首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
ATM, a DNA-damage sensitive kinase and p53, are frequently inactivated in a variety of cancers as they together with γH2AX are critical guardians against DNA damage. Here, we report of a functional cross-talk between the cytokine TGFβ and p53, leading to apoptosis of epithelial cells, involving Smad7, a TGF-β target gene, p38 MAP kinase, and ATM. Using ectopic expression of p53, siRNA for Smad7, p38α -/- deficient cells and specific inhibitors, we show that TGF-β induces apoptosis via ATM and p53 in epithelial cells. Intriguingly, Smad7 act as a scaffold protein to promote functional interactions between p38, ATM and p53 upon TGFβ treatment, facilitating their activation. Smad7 colocalizes with γH2AX in DNA damage foci and was required for proper cell cycle checkpoints to prevent genetic instability. Our data imply that Smad7 plays a crucial role upstream of ATM and p53 to protect the genome from insults evoked by extracellular stress.  相似文献   

4.
5.
We previously established a method for the differentiation of induced pluripotent stem cells and embryonic stem cells into α2 integrin-positive odontoblast-like cells. We also reported that Wnt5 in response to interleukin (IL)-1β induces matrix metalloproteinase (MMP)-3-regulated cell proliferation in these cells. Our findings suggest that MMP-3 plays a potentially unique physiological role in the generation of odontoblast-like cells under an inflammatory state. Here, we examined whether up-regulation of autophagy-related gene (Atg) 5 by IL-1β was mediated by Wnt5 signaling, thus leading to increased proliferation of odontoblast-like cells. IL-1β increased the mRNA and protein levels of Atg5, microtubule-associated protein 1 light chain (LC3, a mammalian homolog of yeast Atg8) and Atg12. Treatment with siRNAs against Atg5, but not LC3 and Atg12, suppressed the IL-1β-induced increase in MMP-3 expression and cell proliferation. Our siRNA analyses combined with western blot analysis revealed a unique sequential cascade involving Atg5, Wnt5a and MMP-3, which resulted in the potent increase in odontoblastic cell proliferation. These results demonstrate the unique involvement of Atg5 in IL-1β-induced proliferation of embryonic stem cell-derived odontoblast-like cells.  相似文献   

6.
The precise mechanism of TGFβ1 signaling in the progression of non-alcoholic steatohepatitis (NASH) has remained unclear. In particular, a potential regulatory mechanism by which PKCδ affects profibrogenic gene expression had never been explored. In this study, therefore, the role of PKCδ in TGFβ1 mediated α-SMA expression was investigated using NASH model mice. In preparation of the NASH model, male C57BL6/J mice were fed a methionine-choline-deficient (MCD) diet for 3 weeks, after which time they were intraperitoneally injected with lipopolysaccharide (LPS). In addition, Tlr4Lps-d (CH3/HeJ) mice were used to demonstrate the TGFβ1 signaling’s dependency on TLR4 induction. Liver histology and hepatic hepatitis markers were investigated, and hepatic gene expression levels were determined by real-time PCR. Acute liver injury by LPS injection specifically elevated not only α-SMA expression but also phospho-PKCδ in this model. In contrast, Tlr4Lps-d (CH3/HeJ) and blockade of TGFβ1 receptor by SB431542 resulted in a significant reduction of PKCδ activation and α-SMA expression. Moreover, the TGFβ1-induced α-SMA production was significantly reduced by a specific PKCδ inhibitor. These findings suggested that PKCδ plays a critical role in TGFβ1-induced α-SMA production in a NASH model. Thus, this was the first demonstration of the involvement of PKCδ in the regulation of α-SMA expression in NASH liver tissues, and the impaired induction of PKCδ phosphorylation by LPS in a steatohepatitis condition. Interestingly, treatment by PKCδ inhibitor caused dramatic reduction of myofibroblast activation, indicating that PKCδ represents a promising target for treating NASH.  相似文献   

7.
8.
Cancer cells exhibit the ability to proliferate indefinitely, but paradoxically, overexpression of cellular oncogenes in primary cells can result in a rapid and irreversible cell cycle arrest known as oncogene-induced senescence (OIS). However, we have shown that constitutive overexpression of the oncogene c-MYC in primary human foreskin fibroblasts results in a population of cells with unlimited lifespan; these immortalized cells are henceforth referred to as iMYC. Here, in order to further elucidate the mechanisms underlying the immortalization process, a gene expression signature of three independently established iMYC cell lines compared to matched early passage c-MYC overexpressing cells was derived. Network analysis of this "iMYC signature" indicated that a large fraction of the down-regulated genes were functionally connected and major nodes centered around the TGFβ, IL-6 and IGF-1 signaling pathways. Here, we focused on the functional validation of the alteration of TGFβ response during c-MYC-mediated immortalization. The results demonstrate loss of sensitivity of iMYC cells to activation of TGFβ signaling upon ligand addition. Furthermore, we show that aberrant regulation of the p27 tumor suppressor protein in iMYC cells is a key event that contributes to loss of response to TGFβ. These findings highlight the potential to reveal key pathways contributing to the self-renewal of cancer cells through functional mining of the unique gene expression signature of cells immortalized by c-MYC.  相似文献   

