首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Among terrestrial arthropods, the dragonfly species Pantala flavescens is remarkable due to their nearly global distribution and extensive migratory ranges; the largest of any known insect. Capable of migrating across oceans, the potential for high rates of gene flow among geographically distant populations is significant. It has been hypothesized that P. flavescens may be a global panmictic population but no sufficient genetic evidence has been collected thus far. Through a population genetic analysis of P. flavescens samples from North America, South America, and Asia, the current study aimed to examine the extent at which gene flow is occurring on a global scale and discusses the implications of the genetic patterns we uncovered on population structure and genetic diversity of the species. This was accomplished using PCR-amplified cytochrome oxidase one (CO1) mitochondrial DNA data to reconstruct phylogenetic trees, a haplotype network, and perform molecular variance analyses. Our results suggested high rates of gene flow are occurring among all included geographic regions; providing the first significant evidence that Pantala flavescens should be considered a global panmictic population.  相似文献   

2.
In October 2010, the vertical distribution, biodiversity and maturity stages of Chaetognatha species were investigated at four stations located off Walvis Bay, Namibia. Seventeen species were detected and classified as pelagic, shallow-mesopelagic, deep-mesopelagic and bathypelagic species based upon the weighted mean depth derived from their average vertical distribution. High abundances of Chaetognatha were found in the upper 100 m at all stations of the Walvis Bay transect with a maximum value of 20837 ind. 1000 m−3 at the outer shelf station near the surface. The community was dominated by species of the Serratodentata group. Furthermore, the distribution of Chaetognatha did not seem to be influenced by low oxygen concentrations. Stable isotope ratios of carbon and nitrogen in Chaetognatha were determined for seven different areas located off northern Namibia. The values of δ15N ranged from 6.05 ‰ to 11.39 ‰, while the δ13C values varied between −23.89 ‰ and −17.03 ‰. The highest values for δ15N were observed at the Walvis Bay shelf break station. The lowest δ13C values were found at the Rocky Point offshore station, which was statistically different from all other areas. Stable isotopes of carbon and nitrogen were determined for four taxa (Sagitta minima, Planctonis group, Sagitta enflata, Sagitta decipiens). In this case, the δ15N values ranged from 6.17 ‰ to 10.38 ‰, whereas the δ13C values varied from −22.70 ‰ to −21.56 ‰. The lowest δ15N values were found for S. minima. The C- and N-content revealed maximum C-values for S. decipiens and maximum N-values for the Planctonis group. The C:N ratio of Chaetognatha ranged between 5.25 and 6.20. Overall, Chaetognatha are a diverse group in the pelagic food web of the Benguela Upwelling System and act as competitors of fish larvae and jelly fish by preying on copepods.  相似文献   

3.
Photosynthetic carbon metabolism of a marine grass   总被引:5,自引:4,他引:5       下载免费PDF全文
The δ13C value of a tropical marine grass Thalassia testudinum is −9.04‰. This value is similar to the δ13C value of terrestrial tropical grasses. The δ13C values of the organic acid fraction, the amino acid fraction, the sugar fraction, malic acid, and glucose are: −11.2‰, −13.1‰, −10.1‰, −11.1‰, and −11.5‰, respectively. The δ13C values of malic acid and glucose of Thalassia are similar to the δ13C values of these intermediates in sorghum leaves and attest to the presence of the photosynthetic C4-dicarboxylic acid pathway in this marine grass. The inorganic HCO3 for the growth of the grass fluctuates between −6.7 to −2.7‰ during the day. If CO2 fixation in Thalassia is catalyzed by phosphoenolpyruvate carboxylase (which would result in a −3‰ fractionation between HCO3 and malic acid), the predicted δ13C value for Thalassia would be −9.7 to −5.7‰. This range is close to the observed range of −12.6 to −7.8‰ for Thalassia and agree with the operation of the C4-dicarboxylic acid pathway in this plant. The early products of the fixation of HCO3 in the leaf sections are malic acid and aspartic acid which are similar to the early products of CO2 fixation in C4 terrestrial plants.  相似文献   

