首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Water availability is the most limiting factor to global plant productivity, yet photosynthetic responses to seasonal drought cycles are poorly understood, with conflicting reports on which limiting process is the most important during drought. We address the problem using a model‐data synthesis approach to look at canopy level fluxes, integrating twenty years of half hour data gathered by the FLUXNET network across six Mediterranean sites. The measured canopy level, water and carbon fluxes were used, together with an inverse canopy ecophysiological model, to estimate the bulk canopy conductance, bulk mesophyll conductance, and the canopy scale carbon pools in both the intercellular spaces and at the site of carboxylation in the chloroplasts. Thus the roles of stomatal and mesophyll conductance in the regulation of internal carbon pools and photosynthesis could be separated. A quantitative limitation analysis allowed for the relative seasonal responses of stomatal, mesophyll, and biochemical limitations to be gauged. The concentration of carbon in the chloroplast was shown to be a potentially more reliable estimator of assimilation rates than the intercellular carbon concentration. Both stomatal conductance limitations and mesophyll conductance limitations were observed to regulate the response of photosynthesis to water stress in each of the six species studied. The results suggest that mesophyll conductance could bridge the gap between conflicting reports on plant responses to soil water stress, and that the inclusion of mesophyll conductance in biosphere–atmosphere transfer models may improve their performance, in particular their ability to accurately capture the response of terrestrial vegetation productivity to drought.  相似文献   

2.
Both ozone (O3) and drought can limit carbon fixation by forest trees. To cope with drought stress, plants have isohydric or anisohydric water use strategies. Ozone enters plant tissues through stomata. Therefore, stomatal closure can be interpreted as avoidance to O3 stress. Here, we applied an optimization model of stomata involving water, CO2, and O3 flux to test whether isohydric and anisohydric strategies may affect avoidance of O3 stress by stomatal closure in four Mediterranean tree species during drought. The data suggest that stomatal closure represents a response to avoid damage to the photosynthetic mechanisms under elevated O3 depending on plant water use strategy. Under high-O3 and well-watered conditions, isohydric species limited O3 fluxes by stomatal closure, whereas anisohydric species activated a tolerance response and did not actively close stomata. Under both O3 and drought stress, however, anisohydric species enhanced the capacity of avoidance by closing stomata to cope with the severe oxidative stress. In the late growing season, regardless of the water use strategy, the efficiency of O3 stress avoidance decreased with leaf ageing. As a result, carbon assimilation rate was decreased by O3 while stomata did not close enough to limit transpirational water losses.  相似文献   

3.
Our objective is to describe a multi-layer model of C3-canopy processes that effectively simulates hourly CO2 and latent energy (LE) fluxes in a mixed deciduous Quercus-Acer (oak–maple) stand in central Massachusetts, USA. The key hypothesis governing the biological component of the model is that stomatal conductance (gs) is varied so that daily carbon uptake per unit of foliar nitrogen is maximized within the limitations of canopy water availability. The hydraulic system is modelled as an analogue to simple electrical circuits in parallel, including a separate soil hydraulic resistance, plant resistance and plant capacitance for each canopy layer. Stomatal opening is initially controlled to conserve plant water stores and delay the onset of water stress. Stomatal closure at a threshold minimum leaf water potential prevents xylem cavitation and controls the maximum rate of water flux through the hydraulic system. We show a strong correlation between predicted hourly CO2 exchange rate (r2= 0.86) and LE (r2= 0.87) with independent whole-forest measurements made by the eddy correlation method during the summer of 1992. Our theoretical derivation shows that observed relationships between CO2 assimilation and LE flux can be explained on the basis of stomatal behaviour optimizing carbon gain, and provides an explicit link between canopy structure, soil properties, atmospheric conditions and stomatal conductance.  相似文献   

