首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Aims

Regular exercise as an effective non-pharmacological antihypertensive therapy is beneficial for prevention and control of hypertension, but the central mechanisms are unclear. In this study, we hypothesized that chronic exercise training (ExT) delays the progression of hypertension and attenuates cardiac hypertrophy by up-regulating anti-inflammatory cytokines, reducing pro-inflammatory cytokines (PICs) and restoring the neurotransmitters balance in the hypothalamic paraventricular nucleus (PVN) in young spontaneously hypertensive rats (SHR). In addition, we also investigated the involvement of nuclear factor-κB (NF-κB) p65 and NAD(P)H oxidase in exercise-induced effects.

Methods and results

Moderate-intensity ExT was administrated to young normotensive Wistar-Kyoto (WKY) and SHR rats for 16 weeks. SHR rats had a significant increase in mean arterial pressure and cardiac hypertrophy. SHR rats also had higher levels of glutamate, norepinephrine (NE), phosphorylated IKKβ, NF-κB p65 activity, NAD(P)H oxidase subunit gp91phox, PICs and the monocyte chemokine protein-1 (MCP-1), and lower levels of gamma-aminobutyric acid (GABA) and interleukin-10 (IL-10) in the PVN. These SHR rats also exhibited higher renal sympathetic nerve activity (RSNA), and higher plasma levels of PICs, and lower plasma IL-10. However, ExT ameliorates all these changes in SHR rats.

Conclusion

These findings suggest that there are the imbalances between excitatory and inhibitory neurotransmitters and between pro- and anti-inflammatory cytokines in the PVN of SHR rats, which at least partly contributing to sympathoexcitation, hypertension and cardiac hypertrophy; chronic exercise training attenuates hypertension and cardiac hypertrophy by restoring the balances between excitatory and inhibitory neurotransmitters and between pro- and anti-inflammatory cytokines in the PVN; NF-κB and oxidative stress in the PVN may be involved in these exercise-induced effects.  相似文献   

2.

Background

Excessive sympathetic activity contributes to the pathogenesis and progression of hypertension. Enhanced cardiac sympathetic afferent reflex (CSAR) is involved in sympathetic activation. This study was designed to determine the roles of angiotensin (Ang)-(1–7) in paraventricular nucleus (PVN) in modulating sympathetic activity and CSAR and its signal pathway in renovascular hypertension.

Methodology/Principal Findings

Renovascular hypertension was induced with two-kidney, one-clip method. Renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) were recorded in sinoaortic-denervated and cervical-vagotomized rats with anesthesia. CSAR was evaluated with the RSNA and MAP responses to epicardial application of capsaicin. PVN microinjection of Ang-(1–7) and cAMP analogue db-cAMP caused greater increases in RSNA and MAP, and enhancement in CSAR in hypertensive rats than in sham-operated rats, while Mas receptor antagonist A-779 produced opposite effects. There was no significant difference in the angiotensin-converting enzyme 2 (ACE2) activity and Ang-(1–7) level in the PVN between sham-operated rats and hypertensive rats, but the Mas receptor protein expression in the PVN was increased in hypertensive rats. The effects of Ang-(1–7) were abolished by A-779, adenylyl cyclase inhibitor SQ22536 or protein kinase A (PKA) inhibitor Rp-cAMP. SQ22536 or Rp-cAMP reduced RSNA and MAP in hypertensive rats, and attenuated the CSAR in both sham-operated and hypertensive rats.

Conclusions

Ang-(1–7) in the PVN increases RSNA and MAP and enhances the CSAR, which is mediated by Mas receptors. Endogenous Ang-(1–7) and Mas receptors contribute to the enhanced sympathetic outflow and CSAR in renovascular hypertension. A cAMP-PKA pathway is involved in the effects of Ang-(1–7) in the PVN.  相似文献   

3.

[Purpose]

The purpose of this study was to identify the effect of detraining on motor unit potential area (SMUP), muscular function and physical performance, according to CNTF gene polymorphism.

[Methods]

For this study, GG (normal homozygote, n = 8) group and GA + AA (mutation heterozygote and homozygote, n = 10) group were divided by CNTF gene polymorphism and both groups were performed detraining for 4 weeks. The data was analyzed by two-way repeated measures ANOVA for verifying the differences between two groups and interaction using SPSS (ver. 20.0) statistical program.

