首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Modifying apolipoprotein (apo) A-I mimetic peptides to include a proline-punctuated α-helical repeat increases their anti-inflammatory properties as well as allows better mimicry of full-length apoA-I function. This study compares the following mimetics, either acetylated or biotinylated (b): 4F (18mer) and 4F-proline-4F (37mer, Pro). b4F interacts with both mouse HDL (moHDL) and LDL in vitro. b4F in vivo plasma clearance kinetics are not affected by mouse HDL level. Administration of biotinylated peptides to mice demonstrates that b4F does not associate with lipoproteins smaller than LDL in vivo, though it does associate with fractions containing free hemoglobin (Hb). In contrast, bPro specifically interacts with HDL. b4F and bPro show opposite binding responses to HDL by surface plasmon resonance. Administration of acetylated Pro to apoE−/− mice significantly decreases plasma serum amyloid A levels, while acetylated 4F does not have this ability. In contrast to previous reports that inferred that 4F associates with HDL in vivo, we systematically examined this potential interaction and demonstrated that b4F does not interact with HDL in vivo but rather elutes with Hb-containing plasma fractions. bPro, however, specifically binds to moHDL in vivo. In addition, the number of amphipathic α-helices and their linker influences the anti-inflammatory effects of apoA-I mimetic peptides in vivo.  相似文献   

2.
We hypothesize that apolipoprotein A-I (apoA-I) mimetic peptides better mimicking the punctuated alpha-helical repeats of full-length apoA-I are more anti-inflammatory and anti-atherogenic. This study compares a monomeric apoA-I mimetic helix to three different tandem helix peptides in vitro: 4F (18 mer), 4F-proline-4F (37 mer, Pro), 4F-alanine-4F (37 mer, Ala), and 4F-KVEPLRA-4F [the human apoA-I 4/5 interhelical sequence (IHS), 43 mer]. All peptides cleared turbid lipid suspensions, with 4F being most effective. In contrast to lipid clearance, tandem peptides were more effective at remodeling mouse HDL. All four peptides displaced apoA-I and apoE from the HDL, leaving a larger particle containing apoA-II and peptide. Peptide-remodeled HDL particles show no deficit in ABCG1 cholesterol efflux despite the loss of the majority of apoA-I. Tandem peptides show greater ability to efflux cholesterol from lipid-loaded murine macrophages, compared with 4F. Although 4F inhibited oxidation of purified mouse LDL, the Ala tandem peptide increased oxidation. We compared several tandem 4F-based peptides with monomeric 4F in assays that correlated with suggested anti-inflammatory/anti-atherogenic pathways. Tandem 4F-based peptides, which better mimic full-length apoA-I, exceed monomeric 4F in HDL remodeling and cholesterol efflux but not LDL oxidation protection. In addition, apoA-I mimetic peptides may increase reverse cholesterol transport through both ABCA1 as well as ABCG1 pathways.  相似文献   

3.
Novel therapeutic strategies are needed to attenuate increased systemic and gut inflammation that contribute to morbidity and mortality in chronic HIV infection despite potent antiretroviral therapy (ART). The goal of this study is to use preclinical models of chronic treated HIV to determine whether the antioxidant and anti-inflammatory apoA-I mimetic peptides 6F and 4F attenuate systemic and gut inflammation in chronic HIV. We used two humanized murine models of HIV infection and gut explants from 10 uninfected and 10 HIV infected persons on potent ART, to determine the in vivo and ex vivo impact of apoA-I mimetics on systemic and intestinal inflammation in HIV. When compared to HIV infected humanized mice treated with ART alone, mice on oral apoA-I mimetic peptide 6F with ART had consistently reduced plasma and gut tissue cytokines (TNF-α, IL-6) and chemokines (CX3CL1) that are products of ADAM17 sheddase activity. Oral 6F attenuated gut protein levels of ADAM17 that were increased in HIV-1 infected mice on potent ART compared to uninfected mice. Adding oxidized lipoproteins and endotoxin (LPS) ex vivo to gut explants from HIV infected persons increased levels of ADAM17 in myeloid and intestinal cells, which increased TNF-α and CX3CL1. Both 4F and 6F attenuated these changes. Our preclinical data suggest that apoA-I mimetic peptides provide a novel therapeutic strategy that can target increased protein levels of ADAM17 and its sheddase activity that contribute to intestinal and systemic inflammation in treated HIV. The large repertoire of inflammatory mediators involved in ADAM17 sheddase activity places it as a pivotal orchestrator of several inflammatory pathways associated with morbidity in chronic treated HIV that make it an attractive therapeutic target.  相似文献   