4.
 Predawn leaf water potential, stomatal conductance and microclimatic variables were measured on 13 sampling days from November 1995 through August 1996 to determine how environmental and physiological factors affect water use at the canopy scale in a plantation of mature clonal Eucalyptus grandis Hill ex-Maiden hybrids in the State of Espirito Santo, Brazil. The simple ”big leaf” Penman-Monteith model was used to estimate canopy transpiration. During the study period the predawn leaf water potential varied from –0.4 to –1.3 MPa, with the minimum values observed in the winter months (June and August 1996), while the average estimated values for canopy conductance and canopy transpiration fell from 17.3 to 5.8 mm s–1 and from 0.54 to 0.18 mm h–1, respectively. On the basis of all measurements, the average value of the decoupling coefficient was 0.25. During continuous soil water shortage a proportional reduction was observed in predawn leaf water potential and in daily maximum values of stomatal conductance, canopy transpiration and decoupling coefficient. The results showed that water vapour exchange in this canopy is strongly dominated by the regional vapour pressure deficit and that canopy transpiration is controlled mainly by stomatal conductance. On a seasonal basis, stomatal conductance and canopy transpiration were mainly related to predawn leaf water potential and, thus, to soil moisture and rainfall. Good results were obtained with a multiplicative empirical model that uses values of photosynthetically active radiation, vapour pressure deficit and predawn leaf water potential to estimate stomatal conductance. Received: 10 June 1998 / Accepted: 20 July 1998  相似文献   

5.
鼎湖山南亚热带天然针阔叶混交林臭氧吸收特征   总被引:1,自引:1,他引:0  
针阔叶混交林是我国南亚热带针叶林向地带性常绿阔叶林演替的中间林分类型,为我国南亚地区主要森林类型,发挥着重要的生态系统服务功能。基于树干液流技术和对臭氧浓度的连续监测,评价该森林类型的臭氧吸收特征和能力有着重要的环境生态学意义。对鼎湖山天然针阔叶混交林优势种马尾松(Pinus manssoniana)、锥栗(Castanopsis chinensis)、木荷(Schima superba)和华润楠(Machilus chinensis)在自然环境条件下的臭氧吸收能力进行了分析研究。结果表明:在日尺度上,4个优势树种的冠层气孔对臭氧导度(GO_3)和臭氧吸收通量(FO_3)均呈单峰型曲线,其最大值的时间在干季(10月至竖年3月)比湿季(4月至9月)滞后;季节尺度上,臭氧浓度在湿季达到最大值48.94 n L/L,湿季GO_3、FO_3和年臭氧吸收累积量(accumulative stomatal O_3flux,AFst)均显著高于干季(P 0.01),华润楠的臭氧吸收能力最强,在干季和湿季可分别达1.11 nmol m~(-2)s~(-1)和1.71nmol m~(-2)s~(-1)。随着水汽压亏缺(VPD)增大,优势种GO_3降低。光合有效辐射(PAR)超过1500 umol m~(-2)s~(-1)时,优势树种GO_3和FO_3呈下降趋势。针阔叶混交林的年臭氧吸收累积量超过了保护森林树木所采用的临界阈值,可认为鼎湖山针阔叶混交林受臭氧危害的潜在风险较高。  相似文献   

