首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Summary Givetian to early Carboniferous sediments of South China are characterized by carbonates. Middle and Late Devonian strata are best developed in the Guilin area. Reefs and organic shoals are recorded by various lithofacies types indicating the existence of an extended carbonate platform and a change of the composition of reef communities in time. Starting in the late Devonian, stromatoporoids and corals were replaced by algae that subsequently played an important role together with stromatoporoids, receptaculitids and fasciculate rugose corals in reef communities. In Houshan, 5 km west of Guilin, a coral-bafflestone reef occurs in the Frasnian strata, situated near an offshore algal-stromatoporoid reef. The coral reef was formed in a back-reef area adjacent to the inner platform margin. The coral-bafflestone reef is unique among the late Devonian reefs of South China with regard to the biotic composition. The reef is composed of fasciculate colonies ofSmithiphyllum guilinense n. sp. embedded within in packstones and wackestones. The height of colonies reaches 1 m. The community is low-diverse. The species ofSmithiphyllum occurring in the Frasnian reef complexes of Guilin exhibit a distinct facies control:Smithiphyllum guilinense occurs in or near to margin facies and formed bafflestone, constituting a coral reef whereasSmithiphyllum occidentale Sorauf, 1972 andSmithiphyllum sp.—characterized by small colonies with thin corallites—are restricted to the back-reef and marginal slope facies. The bush-like coral colonies baffled sediments. Algae and stromatoporoids (mainlyStachyodes) are other reef biota. Reef-dwelling organisms are dominated by brachiopods. The reefs are composed from base to top of five lithofacies types: 1) cryptalgal micrite, 2) peloidal packstone, 3) stromatactis limestone, 4) coral-bafflestone, and 5) pseudopeloidal packstone. The reef complex can be subdivided into back-reef subfacies, reef flat and marginal subfacies, and marginal fore-slope subfacies. The Houshan coral-bafflestone reef is not a barrier reef but a coral patch reef located near the inner margin of a carbonate platform.  相似文献   

2.
Summary Microbial reefs, together with stromatolitic mounds and ooid shoals, constitute massive limestones in Famennian platform marginal strata in Guilin, in sharp contrast to the well-known coral-stromatoporoid reefs in the Givetian and Frasnian. Microbes played a significant and important role as stabilizers in the Famennian carbonate deposits of Guilin. A reef at Zhaijiang was constructed byEpiphyton andRenalcis, and is representative of such carbonate buildups. The reef is situated 10 km west of Guilin and corresponds to a microbe-dominated platform margin carbonate complex. Organisms in the Zhaijiang microbial reef are low diversity and dominated by ostracods and two genera of microbes,Epiphyton andRenalcis. Other microbial genera such asSphaerocodium andWetheredella occur in most of reef facies in Guilin, but their role as reef builder is doubtful because they occur only in minor amounts. The same four genera occur in volumetrically significant amounts in the upper Devonian carbonate complexes of Alberta. Canada and Western Australia. However.Epiphyton is more abundant in the Guilin reefs. The Zhaijiang microbial reef developed above Famennian proximal slope faices, as suggested by reef architecture and paleogeographic setting. The facies sequence of the microbial reef can be divided into three parts. The lower part is composed of medium-bedded bioclastic grainstones with a few microbial framestone lithoclasts, representing a proximal slope facies. The middle part consists of thin-bedded mudstone and shale with limestone lenses that are thought to be low stand deposits. In some cross sections, mudstone and shale infilled tidal channels that developed in the bioclastic grainstones.Renalcis-Epiphyton framestone constitutes the upper part with massive stacking patterns. The reef is 35 m thick and over 50 m in width. Nine litho- and biofacies are recognized. Zhaijiang reef provides an example of a binder guild-dominated buildup in the almost vacant reef ecosystem of the Famennian and represents a characteristic kind of reef after the Frasnian/Famennian extinction.  相似文献   