[Results]

The results were as follows. First, changes in body composition were measured but there was no significant interaction effect between time and group. Seconds, changes in SMUP were measured by SEMG. Interaction effect between time and group was found lateral vastus during isokinetic exercise of 180°/sec (p < .05). Third, changes in isokinetic muscle strength of 60°/sec and 180°/sec were measured but there was no significant interaction effect. Fourth, significant statistical differences were not showed changes of sports performance after detraining.

[Conclusion]

In conclusion, there were no significantly differences between GG and GA + AA group after detraining, therefore, further study will be considered a matter in various its interventions such as serum levels of CNTF and changes in receptors and muscle fiber types.  相似文献   

4.

Background

Physical exercise has been shown to increase adult neurogenesis in the dentate gyrus and enhances synaptic plasticity. The antiapoptotic kinase, Akt has also been shown to be phosphorylated following voluntary exercise; however, it remains unknown whether the PI3K-Akt signaling pathway is involved in exercise-induced neurogenesis and the associated facilitation of synaptic plasticity in the dentate gyrus.

Methodology/Principal Findings

To gain insight into the potential role of this signaling pathway in exercise-induced neurogenesis and LTP in the dentate gyrus rats were infused with the PI3K inhibitor, LY294002 or vehicle control solution (icv) via osmotic minipumps and exercised in a running wheel for 10 days. Newborn cells in the dentate gyrus were date-labelled with BrdU on the last 3 days of exercise. Then, they were either returned to the home cage for 2 weeks to assess exercise-induced LTP and neurogenesis in the dentate gyrus, or were killed on the last day of exercise to assess proliferation and activation of the PI3K-Akt cascade using western blotting.

Conclusions/Significance

Exercise increases cell proliferation and promotes survival of adult-born neurons in the dentate gyrus. Immediately after exercise, we found that Akt and three downstream targets, BAD, GSK3β and FOXO1 were activated. LY294002 blocked exercise-induced phosphorylation of Akt and downstream target proteins. This had no effect on exercise-induced cell proliferation, but it abolished most of the beneficial effect of exercise on the survival of newly generated dentate gyrus neurons and prevented exercise-induced increase in dentate gyrus LTP. These results suggest that activation of the PI3 kinase-Akt signaling pathway plays a significant role via an antiapoptotic function in promoting survival of newly formed granule cells generated during exercise and the associated increase in synaptic plasticity in the dentate gyrus.  相似文献   

5.

Background

Sympathetic hyperactivity may be related to left ventricular (LV) dysfunction and baro- and chemoreflex impairment in hypertension. However, cardiac function, regarding the association of hypertension and baroreflex dysfunction, has not been previously evaluated by transesophageal echocardiography (TEE) using intracardiac echocardiographic catheter.

Methods and Results

We evaluated exercise tests, baroreflex sensitivity and cardiovascular autonomic control, cardiac function, and biventricular invasive pressures in rats 10 weeks after sinoaortic denervation (SAD). The rats (n = 32) were divided into 4 groups: 16 Wistar (W) with (n = 8) or without SAD (n = 8) and 16 spontaneously hypertensive rats (SHR) with (n = 8) or without SAD (SHRSAD) (n = 8). Blood pressure (BP) and heart rate (HR) did not change between the groups with or without SAD; however, compared to W, SHR groups had higher BP levels and BP variability was increased. Exercise testing showed that SHR had better functional capacity compared to SAD and SHRSAD. Echocardiography showed left ventricular (LV) concentric hypertrophy; segmental systolic and diastolic biventricular dysfunction; indirect signals of pulmonary arterial hypertension, mostly evident in SHRSAD. The end-diastolic right ventricular (RV) pressure increased in all groups compared to W, and the end-diastolic LV pressure increased in SHR and SHRSAD groups compared to W, and in SHRSAD compared to SAD.