6.
Drought control over conductance and assimilation was assessed using eddy flux and meteorological data monitored during four summer periods from 1998 to 2001 above a closed canopy of the Mediterranean evergreen oak tree Quercus ilex. Additional discrete measurements of soil water content and predawn leaf water potential were used to characterize the severity of the drought. Canopy conductance was estimated through the big‐leaf approach of Penman–Monteith by inverting latent heat fluxes. The gross primary production ( GPP ) was estimated by adding ecosystem respiration to net ecosystem exchange. Ecosystem respiration was deduced from night flux when friction velocity ( u *) was greater than 0.35 m s?1. Empirical equations were identified that related maximal canopy conductance and daily ecosystem GPP to relative soil water content ( RWC) , the ratio of current soil water content to the field capacity, and to the predawn leaf water potential. Both variables showed a strong decline with soil RWC for values lower than 0.7. The sharpest decline was observed for GPP . The curves reached zero for RWC =0.41 and 0.45 for conductance and GPP , respectively. When the predawn leaf water potential was used as a surrogate for soil water potential, both variables showed a hyperbolic decline with decreasing water potential. These results were compared with already published literature values obtained at leaf level from the same tree species. Scaling up from the leaf to ecosystem highlighted the limitation of two big‐leaf representations: Penman–Monteith and Sellers' Π factor. Neither held completely for comparing leaf and canopy fluxes. Tower measurements integrate fluxes from foliage elements clumped at several levels of organization: branch, tree, and ecosystem. The Q. ilex canopy exhibited non‐random distribution of foliage, emphasizing the need to take into account a clumping index, the factor necessary to apply the Lambert–Beer law to natural forests. Our results showed that drought is an important determinant in water losses and CO2 fluxes in water‐limited ecosystems. In spite of the limitations inherent to the big‐leaf representation of the canopy, the equations are useful for predicting the influence of environmental factors in Mediterranean woodlands and for interpreting ecosystem exchange measurements.  相似文献   

7.

Background

Despite abatement programs of precursors implemented in many industrialized countries, ozone remains the principal air pollutant throughout the northern hemisphere with background concentrations increasing as a consequence of economic development in former or still emerging countries and present climate change. Some of the highest ozone concentrations are measured in regions with a Mediterranean climate but the effect on the natural vegetation is alleviated by low stomatal uptake and frequent leaf xeromorphy in response to summer drought episodes characteristic of this climate. However, there is a lack of understanding of the respective role of the foliage physiology and leaf xeromorphy on the mechanistic effects of ozone in Mediterranean species. Particularly, evidence about morphological and structural changes in evergreens in response to ozone stress is missing.

Results

Our study was started after observing ozone -like injury in foliage of holm oak during the assessment of air pollution mitigation by urban trees throughout the Madrid conurbation. Our objectives were to confirm the diagnosis, investigate the extent of symptoms and analyze the ecological factors contributing to ozone injury, particularly, the site water supply. Symptoms consisted of adaxial and intercostal stippling increasing with leaf age. Underlying stippling, cells in the upper mesophyll showed HR-like reactions typical of ozone stress. The surrounding cells showed further oxidative stress markers. These morphological and micromorphological markers of ozone stress were similar to those recorded in deciduous broadleaved species. However, stippling became obvious already at an AOT40 of 21 ppm•h and was primarily found at irrigated sites. Subsequent analyses showed that irrigated trees had their stomatal conductance increased and leaf life -span reduced whereas the leaf xeromorphy remained unchanged. These findings suggest a central role of water availability versus leaf xeromorphy for ozone symptom expression by cell injury in holm oak.  相似文献   

8.
植物气孔导度的环境响应模拟及其尺度扩展   总被引:5,自引:0,他引:5  
气孔导度是衡量植物和大气间水分、能量及CO2平衡和循环的重要指标,探讨气孔导度与环境因子的关系及其模拟,以及气孔导度在叶片、冠层及区域尺度间的尺度转换及累积效应,对更好地认识植被与大气间的水热运移过程,合理评价植被在陆面过程中的地位和作用都具有重要意义。从植物气孔导度与环境因子的关系、气孔导度模拟以及尺度扩展三个方面,对前人的研究成果进行了概括总结。从叶片和冠层两个尺度出发,归纳总结了前人对于不同植物气孔导度与环境因子关系的研究成果,发现由于不同植物的遗传特性、测定时的环境、时间尺度的不同,以及未考虑各个环境因子的相互作用对气孔导度的影响,由此得到的气孔导度与环境因子之间的关系也不尽一致。对各单一环境因子与气孔导度的关系,给出了生理学解释,从根本上说明了环境因子变化对气孔导度的影响,而研究环境因子对气孔导度的综合影响时,应对各环境因子进行系统控制与同步观测。模拟计算植物气孔导度的模型主要有Jarvis模型和BWB模型两类,这些模型的模拟能力随着研究对象、试验区域、环境条件的改变而存在一定的差异,在具体使用时应结合实际情况选择最优模型进行模拟。除上述常用模型外,还总结了其他学者分别从不同角度提出的新的模型,对现有气孔导度模型进行了全面的总结。从叶片-冠层、冠层-区域两个方面归纳总结了前人关于气孔导度尺度扩展的研究成果,发现叶片-冠层的尺度扩展研究较成熟而冠层-区域的尺度扩展在模拟精度的验证方面存在困难。针对以下几个方面提出了今后气孔导度的研究重点:(1)结合研究对象所在的区域及环境条件,选择最优模型进行模拟;(2)综合考虑环境因子之间的相互作用及其对气孔导度的累积影响;(3)BWB模型与光合模型的耦合;(4)提高大尺度范围内的气孔导度模拟精度。  相似文献   