3.
Summary The Upper Triassic Dachsteinkalk of the Hochk?nig Massif, situated 50 km south of Salzburg in the Northern Calcareous Alps, corresponds to a platform margin reef complex of exceptional thickness. The platform interior limestones form equally thick sequences of the well known cyclic Lofer facies. Sedimentation in the reef complex was not so strongly controlled by low-amplitude sea-level oscillations as was the Lofer facies. The westernmost of the 8 facies of the reef complex is an oncolite-dominated lagoon, in which wave-resistant stromatolite mounds with a relief of a few metres were periodically developed. The transition to the central reef area is accomplished across the back-reef facies. In the back-reef facies patch reefs and calcisponges appear. The proportion of coarse bioclastic sediment increases rapidly over a few hundred metres before the central reef area is encountered. The central reef area consists of relatively widely spaced small patch reefs that did not develop wave-resistant reef framework structures. The bulk of the sediment in the central reef area is coarse bioclastic material, provided by the dense growth of reef organisms and the wave-induced disintegration of patch reefs. Collapse of the reef margin is recorded by the supply of large blocks of patch reef material to the upper reef slope. Additionally, coarse, loose bioclastic debris was supplied to the upper reef slope and this was incorporated into debris flows on the reef slope and turbidites found at the base of the slope and in the off-reef facies. Partially lithified packstones and wackestones of the lower to middle reef slope were modified by mass movement to form breccia and rudstone sheets. The latter reach out hundreds of metres into the off-reef facies environment. A reef profile is presented which was derived by the restoration of strike and dip information. In conjunction with constraints imposed by sedimentary facies related to slope processes, the angle of slope in the reef margin area ranged from 11° to 5°, forming a concave (dished downwards) slope. Water depth estimations require that the central reef area did not develop in water of less than 10 metres depth. At the reef margin water depths were about 30 metres, at the base of the reef slope 200 metres and deepening in the off-reef facies to 250 metres. While previous work on reef complexes from this type of setting suggests growth in a heavily storm-dominated environment, the present author finds little evidence for the storm generation of the fore reef breccias, although there is good evidence for storm-influenced sedimentation and reworking in the central reef area. Post-depositional processes were characterised by continued slope processes causing brecciation and hydraulic injection of red internal sediments downwards into the reef slope and off-reef limestones. Hydrothermal circulation caused a number of phases of post-depositional (diagenetic) brecciation. There appears not to have been an important period of emergence at the Triassic/Jurassic boundary.  相似文献   

4.
Upper Jurassic reefs rich in microbial crusts generally appear in deeper (sponge—‘algal’ crust reefs) or in very shallow but protected settings (coral or coral-coralline sponge meadows with ‘algal’ crusts). Upper Jurassic high-energy reefs (coral reefs and coral-stromatoporoid reefs) normally lack major participation of microbial crusts but rather represent huge bioclastic piles with only minor framestone patches preserved. An exception to this rule is represented by the high-energy, coral-‘algal’ Ota Reef from the Kimmeridgian of the Lusitanian Basin (Portugal). The narrow Ota Reef tract rims a small intra-basinal carbonate platform exhibiting perfect facies zonation (from W to E: Reef tract, back reef sands, peritidal belt, low-energy shallow lagoon). The reef is dominated by massive corals (Thamnasteria, Microsolena, Stylina). Complete preservation of coral framework is rare: like other Upper Jurassic high-energy reefs, the Ota Reef is very rich in debris; however, this debris is largely stabilized by algal and microbial crusts, what contrasts the other examples and gives the Ota Reef the appearance of a typical modern high-energy coral-melobesioid algal reef. Further similarities to modern reefs are the likely existence of a spur-and-groove system, the perfect sheltering of inner platform areas and the occurrence of small islands, as indicated by local blackenings and early vadose and karstic features.  相似文献   

5.
Skeletobionts are important components of most shallow marine ecosystems. Prior to the fossils reported herein, evidence of skeletobionts was absent from Upper Triassic successions on the northwestern margin of Pangaea. The boring Talpina ramosa is reported from bivalve body fossils from the Upper Triassic (Lower Norian) lower Pardonet Formation at Pink Mountain in northeastern British Columbia. This Ichnotaxon penetrates through both the outer and inner surface of articulated and disarticulated bivalve shells preserved within sharp-based event beds. The occurrence of these trace fossils underscores the paucity of borings, bioerosional structures, and encrusting taxa from Triassic successions in the western Pangaean realm. Due to erosional removal of shallow water strata by a post-Triassic unconformity, these event beds provide the only available information regarding the ecological health of Late Triassic depositional systems in the study area.  相似文献   

6.
The 125-ka sea level, which was approximately 6 m above present-day sea level, led to the partial flooding of many Caribbean islands. On Grand. Cayman, this event led to the formation of the large Ironshore Lagoon that covered most of the western half of the island and numerous, small embayments along the south, east, and north coasts. At that time, at least 33 coral species grew in waters around Grand Cayman. This fauna, like the modern coral fauna of Grand Cayman, was dominated byMontastrea annularis, Porites porites, Acropora polmata, andA. cervicornis. Scolymia cubensis andMycetophyllia ferox, not previously identified from the Late Pleistocene, are found in the Pleistocene patch reefs.Madracis mirabilis, Colpophyllia breviserialis, Agaricia tenuifolia, A. lamarcki, A. undata, Millepora spp., Mycetophyllia reesi, M. aliciae, andM. danaana, found on modern reefs, have not been identified from the Late Pleistocene reefs. Conversely,Pocillopora sp. cf.P. palmata, which is found in Late Pleistocene reefs, is absent on the modern reefs around Grand Cayman. The corals in the Ironshore Formation of Grand Cayman have been divided into 10 associations according to their dominant species, overall composition, and faunal diversity. Many of these associations are similar to the modern associations around Grand Cayman. Each of the Pleistocene coral associations, which can be accurately located on the known Late Pleistocene paleogeography of Grand Cayman, developed in distinct environmental settings. Overall trends identified in the modern settings are also apparent in the Late Pleistocene faunas. Thus, the diversity of the coral faunas increased from the interior of the Ironshore Lagoon to the reef crest. Similarly, the coral diversity in the Pleistocene patch reefs was related to the size of the reefs and their position relative to breaks in the barrier reef. The barrier reef included corals that are incapable of sediment rejection; whereas the patch reefs lacked such corals.  相似文献   