4.
Administered subcutaneously, D-4F or L-4F are equally efficacious, but only D-4F is orally efficacious because of digestion of L-4F by gut proteases. Orally administering niclosamide (a chlorinated salicylanilide used as a molluscicide, antihelminthic, and lampricide) in temporal proximity to oral L-4F (but not niclosamide alone) in apoE null mice resulted in significant improvement (P < 0.001) in the HDL-inflammatory index (HII), which measures the ability of HDL to inhibit LDL-induced monocyte chemotactic activity in endothelial cell cultures. Oral administration of L-[113-122]apoJ with niclosamide also resulted in significant improvement (P < 0.001) in HII. Oral administration of niclosamide and L-4F together with pravastatin to female apoE null mice at 9.5 months of age for six months significantly reduced aortic sinus lesion area (P = 0.02), en face lesion area (P = 0.033), and macrophage lesion area (P = 0.02) compared with pretreatment, indicating lesion regression. In contrast, lesions were significantly larger in mice receiving only niclosamide and pravastatin or L-4F and pravastatin (P < 0.001). In vitro niclosamide and L-4F tightly associated rendering the peptide resistant to trypsin digestion. Niclosamide itself did not inhibit trypsin activity. The combination of niclosamide with apolipoprotein mimetic peptides appears to be a promising method for oral delivery of these peptides.  相似文献   

5.
To test the hypothesis that sidedness of interfacial arginine (Arg) in apoA-I mimetic peptides, similar to that observed in apoA-I (Bashtovyy, D. et al. 2011. Sequence conservation of apolipoprotein A-I affords novel insights into HDL structure-function. J. Lipid Res. 52: 435–450.), may be important for biological activity, we compared properties of 4F and analogs, [K4,15>R]4F and [K9,13>R]4F, with Lys>Arg substitutions on the right and left side, respectively, of the 4F amphipathic helix. Intraperitoneal administration of these peptides into female apoE null mice (n = 13 in each group) reduced en face lesions significantly compared with controls; 4F and [K4,15>R]4F were equally effective whereas [K9,13>R]4F was less effective. Turnover experiments indicated that [K4,15>R]4F reached the highest, whereas [K9,13>R]4F had the lowest, plasma peak levels with a similar half life as the [K4,15>R]4F analog. The half life of 4F was two times longer than the other two peptides. The order in their abilities to associate with HDL in human plasma, generation of apoA-I particles with pre-β mobility from isolated HDL, lipid associating ability, and sensitivity of lipid complexes to trypsin digestion was: 4F>[K4,15,>R]4F>[K9,13>R]4F. These studies support our hypothesis that the sidedness of interfacial Arg residues in the polar face of apoA-I mimetics results in differential biological properties.  相似文献   

6.
Reduced levels of HDL cholesterol (HDL-C) are a strong independent predictor of coronary artery disease (CAD) risk. The major anti-atherogenic function of HDL is to mediate reverse cholesterol transport. This response is highly dependent on apoA-I and apoE, protein components of HDL. Randomized clinical trials have assessed effects of several classes of drugs on plasma cholesterol levels in CAD patients. Agents including cholestyramine, fibrates, niacin, and statins significantly lower LDL cholesterol (LDL-C) and induce modest increases in HDL-C, but tolerance issues and undesirable side effects are common. Additionally, residual risk may be present in patients with persistently low HDL-C and other complications despite a reduction in LDL-C. These observations have fueled interest in the development of new pharmacotherapies that positively impact circulating lipoproteins. The goal of this review is to discuss the therapeutic potential of synthetic apolipoprotein mimetic peptides. These include apoA-I mimetic peptides that have undergone initial clinical assessment. We also discuss newer apoE mimetics that mediate the clearance of atherogenic lipids from the circulation and possess anti-inflammatory properties. One of these (AEM-28) has recently been given orphan drug status and is undergoing clinical trials.  相似文献   