9.
Summary The uptake of air pollutants depends both on pollutant concentration and on stomatal conductance. This paper deals with the uptake of ozone (O3) from the air into the needles of Norway spruce [Picea abies (L.) Karst.] under ambient climatic conditions. Regulation of O3 uptake by the stomata is shown and also the difference between the physiologically active O3 concentration and the O3 concentration of the ambient air. Data from the sun and shade crown of spruce trees at 1000 m a.s.l. are presented. Analysis of data from three vegetation periods has shown that at low ambient O3 concentrations the O3 uptake is largely regulated by stomatal conductance. Water vapour pressure deficit (VPD) of the atmosphere is the climatic factor which showed the highest positive correlation with O3 concentration. However, a high leaf-air VDP led to stomatal closure, thus reducing the O3 uptake in the needles despite high O3 concentrations in the ambient air. The potential O3 stress caused by high O3 concentrations can be strongly mitigated by this natural closing of the stomata and the simultaneous occurrence of moderate drought stress.  相似文献   

10.
Two species found in temperate calcareous and mesotrophic grasslands (Dactylis glomerata and Leontodon hispidus) were exposed to eight ozone treatments spanning preindustrial to post‐2100 regimes, and late‐season effects on stomatal functioning were investigated. The plants were grown as a mixed community in 14 L containers and were exposed to ozone in ventilated solardomes (dome‐shaped greenhouses) for 20 weeks from early May to late September 2007. Ozone exposures were based on O3 concentrations from a nearby upland area, and provided the following seasonal 24 h means: 21.4, 39.9 (simulated ambient), 50.2, 59.4, 74.9, 83.3, 101.3 and 102.5 ppb. In both species, stomatal conductance of undamaged inner canopy leaves developing since a midseason cutback increased linearly with increasing background ozone concentration. Imposition of severe water stress by leaf excision indicated that increasing background ozone concentration decreased the ability of leaves to limit water loss, implying impaired stomatal control. The threshold ozone concentrations for these effects were 15–40 ppb above current ambient in upland UK, and were within the range of ozone concentrations anticipated for much of Europe by the latter part of this century. The potential mechanism behind the impaired stomatal functioning was investigated using a transpiration assay. Unlike for lower ozone treatments, apparently healthy green leaves of L. hispidus that had developed in the 101.3 ppb treatment did not close their stomata in response to 1.5 μm abscisic acid (ABA); indeed stomatal opening initially occurred in this treatment. Thus, ozone appears to be disrupting the ABA‐induced signal transduction pathway for stomatal control thereby reducing the ability of plants to respond to drought. These results have potentially wide‐reaching implications for the functioning of communities under global warming where periods of soil drying and episodes of high vapour pressure deficit are likely to be more severe.  相似文献   