7.
The origin of Jurassic reefs: Current research developments and results   总被引:2,自引:0,他引:2  
Summary In order to elucidate the control of local, regional and global factors on occurrence, distribution and character of Jurassic reefs, reefal settings of Mid and Late Jurassic age from southwestern Germany, Iberia and Romania were compared in terms of their sedimentological (including diagenetic), palaeoecological, architectural, stratigraphic and sequential aspects. Upper Jurassic reefs of southern Germany are dominated by siliceous sponge—microbial crust automicritic to allomicritic mounds. During the Oxfordian these form small to large buildups, whereas during the Kimmeridgian they more frequently are but marginal parts of large grain-dominated massive buildups. Diagenesis of sponge facies is largely governed by the original composition and fabric of sediments. The latest Kimmeridgian and Tithonian spongiolite development is locally accompanied by coral facies, forming large reefs on spongiolitic topographic elevations or, more frequently, small meadows and patch reefs within bioclastic to oolitic shoal and apron sediments. New biostratigraphic results indicate a narrower time gap between Swabian and Franconian coral development than previously thought. Palynostratigraphy and mineralostratigraphy partly allow good stratigraphic resolution also in spongiolitic buildups, and even in dolomitised massive limestones. Spongiolite development of the Bajocian and Oxfordian of eastern Spain shares many similarities. They are both dominated by extensive biostromal development which is related to hardground formation during flooding events. The Upper Jurassic siliceous sponge facies from Portugal is more localised, though more differentiated, comprising biostromal, mudmound and sponge-thrombolite as well as frequent mixed coral-sponge facies. The Iberian Upper Jurassic coral facies includes a great variety of coral reef and platform types, a pattern which together with the analysis of coral associations reflects the great variability of reefal environments. Microbial reefs ranging from coralrich to siliceous sponge-bearing to pure thrombolites frequently developed at different water depths. Reef corals even thrived within terrigeneous settings. In eastern Romania, small coral reefs of various types as well as larger siliceous sponge-microbial crust mounds grew contemporaneously during the Oxfordian, occupying different bathymetric positions on a homoclinal ramp. Application of sequence stratigraphic concepts demonstrates that onset or, in other cases, maximum development of reef growth is related to sea level rise (transgressions and early highstand) which caused a reduction in allochthonous sedimentation. The connection of reef development with low background sedimentation is corroborated by the richness of reefs in encrusting organisms, borers and microbial crusts. Microbial crusts and other automicrites can largely contribute to the formation of reef rock during allosedimentary hiatuses. However, many reefs could cope with variable, though reduced, rates of background sedimentation. This is reflected by differences in faunal diversities and the partial dominance of morphologically adapted forms. Besides corals, some sponges and associated brachiopods show distinct morphologies reflecting sedimentation rate and substrate consistency. Bathymetry is another important factor in the determination of reefal composition. Not only a generally deeper position of siliceous sponge facies relative to coral facies, but also further bathymetric differentiation within both facies groups is reflected by changes in the composition, diversity and, partly, morphology of sponges, corals, cementing bivalves and microencrusters. Criteria such as authigenic glauconite, dysaerobic epibentic bivalves,Chondrites burrows or framboidal pyrite in the surrounding sediments of many Upper Jurassic thrombolitic buildups suggest that oxygen depletion excluded higher reefal metazoans in many of these reefs. Their position within shallowing-upwards successions and associated fauna from aerated settings show that thrombolitic reefs occurred over a broad bathymetric area, from moderately shallow to deep water. Increases in the alkalinity of sea water possibly enhanced calcification. Reefs were much more common during the Late Jurassic than during the older parts of this period. Particularly the differences between the Mid and Late Jurassic frequencies of reefs can be largely explained by a wider availability of suitable reef habitats provided by the general sea level rise, rather than by an evolutionary radiation of reef biota. The scarcity of siliceous sponge reefs on the tectonically more active southern Tethyan margin as well as in the Lusitanian Basin of west-central Portugal reflects the scarcity of suitable mid to outer ramp niches. Coral reefs occurred in a larger variety of structural settings. Upper Jurassic coral reefs partly grew in high latitudinal areas suggesting an equilibrated climate. This appears to be an effect of the buffering capacity of high sea level. These feedback effects of high sea level also may have reduced oceanic circulation particularly during flooding events of third and higher order, which gave rise to the development of black shales and dysaerobic thrombolite reefs. Hence, the interplay of local, regional and global factors caused Jurassic reefs to be more differentiated than modern ones, including near-actualistic coral reefs as well as non-actualistic sponge and microbial reefs.  相似文献   