Conclusions

Our results suggest that baroreflex dysfunction impairs cardiac function, and increases pulmonary artery pressure, supporting a role for baroreflex dysfunction in the pathogenesis of hypertensive cardiac disease. Moreover, TEE is a useful and feasible noninvasive technique that allows the assessment of cardiac function, particularly RV indices in this model of cardiac disease.  相似文献   

6.
Gan XB  Duan YC  Xiong XQ  Li P  Cui BP  Gao XY  Zhu GQ 《PloS one》2011,6(10):e25784

Background

Cardiac sympathetic afferent reflex (CSAR) contributes to sympathetic activation and angiotensin II (Ang II) in paraventricular nucleus (PVN) augments the CSAR in vagotomized (VT) and baroreceptor denervated (BD) rats with chronic heart failure (CHF). This study was designed to determine whether it is true in intact (INT) rats with CHF and to determine the effects of cardiac and baroreceptor afferents on the CSAR and sympathetic activity in CHF.

Methodology/Principal Findings

Sham-operated (Sham) or coronary ligation-induced CHF rats were respectively subjected to BD+VT, VT, cardiac sympathetic denervation (CSD) or INT. Under anesthesia, renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) were recorded, and the CSAR was evaluated by the RSNA and MAP responses to epicardial application of capsaicin. Either CSAR or the responses of RSNA, MAP and CSAR to Ang II in PVN were enhanced in CHF rats treated with BD+VT, VT or INT. Treatment with VT or BD+VT potentiated the CSAR and the CSAR responses to Ang II in both Sham and CHF rats. Treatment with CSD reversed the capsaicin-induced RSNA and MAP changes and the CSAR responses to Ang II in both Sham and CHF rats, and reduced the RSNA and MAP responses to Ang II only in CHF rats.

Conclusions

The CSAR and the CSAR responses to Ang II in PVN are enhanced in intact CHF rats. Baroreceptor and vagal afferent activities inhibit CSAR and the CSAR responses to Ang II in intact Sham and CHF rats.  相似文献   

7.

Objective

Obesity and renin angiotensin system (RAS) hyperactivity are profoundly involved in cardiovascular diseases, however aerobic exercise training (EXT) can prevent obesity and cardiac RAS activation. The study hypothesis was to investigate whether obesity and its association with EXT alter the systemic and cardiac RAS components in an obese Zucker rat strain.

Methods

The rats were divided into the following groups: Lean Zucker rats (LZR); lean Zucker rats plus EXT (LZR+EXT); obese Zucker rats (OZR) and obese Zucker rats plus EXT (OZR+EXT). EXT consisted of 10 weeks of 60-min swimming sessions, 5 days/week. At the end of the training protocol heart rate (HR), systolic blood pressure (SBP), cardiac hypertrophy (CH) and function, local and systemic components of RAS were evaluated. Also, systemic glucose, triglycerides, total cholesterol and its LDL and HDL fractions were measured.

Results

The resting HR decreased (∼12%) for both LZR+EXT and OZR+EXT. However, only the LZR+EXT reached significance (p<0.05), while a tendency was found for OZR versus OZR+EXT (p = 0.07). In addition, exercise reduced (57%) triglycerides and (61%) LDL in the OZR+EXT. The systemic angiotensin I-converting enzyme (ACE) activity did not differ regardless of obesity and EXT, however, the OZR and OZR+EXT showed (66%) and (42%), respectively, less angiotensin II (Ang II) plasma concentration when compared with LZR. Furthermore, the results showed that EXT in the OZR prevented increase in CH, cardiac ACE activity, Ang II and AT2 receptor caused by obesity. In addition, exercise augmented cardiac ACE2 in both training groups.

Conclusion

Despite the unchanged ACE and lower systemic Ang II levels in obesity, the cardiac RAS was increased in OZR and EXT in obese Zucker rats reduced some of the cardiac RAS components and prevented obesity-related CH. These results show that EXT prevented the heart RAS hyperactivity and cardiac maladaptive morphological alterations in obese Zucker rats.  相似文献   

8.

Purpose

To explore the effects of methane-rich saline (CH4 saline) on the capability of one-time exhaustive exercise in male SD rats.

Methods

Thirty rats were equally divided into to three groups at random: control group (C), placebo group (P) and methane saline group (M). Rats in M group underwent intraperitoneal injection of CH4 saline, and the other two groups simultaneously underwent intraperitoneal injection of normal saline. Then, the exercise capability of rats was tested through one-time exhaustive treadmill exercise except C group. Exercise time and body weight were recorded before and after one-time exhaustive exercise. After exhaustive exercise, the blood and gastrocnemius samples were collected from all rats to detect biochemical parameters in different methods.