7.
ABCA1 mediates the transport of cellular cholesterol and phospholipids to HDL apolipoproteins. Apolipoprotein A-I (apoA-I) interactions with ABCA1-expressing cells elicit several responses, including removing cellular lipids, stabilizing ABCA1 protein, and activating Janus kinase 2 (JAK2). Here, we used synthetic apolipoprotein-mimetic peptides to characterize the relationship between these responses. Peptides containing one amphipathic helix of L- or D-amino acids (2F, D-2F, or 4F) and a peptide containing two helices (37pA) all promoted ABCA1-dependent cholesterol efflux, competed for apoA-I binding to ABCA1-expressing cells, blocked covalent cross-linking of apoA-I to ABCA1, and inhibited ABCA1 degradation. 37pA was cross-linked to ABCA1, confirming the direct binding of amphipathic helices to ABCA1. 2F, 4F, 37pA, and D-37pA all stimulated JAK2 autophosphorylation. Inhibition of JAK2 greatly reduced peptide-mediated cholesterol efflux, peptide binding to ABCA1-expressing cells, and peptide cross-linking to ABCA1, indicating that these processes require an active JAK2. In contrast, apoA-I and peptides stabilized ABCA1 protein even in the absence of an active JAK2, implying that this process is independent of JAK2 and lipid efflux-promoting binding of amphipathic helices to ABCA1. These findings show that amphipathic helices coordinate the activity of ABCA1 by several distinct mechanisms that are likely to involve different cell surface binding sites.  相似文献   

8.
To investigate structural requirement of helical apolipoprotein to phosphorylate and stabilize ATP-binding cassette transporter A1 (ABCA1), synthetic peptides (Remaley, A. T., Thomas, F., Stonik, J. A., Demosky, S. J., Bark, S. E., Neufeld, E. B., Bocharov, A. V., Vishnyakova, T. G., Patterson, A. P., Eggerman, T. L., Santamarina-Fojo, S., and Brewer, H. B. (2003) J. Lipid Res. 44, 828-836) were examined for these activities. L37pA, an L amino acid peptide that contains two class-A amphiphilic helices, and D37pA, the same peptide with all D amino acids, both removed cholesterol and phospholipid from differentiated THP-1 cells more than apolipoproteins (apos) A-I, A-II, and E. Both peptides also mediated lipid release from human fibroblasts WI-38 similar to apoA-I. L2D37pA, an L-peptide whose valine and tyrosine were replaced with D amino acids also promoted lipid release from WI-38 but less so with THP-1, whereas L3D37pA, in which alanine, lysine, and asparatic acid were replaced with D amino acids was ineffective in lipid release for both cell lines. ABCA1 protein in THP-1 and WT-38 was stabilized against proteolytic degradation by apoA-I, apoA-II, and apoE and by all the peptides tested except for L3D37pA, and ABCA1 phosphorylation closely correlated with its stabilization. The analysis of the relationship among these parameters indicated that removal of phospholipid triggers signals for phosphorylation and stabilization of ABCA1. We thus concluded that an amphiphilic helical motif is the minimum structural requirement for a protein to stabilize ABCA1 against proteolytic degradation.  相似文献   

9.
Apolipoprotein A-I (apoA-I) mimetic peptides have been pursued as new therapeutic agents for the treatment of atherosclerosis, yet their precise mechanism responsible for atheroprotection remains unclear. Like apoA-I itself, most of these peptides are capable of stimulating cholesterol efflux from macrophages or foam cells, and some of them stimulate lecithin cholesterol acyltransferase (LCAT) activity in the reverse cholesterol transport (RCT) pathway. However, the ability of mimetic peptides to deliver cholesterol into hepatocytes (off-loading), the last step of the RCT pathway, has not been demonstrated. In this study, we compared a mimetic peptide D-4F to purified apoA-I, to address the role that mimetics play during the off-loading process. Both D-4F and apoA-I formed spherical nano-particles when reconstituted with cholesteryl ester and phospholipids. Compared to apoA-I, D-4F particles were 20 times more efficient in off-loading cholesterol to HepG2 hepatocytes with an apparent Kt (transport) of 0.74 μg/mL. Furthermore, D-4F also facilitated cholesteryl ester offloading from HDL particles into HepG2 cells when it was pre-incubated with these HDL particles. Using an inducible HEK293 cell line, we demonstrated that these nano-particles were able to be taken up through SR-BI, a HDL selective receptor. Cholesterol uptake by HepG2 cells was completely blocked by a neutralizing monoclonal antibody against SR-BI, demonstrating that D-4F particles, similar to HDL, specifically off-loaded cholesterol through SR-BI. Overall our data provides evidence that D-4F is capable of mimicking apoA-I to form HDL-like particles, and off-loads cholesterol for catabolism and excretion, thus completing RCT.  相似文献   