8.
Summary The roles of Permian colonial corals in forming organic reefs have not been adequately assessed, although they are common fossils in the Permian strata. It is now known that colonial corals were important contributors to reef framework during the middle and late Permian such as those in South China, northeast Japan, Oman and Thailand. A coral reef occurs in Kanjia-ping, Cili County, Hunan, South China. It is formed by erect and unscathed colonies ofWaagenophyllum growing on top of one anotherin situ to form a baffle and framework. Paleontological data of the Cili coral reef indicates a middle to late Changhsing age (Late Permian), corresponding to thePalaeofusulina zone. The coral reef exposure extends along the inner platform margin striking in E-S direction for nearly 4 km laterally and generally 35 to 57 m thick. The Cili coral reef exhibits a lateral differentiation into three main reef facies; reef core facies, fore-reef facies, and marginal slope facies. The major reef-core facies is well exposed in Shenxian-wan and Guanyin-an sections where it rests on the marginal slope facies. Colonial corals are dispersed and preserved in non-living position easward. Sponges become major stabilizing organisms in the eastern part of Changhsing limestone outcrop in Kanjia-ping, but no read sponge reefs were formed. Coral reefs at Cili County in Human are different distinctly from calcisponge reefs in South China in their palaeogeography, lithofacies development, organic constitutuents, palaeoecology and diagenesis. The Cili coral reef also shows differences in age, depositional facies association, reef organisms and diagenesis from coral reefs in South Kitakami of Japan, Khorat Plateau of Thailand, and Saih Hatat of Oman. Although some sponge reefs and mounds can reach up to the unconformable Permian/Triassic boundary, coral reef at Kanjia-ping, Cili County, is the latest Permian reef known. This reef appears to had been formed in a palaeoenvironment that is different from that of the sponge reefs and provides an example of new and unique Permian reef type in South China, and could help us to: 1) understand the significance of colonial corals in Permian carbonate buildups; 2) evaluate the importance of coral community evolution prior to the collapse of reef ecosystems at the Permian/Triassic boundary; 3) better understand the effects of the biotic extinction events in Palaeotethys realm; 4) look for environmental factors that may have controlled reefs through time and space, and 5) provide valuable data for the study of Permian palaeoclimate and global evolutionary changes of Permian reefs and reef community.  相似文献   

9.
Li Yue  Steve Kershaw 《Facies》2003,48(1):269-284
Summary Early Silurian reef reconstruction on the Yangtze Platform, in the northern part of the South China Block, is preceded by a combination of regional and global processes. During most of Ashgill time (Late Ordovician), the area was dominated by Wufeng Formation deep water graptolitic black shales. Reefs largely disappeard in the middle of the Ashgill Stage, from the northwestern margin of Cathaysian Land (southeastern South China Block), in advance of the Late Ordovician glaciation and mass extinction, due to regional sea-level changes and regional uplift, unrelated to the mass extinction itselt. Late Ordovician microbial mudmound occurrence is also found in the western margin of the Yangtze Platform, its age corresponding to theDicellograptus complexus graptolite biozone of pre-extinction time. On the Yangtze Platform, a thin, non-reef-bearing carbonate, the Kuanyinchiao Formation (=Nancheng Formation in some sites), thickness generally no more than 1m, occurs near several landmasses as a result of Hirnantian regression. Reappearance of the earliest Silurian carbonates consisting of rare skeletal lenses in the upper part of Lungmachi Formation, are correlated to theacensus graptolite biozone, early Rhuddanian of Shiqian, northeastern Guizhou, near Qianzhong Land. Carbonate sediments gradually developed into beds rich in brachiopods and crinoids in the lower part of Xiangshuyuan Formation, middle Rhuddanian. In the middle part of Xiangshuyan Formation, biostromes, containing abundant and high diversity benthic faunas such as corals, crinoids and brachiopods, show beginnings of reconstruction of reef facies. Substantial reef recovery occurred in the upper part of Xiangshuyuan Formation, lower Aeronian, as small patch reefs and biostromes. During the late Aeronian, carbonate sediments, especially reefs and reef-related facies, expanded on the upper Yangtze Platform, and radiation of reefs occurred in Ningqiang Formation, upper Telychian. The long period of reef recovery, taking several million years, remains difficult to explain, because redistribution of any refugia faunas would be expected to take place soon after the extinction. Reefs and reef-related facies subsequently declined after Telychian time due to regional uplift of the major portion of the Yangtze Platform. Carbonate facies are therefore uncommon in South China during the rest of Silurian time.  相似文献   