11.
  • Stomatal ozone flux is closely related to ozone injury to plants. Jarvis‐type multiplicative model has been recommended for estimating stomatal ozone flux in forest trees. Ozone can change stomatal conductance by both stomatal closure and less efficient stomatal control (stomatal sluggishness). However, current Jarvis‐type models do not account for these ozone effects on stomatal conductance in forest trees.
  • We examined seasonal course of stomatal conductance in two common deciduous tree species native to northern Japan (white birch: Betula platyphylla var. japonica ; deciduous oak: Quercus mongolica var. crispula ) grown under free‐air ozone exposure. We innovatively considered stomatal sluggishness in the Jarvis‐type model using a simple parameter, s , relating to cumulative ozone uptake (defined as POD : phytotoxic ozone dose).
  • We found that ozone decreased stomatal conductance of white birch leaves after full expansion (?28%). However, such a reduction of stomatal conductance by ozone fell in late summer (?10%). At the same time, ozone reduced stomatal sensitivity of white birch to VPD and increased stomatal conductance under low light conditions. In contrast, in deciduous oak, ozone did not clearly change the model parameters.
  • The consideration of both ozone‐induced stomatal closure and stomatal sluggishness improved the model performance to estimate stomatal conductance and to explain the dose–response relationship on ozone‐induced decline of photosynthesis of white birch. Our results indicate that ozone effects on stomatal conductance (i.e . stomatal closure and stomatal sluggishness) are crucial for modelling studies to determine stomatal response in deciduous trees, especially in species sensitive to ozone.
  相似文献   

12.
Tropospheric ozone (O3) is a critical threat to forest ecosystems. A stomatal flux-based risk evaluation methodology at the leaf level was established recently in the context of the Convention on Long-Range Transboundary Air Pollution (LRTAP). This study demonstrates improvement and validation of the stomatal flux-effect approach for adult beech with results from the 8-year free-air O3 enrichment experiment at “Kranzberger Forst” (Germany). The risk assessment module of the SVAT model FO3REST, being under development for local scale O3-risk assessment of adult beech stands, was parameterized according to the LRTAP Convention’s Mapping Manual. Mean maximum stomatal conductance for water vapour of 245?mmol H2O m?2 PLA s?1, as suggested in the LRTAP Convention’s Mapping Manual for beech, was affirmed by assessment at “Kranzberger Forst”, resulting in 162?mmol O3 m?2 PLA s?1 upon recommended adjustment of the O3/water vapour diffusivity ratio to 0.663. Based on this ratio, a provisional corrected flux-effect function was deduced. Modelled Phytotoxic O3 Doses (POD 1) and potential O3-caused losses in biomass formation estimated with a site-specific stomatal conductance algorithm differed slightly only from estimates by the original LRTAP parameterisation. Analysis-derived POD 1 target value within the meaning of Article 2 of the European Council Directive 2008/50/EC of 10?mmol O3 m?2 corresponded to potential loss in biomass formation of about 10?% in ambient air relative to “pre-industrial” conditions. However, exceedance occurred by about a factor of two during the study period, indicating high risk at “Kranzberger Forst” under ambient air. Assessment for doubled O3 exposure indicated potential underestimation even of the O3 risk because modelled losses in biomass formation are in the lower range of the standard deviation of the observed ones.  相似文献   

13.
A recent resurgence of interest in formal optimisation theory has begun to improve our understanding of how variations in stomatal conductance and photosynthetic capacity control the response of whole plant photosynthesis and growth to the environment. However, mesophyll conductance exhibits similar variation and has similar impact on photosynthesis as stomatal conductance; yet, the role of mesophyll conductance in the economics of photosynthetic resource use has not been thoroughly explored. In this article, we first briefly summarise the knowledge of how mesophyll conductance varies in relation to environmental factors that also affect stomatal conductance and photosynthetic capacity, and then we use a simple analytical approach to begin to explore how these important controls on photosynthesis should mutually co-vary in a plant canopy in the optimum. Our analysis predicts that when either stomatal or mesophyll conductance is limited by fundamental biophysical constraints in some areas of a canopy, e.g. reduced stomatal conductance in upper canopy leaves due to reduced water potential, the other of the two conductances should increase in those leaves, while photosynthetic capacity should decrease. Our analysis also predicts that if mesophyll conductance depends on nitrogen investment in one or more proteins, then nitrogen investment should shift away from Rubisco and towards mesophyll conductance if hydraulic or other constraints cause chloroplastic CO2 concentration to decline. Thorough exploration of these issues awaits better knowledge of whether and how mesophyll conductance is itself limited by nitrogen investment, and about how these determinants of photosynthetic CO2 supply and demand co-vary among leaves in real plant canopies.  相似文献   