10.
Apolipoprotein A-I (apoA-I) mimetic peptides are considered a promising novel therapeutic approach to prevent and/or treat atherosclerosis. An apoA-I mimetic peptide ELK-2A2K2E was designed with a reductionist approach and has shown exceptional activity in supporting cholesterol efflux but modest anti-inflammatory and anti-oxidant properties in vitro. In this study we compared these in vitro properties with the capacity of this peptide to modify rates of reverse cholesterol transport and development of atherosclerosis in mouse models. The peptide enhanced the rate of reverse cholesterol transport in C57BL/6 mice and reduced atherosclerosis in Apoe−/− mice receiving a high fat diet. The peptide modestly reduced the size of the plaques in aortic arch, but was highly active in reducing vascular inflammation and oxidation. Administration of the peptide to Apoe−/− mice on a high fat diet reduced the levels of total, high density lipoprotein and non-high density lipoprotein cholesterol and triglycerides. It increased the proportion of smaller HDL particles in plasma at the expense of larger HDL particles, and increased the capacity of the plasma to support cholesterol efflux. Thus, ELK-2A2K2E peptide reduced atherosclerosis in Apoe−/− mice, however, the functional activity profile after chronic in vivo administration was different from that found in acute in vitro studies.  相似文献   

11.
PURPOSE OF REVIEW: Recent publications related to the potential use of apolipoprotein (apo)A-I and apoA-I mimetic peptides in the treatment of atherosclerosis are reviewed. RECENT FINDINGS: A preliminary report indicating that infusion of apoA-IMilano into humans once weekly for 5 weeks caused a significant decrease in coronary artery atheroma volume has sparked great interest in the potential therapeutic use of apoA-I. Recent studies have revealed that HDL quality (e.g. HDL apolipoprotein and lipid content, including oxidized lipids, particle size and electrophoretic mobility, associated enzymatic activities, inflammatory/anti-inflammatory properties, and ability to promote cholesterol efflux) may be more important than HDL-cholesterol levels. Therefore, when developing new strategies to raise HDL-cholesterol concentrations by interfering with HDL metabolism, one must consider the quality of the resulting HDL. In animal models, raising HDL-cholesterol levels by administering oral phospholipids improved both the quantity and quality of HDL and was associated with lesion regression. An apoA-I mimetic peptide, namely 4F synthesized from D-amino acids (D-4F), administered orally to mice did not raise HDL-cholesterol concentrations but promoted the formation of pre-beta HDL containing increased paraoxonase activity, resulting in significant improvements in HDL's anti-inflammatory properties and ability to promote cholesterol efflux from macrophages in vitro. Oral D-4F also promoted reverse cholesterol efflux from macrophages in vivo. SUMMARY: The quality of HDL may be more important than HDL-cholesterol levels. ApoA-I and apoA-I mimetic peptides appear to have significant therapeutic potential in atherosclerosis.  相似文献   