9.
Transforming growth factor-β (TGF-β) has roles in embryonic development, the prevention of inappropriate inflammation and tumour suppression. However, TGF-β signalling also regulates pathological epithelial-to-mesenchymal transition (EMT), inducing or progressing a number of diseases ranging from inflammatory disorders, to fibrosis and cancer. However, TGF-β signalling does not proceed linearly but rather induces a complex network of cascades that mutually influence each other and cross-talk with other pathways to successfully induce EMT. Particularly, there is substantial evidence for cross-talk between αV integrins and TGF-β during EMT, and anti-integrin therapeutics are under development as treatments for TGF-β-related disorders. However, TGF-β's complex signalling network makes the development of therapeutics to block TGF-β-mediated pathology challenging. Moreover, despite our current understanding of integrins and TGF-β function during EMT, the precise mechanism of their role during physiological versus pathological EMT is not fully understood. This review focuses on the circle of regulation between αV integrin and TGF-β signalling during TGF-β induced EMT, which pose as a significant driver to many known TGF-β-mediated disorders.  相似文献   

10.
11.
12.
Genetic analysis of TP63 implicates ΔNp63 isoforms in preservation of replicative capacity and cellular lifespan within adult stem cells. ΔNp63α is also an oncogene and survival factor that mediates therapeutic resistance in squamous carcinomas. These diverse activities are the result of genetic and functional interactions between TP63 and an array of morphogenic and morphostatic signals that govern tissue and tumor stasis, mitotic polarity, and cell fate; however the cellular signals that account for specific functions of TP63 are incompletely understood. To address this we sought to identify signaling pathways that regulate expression, stability or activity of ΔNp63α. An siRNA-based screen of the human kinome identified the Type 1 TGFβ receptor, ALK5, as the kinase required for phosphorylation of ΔNp63α at Serine 66/68 (S66/68). This activity is TGFβ-dependent and sensitive to either ALK5-directed siRNA or the ALK5 kinase inhibitor A83-01. Mechanistic studies support a model in which ALK5 is proteolytically cleaved at the internal juxtamembrane region resulting in the translocation of the C-terminal ALK5-intracellular kinase domain (ALK5IKD). In this study, we demonstrate that ALK5-mediated phosphorylation of ΔNp63α is required for the anti-clonogenic effects of TGFΒ and ectopic expression of ALK5IKD mimics these effects. Finally, we present evidence that ultraviolet irradiation-mediated phosphorylation of ΔNp63α is sensitive to ALK5 inhibitors. These findings identify a non-canonical TGFβ-signaling pathway that mediates the anti-clonogenic effects of TGFβ and the effects of cellular stress via ΔNp63α phosphorylation.  相似文献   

13.
Comment on: Cesi V, et al. Cell Cycle 2011; 10:4149-61.  相似文献   

14.
Genetic variants may determine susceptibility of congenital heart disease (CHD). To evaluate the impact of transforming growth factor-β1 (TGFβ1), TGFβ receptor II (TGFβR2) and vascular endothelial growth factor (VEGF) polymorphisms on conotruncal heart defects susceptibility, we genotyped six functional polymorphisms TGFβ1 rs1800469 C>T, TGFβR2 rs3087465 G>A, VEGF ?2578C>A, ?1498T>C, ?634G>C and +936C>T in a hospital based case–control study of 244 conotruncal heart defects cases and 136 non-CHD controls in a Chinese population. Logistic regression analyses revealed that if the TGFβ1 rs1800469 CC homozygote genotype was used as the reference group, subjects carrying the CT variant heterozygote had a significant 0.48-fold decreased risk of conotruncal heart defects [odds ratio (OR) = 0.52; 95 % confidence interval (CI) = 0.30–0.88], subjects carrying the TT variant homozygote had a significant 0.47-fold decreased risk of conotruncal heart defects (OR 0.53; 95 % CI 0.28–1.00). In stratification analyses, the TGFβ1 rs1800469 C>T genotype was associated with a decreased risk for tetralogy of fallot in homozygote comparisons (OR 0.47; 95 % CI 0.22–0.99), a decreased risk for transposition of great artery in the dominant genetic model (OR 0.49; 95 % CI 0.28–0.87) and heterozygote comparisons (OR 0.45; 95 % CI 0.24–0.83). Our findings suggest that TGFβ1 rs1800469 C>T polymorphism was significantly associated with decreased risk of conotruncal heart defects. TGFβR2 rs3087465 G>A, VEGF ?2578C>A, ?1498T>C, ?634G>C and +936C>T polymorphisms may not play a role in the susceptibility of conotruncal heart defects.  相似文献   