14.
Intrinsic water‐use efficiency (iWUE) characterizes the physiological control on the simultaneous exchange of water and carbon dioxide in terrestrial ecosystems. Knowledge of iWUE is commonly gained from leaf‐level gas exchange measurements, which are inevitably restricted in their spatial and temporal coverage. Flux measurements based on the eddy covariance (EC) technique can overcome these limitations, as they provide continuous and long‐term records of carbon and water fluxes at the ecosystem scale. However, vegetation gas exchange parameters derived from EC data are subject to scale‐dependent and method‐specific uncertainties that compromise their ecophysiological interpretation as well as their comparability among ecosystems and across spatial scales. Here, we use estimates of canopy conductance and gross primary productivity (GPP) derived from EC data to calculate a measure of iWUE (G1, “stomatal slope”) at the ecosystem level at six sites comprising tropical, Mediterranean, temperate, and boreal forests. We assess the following six mechanisms potentially causing discrepancies between leaf and ecosystem‐level estimates of G1: (i) non‐transpirational water fluxes; (ii) aerodynamic conductance; (iii) meteorological deviations between measurement height and canopy surface; (iv) energy balance non‐closure; (v) uncertainties in net ecosystem exchange partitioning; and (vi) physiological within‐canopy gradients. Our results demonstrate that an unclosed energy balance caused the largest uncertainties, in particular if it was associated with erroneous latent heat flux estimates. The effect of aerodynamic conductance on G1 was sufficiently captured with a simple representation. G1 was found to be less sensitive to meteorological deviations between canopy surface and measurement height and, given that data are appropriately filtered, to non‐transpirational water fluxes. Uncertainties in the derived GPP and physiological within‐canopy gradients and their implications for parameter estimates at leaf and ecosystem level are discussed. Our results highlight the importance of adequately considering the sources of uncertainty outlined here when EC‐derived water‐use efficiency is interpreted in an ecophysiological context.  相似文献   

15.
We report effects of elevated atmospheric CO2 concentration (Ca) on leaf area index (LAI) of a Florida scrub‐oak ecosystem, which had regenerated after fire for between three and five years in open‐top chambers (OTCs) and was yet to reach canopy closure. LAI was measured using four nondestructive methods, calibrated and tested in experiments performed in calibration plots near the OTCs. The four methods were: PAR transmission through the canopy, normalized difference vegetation index (NDVI), hemispherical photography, and allometric relationships between plant stem diameter and plant leaf area. Calibration experiments showed: (1) Leaf area index could be accurately determined from either PAR transmission through the canopy or hemispherical photography. For LAI determined from PAR transmission through the canopy, ecosystem light extinction coefficient (k) varied with season and was best described as a function of PAR transmission through the canopy. (2) A negative exponential function described the relationship between NDVI and LAI; (3) Allometric relationships overestimated LAI. Throughout the two years of this study, LAI was always higher in elevated Ca, rising from, 20% during winter, to 55% during summer. This seasonality was driven by a more rapid development of leaf area during the spring and a relatively greater loss of leaf area during the winter, in elevated Ca. For this scrub‐oak ecosystem prior to canopy closure, increased leaf area was an indirect mechanism by which ecosystem C uptake and canopy N content were increased in elevated Ca. In addition, increased LAI decreased potential reductions in canopy transpiration from decreases in stomatal conductance in elevated Ca. These findings have important implications for biogeochemical cycles of C, N and H2O in woody ecosystems regenerating from disturbance in elevated Ca.  相似文献   

16.

