectively focuses the DNA methylation machinery on properly chromatinized DNA templates. Second, DNMT3L attenuates the impact of the intrinsic DNMT flanking sequence preference by providing a much greater boost to the methylation of poorly methylated sites, thus promoting the formation of broader and more uniform methylation patterns. This study offers insights into the manner by which DNA methylation patterns are deposited and reveals a new level of interplay between members of the de novo DNMT family.  相似文献   

19.
Differential DNA methylation is an essential epigenetic signal for gene regulation, development, and disease processes. We mapped DNA methylation patterns of 190 gene promoter regions on chromosome 21 using bisulfite conversion and subclone sequencing in five human cell types. A total of 28,626 subclones were sequenced at high accuracy using (long-read) Sanger sequencing resulting in the measurement of the DNA methylation state of 580427 CpG sites. Our results show that average DNA methylation levels are distributed bimodally with enrichment of highly methylated and unmethylated sequences, both for amplicons and individual subclones, which represent single alleles from individual cells. Within CpG-rich sequences, DNA methylation was found to be anti-correlated with CpG dinucleotide density and GC content, and methylated CpGs are more likely to be flanked by AT-rich sequences. We observed over-representation of CpG sites in distances of 9, 18, and 27 bps in highly methylated amplicons. However, DNA sequence alone is not sufficient to predict an amplicon's DNA methylation status, since 43% of all amplicons are differentially methylated between the cell types studied here. DNA methylation in promoter regions is strongly correlated with the absence of gene expression and low levels of activating epigenetic marks like H3K4 methylation and H3K9 and K14 acetylation. Utilizing the single base pair and single allele resolution of our data, we found that i) amplicons from different parts of a CpG island frequently differ in their DNA methylation level, ii) methylation levels of individual cells in one tissue are very similar, and iii) methylation patterns follow a relaxed site-specific distribution. Furthermore, iv) we identified three cases of allele-specific DNA methylation on chromosome 21. Our data shed new light on the nature of methylation patterns in human cells, the sequence dependence of DNA methylation, and its function as epigenetic signal in gene regulation. Further, we illustrate genotype–epigenotype interactions by showing novel examples of allele-specific methylation.  相似文献   

20.
Pancreatic adenocarcinoma (PaC) is one of most difficult tumors to treat. Much of this is attributed to the late diagnosis. To identify biomarkers for early detection, we examined DNA methylation differences in leukocyte DNA between PaC cases and controls in a two-phase study. In phase I, we measured methylation levels at 1,505 CpG sites in treatment-naïve leukocyte DNA from 132 never-smoker PaC patients and 60 never-smoker healthy controls. We found significant differences in 110 CpG sites (false discovery rate <0.05). In phase II, we tested and validated 88 of 96 phase I selected CpG sites in 240 PaC cases and 240 matched controls (p≤0.05). Using penalized logistic regression, we built a prediction model consisting of five CpG sites (IL10_P348, LCN2_P86, ZAP70_P220, AIM2_P624, TAL1_P817) that discriminated PaC patients from controls (C-statistic = 0.85 in phase I; 0.76 in phase II). Interestingly, one CpG site (LCN2_P86) alone could discriminate resectable patients from controls (C-statistic  = 0.78 in phase I; 0.74 in phase II). We also performed methylation quantitative trait loci (methQTL) analysis and identified three CpG sites (AGXT_P180_F, ALOX12_E85_R, JAK3_P1075_R) where the methylation levels were significantly associated with single nucleotide polymorphisms (SNPs) (false discovery rate <0.05). Our results demonstrate that epigenetic variation in easily obtainable leukocyte DNA, manifested by reproducible methylation differences, may be used to detect PaC patients. The methylation differences at certain CpG sites are partially attributable to genetic variation. This study strongly supports future epigenome-wide association study using leukocyte DNA for biomarker discovery in human diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号