12.
New treatment approaches are needed for patients with asthma. Apolipoprotein A-I (apoA-I), the major structural protein of high-density lipoproteins, mediates reverse cholesterol transport and has atheroprotective and anti-inflammatory effects. In this study, we hypothesized that an apoA-I mimetic peptide might be effective at inhibiting asthmatic airway inflammation. A 5A peptide, which is a synthetic, bihelical apoA-I mimetic, was administered to wild-type A/J mice via osmotic mini-pump prior to the induction of house dust mite (HDM)-induced asthma. HDM-challenged mice that received the 5A apoA-I mimetic peptide had significant reductions in the number of bronchoalveolar lavage fluid eosinophils, lymphocytes, and neutrophils, as well as in histopathological evidence of airway inflammation. The reduction in airway inflammation was mediated by a reduction in the expression of Th2- and Th17-type cytokines, as well as in chemokines that promote T cell and eosinophil chemotaxis, including CCL7, CCL17, CCL11, and CCL24. Furthermore, the 5A apoA-I mimetic peptide inhibited the alternative activation of pulmonary macrophages in the lungs of HDM-challenged mice. It also abrogated the development of airway hyperresponsiveness and reduced several key features of airway remodeling, including goblet cell hyperplasia and the expression of collagen genes (Col1a1 and Col3a1). Our results demonstrate that the 5A apoA-I mimetic peptide attenuates the development of airway inflammation and airway hyperresponsiveness in an experimental murine model of HDM-induced asthma. These data support the conclusion that strategies using apoA-I mimetic peptides, such as 5A, might be developed further as a possible new treatment approach for asthma.  相似文献   

13.
Modulation of the reverse cholesterol transport (RCT) pathway may provide a therapeutic target for the prevention and treatment of atherosclerotic cardiovascular disease (CVD). In the present study, we evaluated a novel 26-amino acid apolipoprotein mimetic peptide (ATI-5261) designed from the carboxyl terminal of apoE, in its ability to mimic apoA-I functionality in RCT in vitro. Our data shows that nascent HDL-like (nHDL) particles generated by incubating cells over-expressing ABCA1 with ATI-5261 increase the rate of specific ABCA1 dependent lipid efflux, with high affinity interactions with ABCA1. We also show that these nHDL particles interact with membrane micro-domains in a manner similar to nHDL apoA-I. These nHDL particles then interact with the ABCG1 transporter and are remodeled by plasma HDL-modulating enzymes. Finally, we show that these mature HDL-like particles are taken up by SR-BI for cholesterol delivery to liver cells. This ATI-5621-mediated process mimics apoA-I and may provide a means to prevent cholesterol accumulation in the artery wall. In this study, we propose an integrative physiology approach of HDL biogenesis with the synthetic peptide ATI-5261. These experiments provide new insights for potential therapeutic use of apolipoprotein mimetic peptides.  相似文献   

14.

Objective

High density lipoprotein (HDL) cholesterol levels are inversely related to cardiovascular disease risk and associated with a reduced risk of type 2 diabetes. Apolipoprotein A-I (apoA-I; major HDL protein) mimetics have been reported to reduce atherosclerosis and decrease adiposity. This study investigated the effect of L4F mimetic peptide and apoA-I overexpression on weight gain, insulin resistance, and atherosclerosis in an LDL receptor deficient (Ldlr-/-) model fed a high fat high sucrose with cholesterol (HFHSC) diet.

Methods

Studies in differentiated 3T3-L1 adipocytes tested whether L4F could inhibit palmitate-induced adipocyte inflammation. In vivo studies used male Ldlr-/- mice fed a HFHSC diet for 12 weeks and were injected daily with L4F (100 µg/mouse) subcutaneously during the last 8 weeks. Wild-type and apoA-I overexpressing Ldlr-/- mice were fed HFHSC diet for 16 weeks.

Results

Neither L4F administration nor apoA-I overexpression affected weight gain, total plasma cholesterol or triglycerides in our studies. While pre-treatment of 3T3-L1 adipocytes with either L4F or HDL abolished palmitate-induced cytokine expression in vitro, L4F treatment did not affect circulating or adipose tissue inflammatory markers in vivo. Neither L4F administration nor apoA-I overexpression affected glucose tolerance. ApoA-I overexpression significantly reduced atherosclerotic lesion size, yet L4F treatment did not affect atherosclerosis.

Conclusion

Our results suggest that neither L4F (100 µg/day/mouse) nor apoA-I overexpression affects adiposity or insulin resistance in this model. We also were unable to confirm a reduction in atherosclerosis with L4F in our particular model. Further studies on the effect of apoA-I mimetics on atherosclerosis and insulin resistance in a variety of dietary contexts are warranted.  相似文献   