Key message

The root biomass of oak young trees significantly decreased after 2 years of exposure to high levels of ozone, but increased nitrogen wet deposition tended to partly contrast this effect.

Abstract

A 2-year Open-Top Chamber (OTC) experiment with young Quercus robur trees that were exposed to different levels of ozone (O3) and nitrogen deposition was performed in Curno (Northern Italy) for the FP7 Project ÉCLAIRE. The plants were exposed to four levels of ozone (?40 % of ambient ozone in charcoal-filtered OTCs, ?5 % in non-filtered OTCs, and +30 and +75 % in O3-enriched OTCs) and two levels of nitrogen wet deposition (tap water and tap water +70 kg N ha?1 year?1). The stomatal conductance and A/Ci response curves were measured during the two experimental seasons, and in October, the plant dry biomass partition between the roots and stem was assessed. Oak plants were moderately sensitive to O3. After the second year of treatments, the dose–response relationships based on the O3 stomatal flux indicated a 4.6 % of root biomass loss and a 12.1 % of reduction of the number of leaves per 10 mmol O3 m?2 absorbed by plants grown with no nitrogen addition. Ozone also decreased both the stomatal conductance and the maximum carboxylation rate allowed by Rubisco (V cmax) during the first year of treatments. However, the effect on V cmax was lost during the second year, and the plants showed an uncoupling between leaf-level physiological responses and plant-level biomass responses. Increased nitrogen deposition enhanced the growth of plants and partially mitigated the O3 impact on biomass and physiology, but no significant effect of the interaction between the two factors was found. The data that were collected could contribute to the definition of the O3 dose–response relationships based on biomass losses for deciduous trees in Southern Europe climatic conditions and could improve the O3 risk assessment models by providing new information about the effect of increased nitrogen deposition on the ozone impact.
  相似文献   

17.
Gaseous fluxes of peroxyacetyl nitrate (PAN) into plant leaves   总被引:1,自引:0,他引:1  
Peroxyactyl nitrate (PAN) is the most abundant of the gaseous organic nitrates produced from the photochemistry of hydrocarbons and NOx (i.e. ozone and smog production). PAN is known to be toxic to plants and also as a reservoir for the transport nitrogen dioxide in the troposphere. Here, the effect of vegetation on PAN deposition was investigated in four plant species by measuring leaf fluxes of PAN in a dynamic leaf chamber using atmospheric PAN fumigations between 0.7 and 18 nmol mol?1. A linear relationship was observed between PAN flux and ambient PAN mixing ratio for all species. Depending on the species, measured PAN flux varied between 11 and 24 pmol m?2 s?1. Measured fluxes of PAN accounted for 12–48% of the PAN flux predicted solely from modelled stomatal conductance to PAN, suggesting the presence of a mesophyllic resistance to PAN uptake. The brief (approximately 5–10 min) exposure to PAN during uptake measurements did not affect photosynthesis, transpiration or conductance to water vapour. Increasing stomatal resistance by varying the vapour pressure gradient between the leaf chamber and leaf internal air space led to a corresponding drop in PAN uptake. Varying leaf nitrogen and total leaf–ascorbate concentrations did not appear to influence PAN uptake as had been reported for other reactive odd‐nitrogen gases. Measured and model‐predicted PAN fluxes were offset, but correlated suggesting that PAN flux could be estimated using established stomatal conductance algorithms.  相似文献   