Results

It was found that the treadmill running time was significantly longer in rats treated with CH4 saline. At the same time, CH4 saline reduced the elevation of LD and UN in blood caused by one-time exhaustive exercise. The low level of blood glucose induced by exhaustive exercise was also normalized by CH4 saline. Also CH4 saline lowered the level of CK in plasma. Furthermore, this research indicated that CH4 saline markedly increased the volume of T-AOC in plasma and alleviated the peak of TNF-α in both plasma and gastrocnemius. From H&E staining, CH4 saline effectively improved exercise-induced structural damage in gastrocnemius.

Conclusions

CH4 saline could enhance exercise capacity in male SD rats through increase of glucose aerobic oxidation, improvement of metabolic clearance and decrease of exhaustive exercise-induced gastrocnemius injury.  相似文献   

9.
10.

Background

Systemic hypertension may be associated with an increased pulmonary vascular resistance, which we hypothesized could be, at least in part, mediated by increased leptin.

Methods

Vascular reactivity to phenylephrine (1 μmol/L), endothelin-1 (10 nmol/L) and leptin (0.001–100 nmol/L) was evaluated in endothelium-intact and -denuded isolated thoracic aorta and pulmonary arteries from spontaneously hypertensive versus control Wistar rats. Arteries were sampled for pathobiological evaluation and lung tissue for morphometric evaluation.

Results

In control rats, endothelin-1 induced a higher level of contraction in the pulmonary artery than in the aorta. After phenylephrine or endothelin-1 precontraction, leptin relaxed intact pulmonary artery and aortic rings, while no response was observed in denuded arteries. Spontaneously hypertensive rats presented with increased reactivity to phenylephrine and endothelin-1 in endothelium-intact pulmonary arteries. After endothelin-1 precontraction, endothelium-dependent relaxation to leptin was impaired in pulmonary arteries from hypertensive rats. In both strains of rats, aortic segments were more responsive to leptin than pulmonary artery. In hypertensive rats, pulmonary arteries exhibited increased pulmonary artery medial thickness, associated with increased expressions of preproendothelin-1, endothelin-1 receptors type A and B, inducible nitric oxide synthase and decreased endothelial nitric oxide synthase, together with decreased leptin receptor and increased suppressor of cytokine signaling 3 expressions.

Conclusions

Altered pulmonary vascular reactivity in hypertension may be related to a loss of endothelial buffering of vasoconstriction and decreased leptin-induced vasodilation in conditions of increased endothelin-1.  相似文献   

11.

Background

The enhanced cardiac sympathetic afferent reflex (CSAR) is involved in the sympathetic activation that contributes to the pathogenesis and progression of hypertension. Activation of AT1 receptors by angiotension (Ang) II in the paraventricular nucleus (PVN) augments the enhanced CSAR and sympathetic outflow in hypertension. The present study is designed to determine whether Ang-(1-7) in PVN plays the similar roles as Ang II and the interaction between Ang-(1-7) and Ang II on CSAR in renovascular hypertension.

Methodology/Principal Findings

The two-kidney, one-clip (2K1C) method was used to induce renovascular hypertension. The CSAR was evaluated by the renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) responses to epicardial application of capsaicin in sinoaortic-denervated and cervical-vagotomized rats with urethane and α-chloralose anesthesia. Either Ang II or Ang-(1-7) in PVN caused greater increases in RSNA and MAP, and enhancement in CSAR in 2K1C rats than in sham-operated (Sham) rats. Mas receptor antagonist A-779 and AT1 receptor antagonist losartan induced opposite effects to Ang-(1-7) or Ang II respectively in 2K1C rats, but losartan had no effects in Sham rats. Losartan but not the A-779 abolished the effects of Ang II, while A-779 but not the losartan blocked the effects of Ang-(1-7). PVN pretreatment with Ang-(1-7) dose-dependently augmented the RSNA, MAP, and CSAR responses to the Ang II in 2K1C rats. Ang II level, AT1 receptor and Mas receptor protein expression in PVN increased in 2K1C rats compared with Sham rats but Ang-(1-7) level did not.