10.
An Early Jurassic (Sinemurian) reef in the Telkawa Range, British Columbia Canada, yields coral species previously known from Morocco, Great Britain, Italy, Peru, and Chile. The principal constructional coral, Phacelostylophyllum rugosum (Laube), known from the Upper Triassic Dolomite Alps in northern Italy, is a holdover species. This coral survived the mass extinctions of the end-Triassic without leaving any other Jurassic records outside Canada. Other corals from the Telkwa reef include Stylophyllopsis victoriae (Duncan) and Actinastraea minima Beauvais known from Jurassic rocks of the Tethys. Closely related corals, Phacelostylophyllum chocolatensis (Wells) and Actinastraea plana (Duncan), are from southern Peru. The paleogeographic Occurrence of the Canadian reef in the volcanic terrane of Stikinia supports the contention that volcanic islands in distant outposts of the ancient Pacific served as refugia. In the aftermath of the end-Triassic reef decimation affecting the Tethys, corals and reef-building activities continued on ancient islands of the ancestral Pacific. The Hispanic Corridor, connecting the western Tethys with the western Pacific, may have played an important role during Sinemurian time. ***Reef; corals, Triassic, Jurassic, extinctions, paleobiogeography.  相似文献   

11.
Summary The Upper Rhaetian coral limestone of Adnet, southeast of Salzburg Austria has been repeatedly referred to as one of the most spectacular examples of an ancient ‘autochthonous’ coral reef structure. The ‘Tropfbruch’ quarry is probably the best outcrop for interpreting the distributional patterns of biotic successions and communities of a late Triassic patch reef. Our study is based on the interpretation of a) outcrop photographs, b) reef maps resulting from quadrat transects, and c) the analysis of quantitative data describing the distribution and frequency of reef organisms and sediment. A new methodological approach (combination of reef mapping and photo-transects) is used to obtain quantitative field data which can be compared in greater detail with data from modern coral reefs investigated by corresponding quantitative surveys. Three unconformities and three well-defined ‘reef growth stages’ reflecting the vertical and lateral development of the reef structure were differrentiated using transects: Stage 1, representing the reef growth optimum, is characterized by laterally differentiated coral reef knobs with corals in growth position. Criteria supporting this interpretation are the extraordinary size of the corals, their preservation in situ and the great thickness of this interval. The massive coralPamiroseris grew under higher energy conditions at the rim of the reef knob, whereas branchingRetiophyllia colonies preferred less agitated water in the center. Vertical changes are reflected by an increase in frequency of the dasycladacean algaDiplopora adnetensis and by the decreasing size ofRetiophyllia. These sedimentological and biological criteria together with the unconformity above indicate a fall in the sea level as a major control mechanism. Stage 2, separated from stage 1 by an unconformity caused by partial subaerial exposure and karstification, is characterized by vertically stacked coral successions with diverse reef debris. Facies heterogeneity is reflected by differences in the diversity, taphonomy and packing density of reef-building organisms as well as by differences in sediment input from the platform. Water depths and accommodation space were lower, therefore minor sea level fluctuations had a stronger effect on the biotic composition. The high percentage of coral debris and corals reworked by storms and the increase in the input of platform sediment led to a reduction of reef growth. Stage 3, again separated at the base by an unconformity associated with karstification, is characterized by bioclastic sediments with isolated reefbuilders forming a level-bottom community. The distribution of different coral morphotypes suggests that sea level fluctuations were not the only controlling factor. Variations in the substrate were caused by differences in the input of platform sediment. The three-step development seen in Adnet documents the response of low-diverse coral associations to variations caused by small-scale sea level changes, storm activity and sedimentation. The vertical changes in reef community structures correspond to a sequence of ‘allogenic replacements’. The Adnet reef structure should not be regarded as a general model of Alpine Upper Rhaetian reefs, because of the particular setting of the patch reef. Only the ‘capping beds’ of the Upper Rhaetian Reef Limestone of the Steinplatte exhibit criteria similar to Adnet. Potential modern analogues of features seen in the coral communities of Adnet are the internal structure of theRetiophyllia thickets, the key role of branching corals within the communities, the scattered distribution and low and even diversity of corals subsequent to breaks in settlement, segration patterns of corals indicating ‘contact avoidance’, toppling of large coral colonies by intensive boring, and decreasing coral coverage from deeper and sheltered settings to more shallower water depths.  相似文献   

12.
Coral reefs form the most diverse of all marine ecosystems on the Earth. Corals are among their main components and owe their bioconstructing abilities to a symbiosis with algae (Symbiodinium). The coral–algae symbiosis had been traced back to the Triassic (ca 240 Ma). Modern reef-building corals (Scleractinia) appeared after the Permian–Triassic crisis; in the Palaeozoic, some of the main reef constructors were extinct tabulate corals. The calcium carbonate secreted by extant photosymbiotic corals bears characteristic isotope (C and O) signatures. The analysis of tabulate corals belonging to four orders (Favositida, Heliolitida, Syringoporida and Auloporida) from Silurian to Permian strata of Europe and Africa shows these characteristic carbon and oxygen stable isotope signatures. The δ18O to δ13C ratios in recent photosymbiotic scleractinians are very similar to those of Palaeozoic tabulates, thus providing strong evidence of such symbioses as early as the Middle Silurian (ca 430 Ma). Corals in Palaeozoic reefs used the same cellular mechanisms for carbonate secretion as recent reefs, and thus contributed to reef formation.  相似文献   