15.
The relationship between high-density lipoprotein and pulmonary function is unclear. To determine mechanistic relationships we investigated the effects of genetic deletion of apolipoprotein A-I (apoA-I) on plasma lipids, paraoxonase (PON1), pro-inflammatory HDL (p-HDL), vasodilatation, airway hyperresponsiveness and pulmonary oxidative stress, and inflammation. ApoA-I null (apoA-I−/−) mice had reduced total and HDL cholesterol but increased pro-inflammatory HDL compared with C57BL/6J mice. Although PON1 protein was increased in apoA-I−/− mice, PON1 activity was decreased. ApoA-I deficiency did not alter vasodilatation of facialis arteries, but it did alter relaxation responses of pulmonary arteries. Central airway resistance was unaltered. However, airway resistance mediated by tissue dampening and elastance were increased in apoA-I−/− mice, a finding also confirmed by positive end-expiratory pressure (PEEP) studies. Inflammatory cells, collagen deposition, 3-nitrotyrosine, and 4-hydroxy-2-nonenal were increased in apoA-I−/− lungs but not oxidized phospholipids. Colocalization of 4-hydroxy-2-nonenal with transforming growth factor β-1 (TGFβ-1 was increased in apoA-I−/− lungs. Xanthine oxidase, myeloperoxidase and endothelial nitric oxide synthase were increased in apoA-I−/− lungs. Dichlorodihydrofluorescein-detectable oxidants were increased in bronchoalveolar lavage fluid (BALF) in apoA-I−/− mice. In contrast, BALF nitrite+nitrate levels were decreased in apoA-I−/− mice. These data demonstrate that apoA-I plays important roles in limiting pulmonary inflammation and oxidative stress, which if not prevented, will decrease pulmonary artery vasodilatation and increase airway hyperresponsiveness.  相似文献   

16.
In order to examine the necessary structural features for a protein to promote lipid efflux by the ABCA1 transporter, synthetic peptides were tested on ABCA1-transfected cells (ABCA1 cells) and on control cells. L-37pA, an l amino acid peptide that contains two class-A amphipathic helices linked by proline, showed a 4-fold increase in cholesterol and phospholipid efflux from ABCA1 cells compared to control cells. The same peptide synthesized with a mixture of l and d amino acids was less effective than L-37pA in solubilizing dimyristoyl phosphatidyl choline vesicles and in effluxing lipids. In contrast, the 37pA peptide synthesized with all d amino acids (D-37pA) was as effective as L-37pA. Unlike apoA-I, L-37pA and D-37pA were also capable, although at a reduced rate, of causing lipid efflux independent of ABCA1 from control cells, Tangier disease cells, and paraformaldehyde fixed ABCA1 cells. The ability of peptides to bind to cells correlated with their lipid affinity. In summary, the amphipathic helix was found to be a key structural motif for peptide-mediated lipid efflux from ABCA1, but there was no stereoselective requirement. In addition, unlike apoA-I, synthetic peptides can also efflux lipid by a passive, energy-independent pathway that does not involve ABCA1 but does depend upon their lipid affinity.  相似文献   

17.
18.
Apolipoprotein A-I (apoA-I)-mediated cholesterol efflux involves the binding of apoA-I to the plasma membrane via its C terminus and requires cellular ATP-binding cassette transporter (ABCA1) activity. ApoA-I also stimulates secretion of apolipoprotein E (apoE) from macrophage foam cells, although the mechanism of this process is not understood. In this study, we demonstrate that apoA-I stimulates secretion of apoE independently of both ABCA1-mediated cholesterol efflux and of lipid binding by its C terminus. Pulse-chase experiments using (35)S-labeled cellular apoE demonstrate that macrophage apoE exists in both relatively mobile (E(m)) and stable (E(s)) pools, that apoA-I diverts apoE from degradation to secretion, and that only a small proportion of apoA-I-mobilized apoE is derived from the cell surface. The structural requirements for induction of apoE secretion and cholesterol efflux are clearly dissociated, as C-terminal deletions in recombinant apoA-I reduce cholesterol efflux but increase apoE secretion, and deletion of central helices 5 and 6 decreases apoE secretion without perturbing cholesterol efflux. Moreover, a range of 11- and 22-mer alpha-helical peptides representing amphipathic alpha-helical segments of apoA-I stimulate apoE secretion whereas only the C-terminal alpha-helix (domains 220-241) stimulates cholesterol efflux. Other alpha-helix-containing apolipoproteins (apoA-II, apoA-IV, apoE2, apoE3, apoE4) also stimulate apoE secretion, implying a positive feedback autocrine loop for apoE secretion, although apoE4 is less effective. Finally, apoA-I stimulates apoE secretion normally from macrophages of two unrelated subjects with genetically confirmed Tangier Disease (mutations C733R and c.5220-5222delTCT; and mutations A1046D and c.4629-4630insA), despite severely inhibited cholesterol efflux. We conclude that apoA-I stimulates secretion of apoE independently of cholesterol efflux, and that this represents a novel, ABCA-1-independent, positive feedback pathway for stimulation of potentially anti-atherogenic apoE secretion by alpha-helix-containing molecules including apoA-I and apoE.  相似文献   