Conclusions

Ang-(1-7) in PVN is as effective as Ang II in enhancing the CSAR and increasing sympathetic outflow and both endogenous Ang-(1-7) and Ang II in PVN contribute to the enhanced CSAR and sympathetic outflow in renovascular hypertension. Ang-(1-7) in PVN potentiates the effects of Ang II in renovascular hypertension.  相似文献   

12.
The present study was undertaken to assess cardiac function and characterize beta-adrenoceptor subtypes in hearts of diabetic rats that underwent exercise training (ExT) after the onset of diabetes. Type 1 diabetes was induced in male Sprague-Dawley rats using streptozotocin. Four weeks after induction, rats were randomly divided into two groups. One group was exercised trained for 3 wk while the other group remained sedentary. At the end of the protocol, cardiac parameters were assessed using M-mode echocardiography. A Millar catheter was also used to assess left ventricular hemodynamics with and without isoproterenol stimulation. beta-Adrenoceptors were assessed using Western blots and [(3)H]dihydroalprenolol binding. After 7 wk of diabetes, heart rate decreased by 21%, fractional shortening by 20%, ejection fraction by 9%, and basal and isoproterenol-induced dP/dt by 35%. beta(1)- and beta(2)-adrenoceptor proteins were reduced by 60% and 40%, respectively, while beta(3)-adrenoceptor protein increased by 125%. Ventricular homogenates from diabetic rats bound 52% less [(3)H]dihydroalprenolol, consistent with reductions in beta(1)- and beta(2)-adrenoceptors. Three weeks of ExT initiated 4 wk after the onset of diabetes minimized cardiac function loss. ExT also blunted loss of beta(1)-adrenoceptor expression. Interestingly, ExT did not prevent diabetes-induced reduction in beta(2)-adrenoceptor or the increase of beta(3)-adrenoceptor expression. ExT also increased [(3)H]dihydroalprenolol binding, consistent with increased beta(1)-adrenoceptor expression. These findings demonstrate for the first time that ExT initiated after the onset of diabetes blunts primarily beta(1)-adrenoceptor expression loss, providing mechanistic insights for exercise-induced improvements in cardiac function.  相似文献   

13.

[Purpose]

The purpose of this study was to investigate the effect of unaccustomed downhill running on muscle damage, oxidative stress, and leukocyte apoptosis.

[Methods]

Thirteen moderately trained male subjects performed three 40 min treadmill runs at ~70% VO2max on separate days: a level run (L) followed by two downhill runs (DH1 and DH2). Blood samples were taken at rest (PRE) and immediately (POST), 2 h, 24 h, and 48 h after each run. Data were analyzed using 2-way repeated measures ANOVA with post hoc Tukey tests.

[Results]

Creatine kinase (CK) activity and oxidative stress level were significantly elevated at 24 h and 48 h following DH1 (P < 0.05). The level of oxidative stress at the POST measurement following DH1 and DH2 was greater than PRE. The rate of leukocyte apoptosis was significantly increased at the POST measurement following all three runs, and remained elevated for up to 48 h following DH1 (P < 0.01).

[Conclusion]

CK activity and oxidative stress were elevated following an acute bout of moderate intensity downhill running, resulting in a greater apoptotic response at 24 h and 48 h post-exercise in comparison with level grade running or a second downhill run. These elevations were blunted following DH2. Although the link between exercise-induced muscle damage and leukocyte apoptosis is currently unknown, the differential response to DH1 vs. L and DH2 indicates that it may be mediated by the elevation of oxidative stress.  相似文献   

14.

[Purpose]

This study investigated the effect of endurance exercise on neointimal formation, endothelial-dependant relaxation and FOXO expression in balloon-induced carotid arteries of rats.

[Methods]

Male SD(Sprague-Dawley) rats of 8 weeks ages were randomly divided into 3 groups; Sham-operated control (SO, n=10), Balloon-induced control (BIC, n=10), and Balloon-induced exercise (BIE, n=10). Endurance exercise training was performed on treadmill (18 m/min, 0% grade, 60 min/day, 5 days/week, 4 weeks).