15.
EMT or apoptosis: a decision for TGF-β   总被引:3,自引:0,他引:3  
Song J 《Cell research》2007,17(4):289-290
  相似文献   

16.
Chen W  Cao W  Zhao H  Hu Q  Qu L  Hu S  Ge J  Wen Z  Wang X  Li H  Huang K  Bu Z 《Cytokine》2011,54(3):324-329
A CHO cell clone (CHO-PoIFN-β) with stable porcine IFN-β expression under control of CMV promoter was selected under G418 pressure. In a 25cm(2) cell culture flask (5 ml culture medium), the cumulative protein yield of recombinant PoIFN-β reached 2.3×10(6) IU/ml. This cells clone maintained stable expression for at least 20 generations even in the absence of G418 selection pressure. The expressed recombinant PoIFN-β could induce the expression of porcine Mx protein in PK15 cells, and activate the chicken Mx promoter-controlled luciferase reporter gene expression, confirming that the recombinant PoIFN-β has the biological activity of natural porcine type-I interferon. In addition, the recombinant PoIFN-β fully protected PK15 cells against 1000 TCID(50) of porcine transmissible gastroenteritis virus and pseudo-rabies virus infection, demonstrating its high potential in therapeutic applications. This is the first report of establishing a mammalian cell line with stable expression of porcine IFN-β.  相似文献   

17.
18.
Erythropoietin, Epo, is a 30.4 kDa glycoprotein hormone produced primarily by the fetal liver and the adult kidney. Epo exerts its haematopoietic effects by stimulating the proliferation and differentiation of erythrocytes with subsequent improved tissue oxygenation. Epo receptors are furthermore expressed in non-haematopoietic tissue and today, Epo is recognised as a cytokine with many pleiotropic effects. We hypothesize that hydrodynamic gene therapy with Epo can restore haemoglobin levels in anaemic transgenic mice and that this will attenuate the extracellular matrix accumulation in the kidneys. The experiment is conducted by hydrodynamic gene transfer of a plasmid encoding murine Epo in a transgenic mouse model that overexpresses TGF-β1 locally in the kidneys. This model develops anaemia due to chronic kidney disease characterised by thickening of the glomerular basement membrane, deposition of mesangial matrix and mild interstitial fibrosis. A group of age matched wildtype littermates are treated accordingly. After a single hydrodynamic administration of plasmid DNA containing murine EPO gene, sustained high haemoglobin levels are observed in both transgenic and wildtype mice from 7.5 ± 0.6 mmol/L to 9.4 ± 1.2 mmol/L and 10.7 ± 0.3 mmol/L to 15.5 ± 0.5 mmol/L, respectively. We did not observe any effects in the thickness of glomerular or tubular basement membrane, on the expression of different collagen types in the kidneys or in kidney function after prolonged treatment with Epo. Thus, Epo treatment in this model of chronic kidney disease normalises haemoglobin levels but has no effect on kidney fibrosis or function.  相似文献   

19.
20.
Latent TGFβ binding proteins are extracellular matrix proteins that bind latent TGFβ to form the large latent complex. Nonsynonymous polymorphisms in LTBP4, a member of the latent TGFβ binding protein gene family, have been linked to several human diseases, underscoring the importance of TGFβ regulation for a range of phenotypes. Because of strong linkage disequilibrium across the LTBP4 gene, humans have two main LTBP4 alleles that differ at four amino acid positions, referred to as IAAM and VTTT for the encoded residues. VTTT is considered the “risk” allele and associates with increased intracellular TGFβ signaling and more deleterious phenotypes in muscular dystrophy and other diseases. We now evaluated LTBP4 nsSNPs in dilated cardiomyopathy, a distinct disorder associated with TGFβ signaling. We stratified based on self-identified ethnicity and found that the LTBP4 VTTT allele is associated with increased risk of dilated cardiomyopathy in European Americans extending the diseases that associate with LTBP4 genotype. However, the association of LTBP4 SNPs with dilated cardiomyopathy was not observed in African Americans. To elucidate the mechanism by which LTBP4 genotype exerts this differential effect, TGFβ’s association with LTBP4 protein was examined. LTBP4 protein with the IAAM residues bound more latent TGFβ compared to the LTBP4 VTTT protein. Together these data provide support that LTBP4 genotype exerts its effect through differential avidity for TGFβ accounting for the differences in TGFβ signaling attributed to these two alleles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号