19.
Polymorphisms in the apolipoprotein E (apoE) gene are risk factors for chronic inflammatory diseases including atherosclerosis. The gene product apoE is synthesized in many cell types and has both lipid transport–dependent and lipid transport–independent functions. Previous studies have shown that apoE expression in myeloid cells protects against atherogenesis in hypercholesterolemic ApoE−/− mice. However, the mechanism of this protection is still unclear. Using human APOE gene replacement mice as models, this study showed that apoE2 and apoE4 expressed endogenously in myeloid cells enhanced the inflammatory response via mechanisms independent of plasma lipoprotein transport. The data revealed that apoE2-expressing myeloid cells contained higher intracellular cholesterol levels because of impaired efflux, causing increasing inflammasome activation and myelopoiesis. In contrast, intracellular cholesterol levels were not elevated in apoE4-expressing myeloid cells, and its proinflammatory property was found to be independent of inflammasome signaling and related to enhanced oxidative stress. When ApoE−/− mice were reconstituted with bone marrow from various human APOE gene replacement mice, effective reduction of atherosclerosis was observed with marrow cells obtained from APOE3 but not APOE2 and APOE4 gene replacement mice. Taken together, these results documented that apoE2 and apoE4 expression in myeloid cells promotes inflammation via distinct mechanisms and promotes atherosclerosis in a plasma lipoprotein transport–independent manner.  相似文献   

20.
Human scavenger receptor class B type I, CLA-1, mediates lipopolysaccharide (LPS) binding and internalization (Vishnyakova, T. G., Bocharov, A. V., Baranova, I. N., Chen, Z., Remaley, A. T., Csako, G., Eggerman, T. L., and Patterson, A. P. (2003) J. Biol. Chem. 278, 22771-22780). Because one of the recognition motifs in SR-B1 ligands is the anionic amphipathic alpha-helix, we analyzed the effects of model amphipathic alpha-helical-containing peptides on LPS uptake and LPS-stimulated cytokine production. The L-37pA model peptide, containing two class A amphipathic helices, bound with high affinity (K(d) = 0.94 microg/ml) to CLA-1-expressing HeLa cells with a 10-fold increased capacity when compared with mock transfected HeLa cells. Both LPS and L-37pA colocalized with anti-CLA-1 antibody and directly bound CLA-1 as determined by cross-linking. SR-BI/CLA-1 ligands such as HDL, apoA-I, and L-37pA efficiently competed against iodinated L-37pA. Bacterial LPS, lipoteichoic acid, and hsp60 also competed against iodinated L-37pA. Model peptides blocked uptake of iodinated LPS in both mock transfected and CLA-1-overexpressing HeLa cells. Bound and internalized Alexa-L-37pA and BODIPY-LPS colocalized at the cell surface and perinuclear compartment. Both ligands were predominantly transported to the Golgi complex, colocalizing with the Golgi markers bovine serum albumin-ceramide, anti-Golgin97 antibody, and cholera toxin subunit B. A 100-fold excess of L-37pA nearly eliminated BODIPY-LPS binding and internalization. L-37pA and its d-amino acid analogue, D-37pA peptide were similarly effective in blocking LPS, Gram-positive bacterial wall component lipoteichoic acid and bacterial heat shock protein Gro-EL-stimulated cytokine secretion in THP-1 cells. In the same culture media used for the cytokine stimulation study, neither L-37pA nor D-37pA affected the Limulus amebocyte lysate activity of LPS, indicating that LPS uptake and cytokine stimulation were blocked independently of LPS neutralization. These results demonstrate that amphipathic helices of exchangeable apolipoproteins may represent a general host defense mechanism against inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号