[Results]

Body weight is significantly reduced in BIE compared with BIC. Neointiaml formation in BIC was significantly higher than SO, but it was significantly recovered in BIE compared with BIC. Endothelial-dependent relaxation in BIC was significantly lower than SO, but it was significantly recovered in BIE compared with BIC and expression of FOXO1 and FOXO3a also were significantly increased BIE compared with BIC.

[Conclusion]

These data suggest that endurance exercise inhibits neointimal formation and endothelial-dependent relaxation via FOXO expression in balloon-induce atherosclerosis rat model.  相似文献   

15.

[Purpose]

Attention-deficit/hyperactivity disorder (ADHD) is a heritable, chronic, neurobehavioral disorder that is characterized by hyperactivity, inattention, and impulsivity. It is commonly believed that the symptoms of ADHD are closely associated with hypo-function of the dopamine system. Dopamine D2 receptor activation decreases the excitability of dopamine neurons, as well as the release of dopamine. Physical exercise is known to improve structural and functional impairments in neuropsychiatric disorders. We investigated the therapeutic effect of exercise on ADHD.

[Methods]

Open field task and elevated-plus maze task were used in the evaluation of hyperactivity and impulsivity, respectively. Dopamine D2 receptor expression in the substantia nigra and striatum were evaluated by western blotting.

[Results]

The present results indicated that ADHD rats showed hyperactivity and impulsivity. Dopamine D2 receptor expression in the substantia nigra and striatum were increased in ADHD rats. Exercise alleviated hyperactivity and impulsivity in ADHD rats. Furthermore, dopamine D2 receptor expression in ADHD rats was also decreased by exercise.

[Conclusion]

We thus showed that exercise effectively alleviates ADHD-induced symptoms through enhancing dopamine D2 expression in the brain.  相似文献   

16.

Background

Right ventricular dysfunction in COPD is common, even in the absence of pulmonary hypertension. The aim of the present study was to examine the effects of high intensity interval training (HIIT) on right ventricular (RV) function, as well as pulmonary blood vessel remodeling in a mouse model of COPD.

Methods

42 female A/JOlaHsd mice were randomized to exposure to either cigarette smoke or air for 6 hours/day, 5 days/week for 14 weeks. Mice from both groups were further randomized to sedentariness or HIIT for 4 weeks. Cardiac function was evaluated by echocardiography and muscularization of pulmonary vessel walls by immunohistochemistry.

Results

Smoke exposure induced RV systolic dysfunction demonstrated by reduced tricuspid annular plane systolic excursion. HIIT in smoke-exposed mice reversed RV dysfunction. There were no significant effects on the left ventricle of neither smoke exposure nor HIIT. Muscularization of the pulmonary vessels was reduced after exercise intervention, but no significant effects on muscularization were observed from smoke exposure.

Conclusions

RV function was reduced in mice exposed to cigarette smoke. No Increase in pulmonary vessel muscularization was observed in these mice, implying that other mechanisms caused the RV dysfunction. HIIT attenuated the RV dysfunction in the smoke exposed mice. Reduced muscularization of the pulmonary vessels due to HIIT suggests that exercise training not only affects the heart muscle, but also has important effects on the pulmonary vasculature.

Electronic supplementary material

The online version of this article (doi:10.1186/s12931-014-0117-y) contains supplementary material, which is available to authorized users.  相似文献   

17.

Purpose

This study investigated the effects of resistance exercise on the Akt-eNOS, the activation of antioxidant protein and FOXO1 in the aorta of F344 rats.

Methods

Male 7 week-old F344 rats were randomly divided into 2 groups: a climbing group (n = 6) and a sedentary group (n = 6). H&E staining and western blotting were used to analyze the rat aortas and target proteins.

Results

Resistance exercise training did not significantly affect aortic structure. Phosphorylation of AKT and eNOS and expression of MnSOD and Ref-1 were significantly increased while FOXO1 phosphorylation was significantly decreased in the resistance exercise group compared with the sedentary group.

Conclusion

We demonstrate that resistance exercise activates the Akt-eNOS and Ref-1 protein without changes to aortic thickness via FOXO-1 activation in the aorta of F344 rats.  相似文献   

18.

Objective

Physical fitness is reduced in adults with Down syndrome (DS). The present study was conducted to elucidate the exercise response in adults with DS.

Design

Case controlled before-after trial.

Setting

Residential centre for people with intellectual disabilities.