18.
The crop sensitivity to ozone (O3) is affected by the timing of the O3 exposure, by the O3 concentration, and by the crop age. To determine the physiological response to the acute ozone stress, tomato plants were exposed to O3 at two growth stages. In Experiment I (Exp. I), O3 (500 μg m?3) was applied to 30-d-old plants (PL30). In Experiment II (Exp. II), three O3 concentrations (200, 350, and 500 μg m?3) were applied to 51-d-old plants (PL51). The time of the treatment was 4 h (7:30–11:30 h). Photosynthesis and chlorophyll fluorescence measurements were done 4 times (before the exposure; 20 min, 20 h, and 2–3 weeks after the end of the treatment) using a LI-COR 6400 photosynthesis meter. The stomatal pore area and stomatal conductance were reduced as the O3 concentration increased. Ozone induced the decrease in the photosynthetic parameters of tomato regardless of the plant age. Both the photosystem (PS) II operating efficiency and the maximum quantum efficiency of PSII photochemistry declined under the ozone stress suggesting that the PSII activity was inhibited by O3. The impaired PSII contributed to the reduced photosynthetic rate. The greater decline of photosynthetic parameters was found in the PL30 compared with the PL51. It proved the age-dependent ozone sensitivity of tomato, where the younger plants were more vulnerable. Ozone caused the degradation of photosynthetic apparatus, which affected the photosynthesis of tomato plants depending on the growth stage and the O3 concentration.  相似文献   

19.
Joint Action of O(3) and SO(2) in Modifying Plant Gas Exchange   总被引:5,自引:2,他引:3       下载免费PDF全文
The joint action of O3 and SO2 stress on plants was investigated by determining the quantitative relationship between air pollutant fluxes and effects on stomatal conductance. Gas exchange measurements of O3, SO2, and H2O vapor were made for Pisum sativum L. (garden pea). Plants were grown under controlled environments, and O3, SO2, and H2O vapor fluxes were evaluated with a whole-plant gas exchange chamber using the mass-balance approach. Maximum O3 and SO2 fluxes per unit area (2 sided) into leaves averaged 8 nanomoles per square meter per second with exposure to either O3 or SO2 at 0.1 microliters per liter. Internal fluxes of either O3 or SO2 were reduced by up to 50% during exposure to combined versus individual pollutants; the greatest reduction occurred with simultaneous versus sequential combinations of the pollutants. Stomatal conductance to H2O was substantially altered by the pollutant exposures, with O3 molecules twice as effective as SO2 molecules in inducing stomatal closure. Stomatal conductance was related to the integrated dose of pollutants. The regression equations relating integrated dose to stomatal conductance were similar with O3 alone, O3 plus added SO2, and O3 plus SO2 simultaneously; i.e. a dose of 100 micromoles per square meter produced a 39 to 45% reduction in conductance over nonexposed plants. With SO2 alone, or SO2 plus added O3, a dose of 100 micromoles per square meter produced a 20 to 25% reduction in conductance. When O3 was present at the start of the exposure, then stomatal response resembled that for O3 more than the response for SO2. This study indicated that stomatal responses with combinations of O3 and SO2 are not dependent solely on the integrated dose of pollutants, but suggests that a metabolic synergistic effect exists.  相似文献   

20.
This study investigated the interacting effects of carbon dioxide and ozone on photosynthetic physiology in the flag leaves of spring wheat (Triticum aestivum L. cv. Wembley), at three stages of development. Plants were exposed throughout their development to reciprocal combinations of two carbon dioxide and two ozone treatments: [CO2] at 350 or 700 mol mol–1, [O3] at < 5 or 60 nmol mol–1. Gas exchange analysis, coupled spectrophotometric assay for RuBisCO activity, and SDS-PAGE, were used to examine the relative importance of pollutant effects on i) stomatal conductance, ii) quantum yield, and iii) RuBisCO activity, activation, and concentration. Independently, both elevated [CO2] and elevated [O3] caused a loss of RuBisCO protein and Vcmax. In combination, elevated [CO2] partially protected against the deleterious effects of ozone. It did this partly by reducing stomatal conductance, and thereby reducing the effective ozone dose. Elevated [O3] caused stomatal closure largely via its effect on photoassimilation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号