4.
A key challenge to the application of continent-wide feather isoscapes for geographic assignment of migrant birds is the lack of ground-truthed samples. This is especially true for long-distance Palearctic-Afrotropical migrants. We used spatially-explicit information on the δ 2H composition of archived feathers from Green-backed/Grey-backed Camaroptera, to create a feather δ 2H isoscape for sub-Saharan Africa. We sampled from 34 out of 41 sub-Saharan countries, totaling 205 sampling localities. Feather samples were obtained from museum collections (n = 224, from 1950 to 2014) for δ 2H assay. Region, altitude, annual rainfall and seasonal patterns in precipitation were revealed as relevant explanatory variables for spatial patterns in feather δ 2H. Predicted feather δ 2H values ranged from -4.0 ‰ to -63.3 ‰, with higher values observed in the Great Rift Valley and South Africa, and lower values in central Africa. Our feather isoscape differed from that modelled previously using a precipitation δ 2H isoscape and an assumed feather-to-precipitation calibration, but the relatively low model goodness fit (F10,213 = 5.98, p<0.001, R2 = 0.18) suggests that other, non-controlled variables might be driving observed geographic patterns in feather δ 2H values. Additional ground-truthing studies are therefore recommended to improve the accuracy of the African feather δ 2H isoscape.  相似文献   

5.
Stable isotope analysis (SIA) of highly migratory marine pelagic animals can improve understanding of their migratory patterns and trophic ecology. However, accurate interpretation of isotopic analyses relies on knowledge of isotope turnover rates and tissue-diet isotope discrimination factors. Laboratory-derived turnover rates and discrimination factors have been difficult to obtain due to the challenges of maintaining these species in captivity. We conducted a study to determine tissue- (white muscle and liver) and isotope- (nitrogen and carbon) specific turnover rates and trophic discrimination factors (TDFs) using archived tissues from captive Pacific bluefin tuna (PBFT), Thunnus orientalis, 1–2914 days after a diet shift in captivity. Half-life values for 15N turnover in white muscle and liver were 167 and 86 days, and for 13C were 255 and 162 days, respectively. TDFs for white muscle and liver were 1.9 and 1.1‰ for δ 15N and 1.8 and 1.2‰ for δ 13C, respectively. Our results demonstrate that turnover of 15N and 13C in bluefin tuna tissues is well described by a single compartment first-order kinetics model. We report variability in turnover rates between tissue types and their isotope dynamics, and hypothesize that metabolic processes play a large role in turnover of nitrogen and carbon in PBFT white muscle and liver tissues. 15N in white muscle tissue showed the most predictable change with diet over time, suggesting that white muscle δ 15N data may provide the most reliable inferences for diet and migration studies using stable isotopes in wild fish. These results allow more accurate interpretation of field data and dramatically improve our ability to use stable isotope data from wild tunas to better understand their migration patterns and trophic ecology.  相似文献   

6.
The hydrogen isotope (2H/1H) ratio of lipids from phytoplankton is a powerful new tool for reconstructing hydroclimate variations in the geologic past from marine and lacustrine sediments. Water 2H/1H changes are reflected in lipid 2H/1H changes with R2 > 0.99, and salinity variations have been shown to cause about a 1‰ change in lipid δ2H values per unit (ppt) change in salinity. Less understood are the effects of growth rate, nutrient limitation and light on 2H/1H fractionation in phytoplankton. Here we present the first published study of growth rate effects on 2H/1H fractionation in the lipids of coccolithophorids grown in continuous cultures. Emiliania huxleyi was cultivated in steady state at four growth rates and the δ2H value of individual alkenones (C37:2, C37:3, C38:2, C38:3), fatty acids (C14:0, C16:0, C18:0), and 24-methyl cholest-5,22-dien-3β-ol (brassicasterol) were measured. 2H/1H fractionation increased in all lipids as growth rate increased by 24‰ to 79‰ (div d-1)-1. We attribute this response to a proportional increase in the fraction of NADPH from Photosystem I (PS1) of photosynthesis relative to NADPH from the cytosolic oxidative pentose phosphate (OPP) pathway in the synthesis of lipids as growth rate increases. A 3-endmember model is presented in which lipid hydrogen comes from NADPH produced in PS1, NADPH produced by OPP, and intracellular water. With published values or best estimates of the fractionation factors for these sources (αPS1 = 0.4, αOPP = 0.75, and αH2O = 0) and half of the hydrogen in a lipid derived from water the model indicates αlipid = 0.79. This value is within the range measured for alkenones (αalkenone = 0.77 to 0.81) and fatty acids (αFA = 0.75 to 0.82) in the chemostat cultures, but is greater than the range for brassicasterol (αbrassicasterol = 0.68 to 0.72). The latter is attributed to a greater proportion of hydrogen from NADPH relative to water in isoprenoid lipids. The model successfully explains the increase in 2H/1H fractionation in the sterol 24-methyl-cholesta-5,24(28)-dien-3β-ol from marine centric diatom T. pseudonana chemostat cultures as growth rate increases. Insensitivity of αFA in those same cultures may be attributable to a larger fraction of hydrogen in fatty acids sourced from intracellular water at the expense of NADPH as growth rate increases. The high sensitivity of α to growth rate in E. huxleyi lipids and a T. pseudonana sterol implies that any change in growth rate larger than ~0.15 div d-1 can cause a change in δ2Hlipid that is larger than the analytical error of the measurement (~5‰), and needs to be considered when interpreting δ2Hlipid variations in sediments.  相似文献   