13.
In the Upper Jurassic reef successions of the Crimean Peninsula (Sudak and Jalta areas), the microencruster Crescentiella morronensis (Crescenti), microbialites, and multiple generations of cements, form microframeworks. They were observed in two stages of the carbonate platform evolution, in the Middle–Upper Oxfordian, and in the Upper Kimmeridgian–Tithonian. Generally, in both stages, the features of the microframeworks are similar and consist of densely packed Crescentiella associated with microbialites and branched colonies of the sclerosponge Neuropora lusitanica Termier. The difference between the occurrences of the two stages is the variable amount of nubecularid foraminifera and enigmatic tube-shaped structures forming the central cavities of Crescentiella. The Crescentiella-microbial-cement microframeworks formed under phreatic conditions in the upper slope and seaward marginal depositional settings where intensive synsedimentary cementation took place. They formed in the initial stages of long cycles of restoration and blooming of the reefs. The late Jurassic examples resemble the Permian algae-microbial-cement reefs as well as the Triassic Tubiphytes and cement crust-dominated reefs. Concurrently, all these examples formed a transitional facies zone between typical slope facies to shallow subtidal platform margin facies characterized by high taxonomic diversity of calcified sponges, corals, and microencrusters forming the principal part of the reefs.  相似文献   

14.
Summary The Java Sea, one of the few modern tropical epeiric seas, is used as an analogue to examine oceanography, stratigraphy, and reefs of Devonian strata in the Appalachian and Michigan Basins. Nearshore patch reefs and offshore “pinnacle” reefs occur in both the Java Sea and the Emsian-Eifelian Onondaga Formation in the Appalachian Basin. Nearshore patch reefs also occur in the Eifelian Formosa Reef Limestone in the Michigan Basin. The Java Sea is characterized by quasi-estuarine circulation, in which runoff and rainfall exceed evaporation. Nutrient and organic matter influx from land and from estuarine upwelling contribute to organic rich facies during transgressions and sea level highstands. Similarly, we propose that high runoff from the Appalachian Mountains and from the Laurentian craton contributed to slightly reduced salinity in the Appalachian basin, including possible density stratification during Middle Devonian highstands. By contrast, the Michigan Basin was characterized by antiestuarine circulation, in which evaporation exceeded combined runoff and rainfall. Contemporaneous Emsian-Eifelian strata in the Michigan Basin are dolomite and dolomitic limestone, rather than cherty and muddy limestone typical of the Appalachian basin. Reef composition generally reflects oceanographic circulation regime within the epicontinental seas we examine. Nearshore reefs of the modern Java Sea and the Onondaga Formation (Appalachian Basin) are dominated by multilobate submassive, dendroid, and phaceloid corals, and virtually no platy corals or tabular stromatoporoids. Multilobate and phaceloid corals are better able to accommodate muddy sedimentation. By contrast, offshore pinnacle reefs of the Java Sea and nearshore reefs of the Formosa Reef Limestone are dominated by platyAcropora (modern) or tabular and laminar stromatoporoids (Devonian). The scarcity of tabular stromatoporoids, and the dominance of phaceloid corals and dendritic branching corals, in the Onondaga Formation (Appalachian Basin) are herein explained by localized high productivity conditions driven by quasi-estuarine circulation, rather than cool water. Quasi-estuarine circulation or localized topographic upwelling leading to highly productive coastal environments may be responsible for other Paleozoic examples of apparent cool-water carbonate deposition within the tropics, including the Ordovician of Eastern Canada.  相似文献   

15.
Burke  C. D.  McHenry  T. M.  Bischoff  W. D.  Huttig  E. S.  Yang  W.  Thorndyke  L. 《Hydrobiologia》2004,530(1-3):481-487
The 1995 coral bleaching event in the western Caribbean was the first reported episode that significantly affected the Belize barrier and lagoonal patch reefs. Bleaching was attributed to a 2 mo period of warm water temperatures above 30°C. Near Ambergris Caye, barrier and patch reefs experienced up to 50% bleaching. At Mexico Rocks patch reef complex, the bleaching resulted in changes in reef health, community, and physical structure. Prior to the hyperthermal episode, patch reef surface area consisted of 47% healthy framework coral coverage, 12% secondarily colonized biotic coverage, 35% dead coral surfaces that were degraded by biological activity and physical erosion, and 6%cavities. six months after bleaching, most corals had regained their color, but, owing to coral mortality, areas of surface degradation had increased to an average 49% (p=0.029 based on Kruskal–Wallis analyses). Eighteen months after bleaching, degraded surface areas expanded to 53% (p=0.0366). Although re-coloring indicates rapid recovery for surviving corals, the persistence in dead coral surfaces suggests that reef skeletal structure recovery lags behind that of individual corals. Initial results of framework measurements indicate that bleaching events may result in an ‘imbalance’ in the carbonate production rate of coral reefs and produce mass wasting of the skeletal structure. Remapping of reef skeletal structure should establish quantitative measures for the long-term effects of bleaching on patch reef frameworks.  相似文献   