Participants

96 Adults with DS, 25 non-DS adults with an intellectual disability, 33 controls.

Interventions

Echocardiography to exclude heart defects and to measure cardiac index (CI) in the supine position, supine position with raised legs, and following ten knee bends.

Main outcome measure

Exercise testing

Results

At rest, mean CI was not significantly different between persons with DS and controls (2.3 vs. 2.4 l/min/m2, p = 0.3). However, mean CI after exercise was significantly lower in DS (2.9 vs. 3.7 l/min/m2, p < 0.001) and mean CI increase from rest to exercise was more than 50% lower in DS. On the contrary, CI after exercise was similar among controls and non-DS adults with an intellectual disability. Significantly lower stroke volumes in DS were found with insufficient heart rate response.

Conclusions

CI at rest was similar in adults with DS and controls; however persons with DS have a diminished cardiac response to exercise. Stroke volumes were significantly lower in DS during exercise and a compensated heightened heart rate was absent.  相似文献   

19.

Background

Intracerebroventricular infusion of NaHS, a hydrogen sulfide (H2S) donor, increased mean arterial pressure (MAP). This study was designed to determine the roles of H2S in the paraventricular nucleus (PVN) in modulating sympathetic activity and cardiac sympathetic afferent reflex (CSAR) in chronic heart failure (CHF).

Methodology/Principal Findings

CHF was induced by left descending coronary artery ligation in rats. Renal sympathetic nerve activity (RSNA) and MAP were recorded under anesthesia. CSAR was evaluated by the RSNA and MAP responses to epicardial application of capsaicin. PVN microinjection of low doses of a H2S donor, GYY4137 (0.01 and 0.1 nmol), had no significant effects on RSNA, MAP and CSAR. High doses of GYY4137 (1, 2 and 4 nmol) increased baseline RSNA, MAP and heart rate (HR), and enhanced CSAR. The effects were greater in CHF rats than sham-operated rats. A cystathionine-β-synthase (CBS) inhibitor, hydroxylamine (HA) in PVN had no significant effect on the RSNA, MAP and CSAR. CBS activity and H2S level in the PVN were decreased in CHF rats. No significant difference in CBS level in PVN was found between sham-operated rats and CHF rats. Stimulation of cardiac sympathetic afferents with capsaicin decreased CBS activity and H2S level in the PVN in both sham-operated rats and CHF rats.

Conclusions

Exogenous H2S in PVN increases RSNA, MAP and HR, and enhances CSAR. The effects are greater in CHF rats than those in sham-operated rats. Endogenous H2S in PVN is not responsible for the sympathetic activation and enhanced CSAR in CHF rats.  相似文献   

20.

Background

Physical exercise improves glucose metabolism and insulin sensitivity. Brain-derived neurotrophic factor (BDNF) enhances insulin activity in diabetic rodents. Because physical exercise modifies BDNF production, this study aimed to investigate the effects of chronic exercise on plasma BDNF levels and the possible effects on insulin tolerance modification in healthy rats.

Methods

Wistar rats were divided into five groups: control (sedentary, C); moderate- intensity training (MIT); MIT plus K252A TrkB blocker (MITK); high-intensity training (HIT); and HIT plus K252a (HITK). Training comprised 8 weeks of treadmill running. Plasma BDNF levels (ELISA assay), glucose tolerance, insulin tolerance, and immunohistochemistry for insulin and the pancreatic islet area were evaluated in all groups. In addition, Bdnf mRNA expression in the skeletal muscle was measured.

Principal Findings

Chronic treadmill exercise significantly increased plasma BDNF levels and insulin tolerance, and both effects were attenuated by TrkB blocking. In the MIT and HIT groups, a significant TrkB-dependent pancreatic islet enlargement was observed. MIT rats exhibited increased liver glycogen levels following insulin administration in a TrkB-independent manner.

Conclusions/Significance

Chronic physical exercise exerted remarkable effects on insulin regulation by inducing significant increases in the pancreatic islet size and insulin sensitivity in a TrkB-dependent manner. A threshold for the induction of BNDF in response to physical exercise exists in certain muscle groups. To the best of our knowledge, these are the first results to reveal a role for TrkB in the chronic exercise-mediated insulin regulation in healthy rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号