16.
The paper deals with the distribution, paleogeography, age and biota of Triassic reefs in Slovenia. Most of these reefs have not been studied in detail up to now, but the paleographical distributional pattern can be outlined (Figs. 1 and 2). Triassic reefs are known from Central and Northern Slovenia, predominantly occurring at the margins of the “Slovenian trough” (which separates the northern Julian Platform and the southern Dinaric Platform) and at the margins of an intraplatform trough within the Julian platform. Reef growth started in the Ladinian and Cordevolian and continued (with interruptions during the Upper Carnian ?) to the Norian and Rhaetian. Anisian environments are characterized by the predominance of algal mats and dasycladacean algae. Cordevolian patch reefs as well as Norian and Rhaetian reefs were built during the Late Triassic by calcareous sponges and corals, which belong to different species (Tab. 1 and 2). Some smaller Cordevolian patch reefs may have been formed within deeper-water sediments. An interesting facies sequence is developed in the Norian Dachstein Limestone reef of Pokljuka (Julian Alps), starting with deeper-marine cherty limestones, which gradually succeeded by crinoidal limestones followed by reef limestones and lagoonal Dachstein Limestones.  相似文献   

17.
A carbonate ramp in the shallow‐marine northwestern part of the Central Tarim Uplift, Bachu, NW China, exhibits an extraordinary Late Ordovician reef complex along the Lianglitag Mountains, exposed for a distance of about 25 km. Seven localities within the ‘Middle Red Limestone’ of the Upper Member of the Lianglitag Formation (Katian, Late Ordovician) illustrated the changes in biofacies and lithofacies: northern, seaward‐directed patch reefs are replaced towards the south by coeval grain banks. The patch reef units are dominated by microbial and calcareous algal components. The reefs at the northernmost locality are knoll‐shaped, kalyptra‐shaped or irregularly shaped with sizes of individual reefs increasing from about 2 m in height and diameter. Stratigraphically upward, reefs notably expand to larger structures by several mounds coalescing; they are generally about 10 m thick and tens of metres in lateral extent. The maximum thickness of the main patch reef is more than 30 m, and its diameter is around 100 m. The reefal units turn into biostromes with gentler relief southward and still further south grade into banks composed of peloids and coated grains. The southernmost locality is still a shallow‐water bank, and the coastline is not documented in the study area. The present evidence indicates that the Late Ordovician palaeo‐oceanography provided a number of environments for the optimal growth of carbonate build‐ups; microbial‐calcareous algal communities could thrive in areas where the innovative metazoan reef frameworks consisting of corals and stromatoporoids did not play a significant role. The ramp morphology, especially changes in water depth, controlled the configuration of the reef complex.  相似文献   

18.
19.
Summary After the end-Permian crisis and a global ‘reef gap’ in the early Triassic, reefs appeared again during the early Middle Triassic. Records of Anisian reefs are rare in the Tethys as well as in non-Tethyan regions. Most Anisian reefs are known from the western part of the Tethys but there are only very few studies focused on biota, facies types and the paleogeographical situation of these reefs. From the eastern part of the Tethys, Anisian reefs, reefal buildups or potential reef-building organisms have been reported from different regions of southern China. Most of the Anisian reefs known from western and central Europe as well as from southern China seem to be of middle and late Pelsonian age. The study area is situated in the northern Dolomites (South Tyrol, Italy) southeast of Bruneck (Brunico). It comprises the area between Olang (Valdaora) and Prags (Braies). The study is based on detailed investigations of the regional geology, stratigraphy and lithofacies (R. Zühlke, T. Bechst?dt) as well as on a comprehensive inventory of Anisian reef organisms (B. Senowbari-Daryan, E. Flügel). These data are used in the discussion of the controls on the recovery of reefs during the early Middle Triassic. Most late Anisian reef carbonates studied are represented by allochthonous talus reef blocks of cubicmeter size. Small biostromal autochthonous mounds are extremely rare (Piz da Peres). The reef mounds as well as most of the reef blocks occur within the middle to late Pelsonian Recoaro Formation. They were formed on the middle reaches of carbonate ramps in subtidal depths, slightly above the storm wave base with only moderate water energy. Most lithotypes observed in the reef blocks correspond to sponge and/or algal bafflestones. Low-growing sessile organisms (Olangocoelia (sponge, alga?), sphinctozoan sponges, bryozoans, soleno-poracean algae, corals) and encrusting epibionts (sponges, porostromate algae, cyanophycean crusts, foraminifera, worms, microproblematica) created low cm-sized biogenic structures (bioconstructions) which baffled and bound sediment. Organic framework was only of minor importance; it is restricted to theOlangocoelia lithotype. Framework porosity was small in these reef mounds. Submarine carbonate cements, therefore, are only of minor importance s compared with Permian or Ladinian reefs. The relatively high number of lithotypes encountered in the reef blocks indicates a high biofacies diversity. Regarding the relative frequency, the diverse biota consist in descending order ofOlangocoelia, sponges (sphinctozoans, inozoans, siliceous sponges), bryozoans, porostromate algae and worm tubes. The sphinctozoans are characterized by small, mostly incrusting forms. The numerical diversity (species richness) is low compared with late Permian or Ladinian and late Triassic sphinctozoan faunas occurring within reefs. Following the sponges, monospecific bryozoans (Reptonoditrypa cautica Sch?fer & Fois) are the most common organisms in the reef limestones. Porostromate algae were restricted to areas within the bioconstructions not inhabited by sponges. The low-diverse corals had no importance in the construction of an organic framework. Surprisingly, microbial crusts are rare or even lacking in the investigated Anisian bioconstructions. This is in contrast to late Permian and Ladinian as well as Carnian reefs which are characterized by the abundance of specific organic crusts. The same comes true for‘Tubiphytes’ which is a common constituent in Permian, Ladinian and Carnian reef carbonates but is very rare in the Anisian of the Olang Dolomites. Instead of‘Tubiphytes’ different kinds of worm tubes (spirorbid tubes, Mg-calcitic tubes and agglutinated tubes) were of importance as epifaunal elements. Macrobial encrustations consisting of characteristic successions of sponges, bryozoans, algae, worm tubes and microproblematica seem to be of greater quantitative importance than in Ladinian reefs. Destruction of organic skeletons (predominantly of bryozoans) by macroborers (cirripedia?) is a common feature. The Anisian reef organisms are distinctly different from late Permian and from most Ladinian reef-builders. No Permian Lazarus taxa have been found. New taxa: Sphinctozoan sponges—Celyphia? minima n.sp.,Thaumastocoelia dolomitica n. sp.,Deningeria tenuireticulata n. sp.,Deningeria crassireticulata n. sp.,Anisothalamia minima n.g. n.sp., Inozoan sponges-Meandrostia triassica n.sp. Microproblematica-Anisocellula fecunda n.g. n.sp., Porostromate alga-Brandneria dolomitica n.g. n.sp. Most of our data are in agreement with the model described byFois & Gaetani (1984) for the recovery of reef-building communities during the Ansian but the biotic diversity seems to be considerably higher than previously assumed. Anisian deposition and the formation of the reef mounds within the Pelsonian Recoaro Formation of the Dolomites were controlled by the combined effects of synsedimentary tectonics and eustatic changes in sea-level. During several time intervals, especially the early Anisian (northern and western Dolomites: tectonic uplift), the early Pelsonian (eastern Dolomites: drowning) and the late Illyrian (wide parts of the Dolomites: uplift and drowning), the sedimentation was predominantly controlled by regionally different tectonic subsidence rates. The amount of terrigenous clastic input associated with synsedimentary tectonics (tectonic uplift of hinterlands) had a major influence on carbonate deposition and reef development. The re-appearance of reef environments in the Olang Dolomites was controlled by a combination of regional and global factors (paleogeographic situation: development of carbonate ramps; decreasing subsidence of horst blocks; reduced terrigenous input; moderate rise in sea-level).  相似文献   

20.
Middle to Upper Oxfordian reefs of a shallow marine carbonate platform located in northeastern France show important facies changes in conjunction with terrigeneous contents. The Pagny-sur-Meuse section shows coral-microbialite reefs that developed both in pure carbonate limestones and in mixed carbonate-siliciclastic deposits. Phototrophic coral associations dominated in pure carbonate environments, whereas a mixed phototrophic/heterotrophic coral fauna occurred in more siliciclastic settings. Microbialites occur in pure carbonate facies but are more abundant in mixed carbonate-siliciclastic settings. Reefs seem to have lived through periods favourable for intense coral growth that was contemporaneous with a first microbialitic layer and periods more favourable for large microbialitic development (second microbialitic layer). The first microbialitic crust probably developed within the reef body and thus appears to be controlled by autogenic factors. The second generation of microbialites tended to develop over the entire reef surface and was probably mainly controlled by allogenic factors. Variations in terrigeneous input and nutrient content, rather related to climatic conditions than to water depth and accumulation rate, were major factors controlling development of reefs and their taxonomic composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号