7.
The hydrothermal vents on the East Scotia Ridge are the first to be explored in the Antarctic and are dominated by large peltospiroid gastropods, stalked barnacles (Vulcanolepas sp.) and anomuran crabs (Kiwa sp.) but their food webs are unknown. Vent fluid and macroconsumer samples were collected at three vent sites (E2, E9N and E9S) at distances of tens of metres to hundreds of kilometres apart with contrasting vent fluid chemistries to describe trophic interactions and identify potential carbon fixation pathways using stable isotopes. δ13C of dissolved inorganic carbon from vent fluids ranged from −4.6‰ to 0.8‰ at E2 and from −4.4‰ to 1.5‰ at E9. The lowest macroconsumer δ13C was observed in peltospiroid gastropods (−30.0‰ to −31.1‰) and indicated carbon fixation via the Calvin-Benson-Bassham (CBB) cycle by endosymbiotic gamma-Proteobacteria. Highest δ13C occurred in Kiwa sp. (−19.0‰ to −10.5‰), similar to that of the epibionts sampled from their ventral setae. Kiwa sp. δ13C differed among sites, which were attributed to spatial differences in the epibiont community and the relative contribution of carbon fixed via the reductive tricarboxylic acid (rTCA) and CBB cycles assimilated by Kiwa sp. Site differences in carbon fixation pathways were traced into higher trophic levels e.g. a stichasterid asteroid that predates on Kiwa sp. Sponges and anemones at the periphery of E2 assimilated a proportion of epipelagic photosynthetic primary production but this was not observed at E9N. Differences in the δ13C and δ34S values of vent macroconsumers between E2 and E9 sites suggest the relative contributions of photosynthetic and chemoautotrophic carbon fixation (rTCA v CBB) entering the hydrothermal vent food webs vary between the sites.  相似文献   

8.
Complete panmixia across the entire range of a species is a relatively rare phenomenon; however, this pattern may be found in species that have limited philopatry and frequent dispersal. American white pelicans (Pelecanus erythrorhyncos) provide a unique opportunity to examine the role of long-distance dispersal in facilitating gene flow in a species recently reported as panmictic across its broad breeding range. This species is also undergoing a range expansion, with new colonies arising hundreds of kilometers outside previous range boundaries. In this study, we use a multiple stable isotope (δ2H, δ13C, δ15N) approach to examine feather isotopic structuring at 19 pelican colonies across North America, with the goal of establishing an isotopic basemap that could be used for assigning individuals at newly established breeding sites to source colonies. Within-colony isotopic variation was extremely high, exceeding 100‰ in δ2H within some colonies (with relatively high variation also observed for δ13C and δ15N). The high degree of within-site variation greatly limited the utility of assignment-based approaches (42% cross-validation success rate; range: 0–90% success). Furthermore, clustering algorithms identified four likely isotopic clusters; however, those clusters were generally unrelated to geographic location. Taken together, the high degree of within-site isotopic variation and lack of geographically-defined isotopic clusters preclude the establishment of an isotopic basemap for American white pelicans, but may indicate that a high incidence of long-distance dispersal is facilitating gene flow, leading to genetic panmixia.  相似文献   

9.
Dragonflies are good indicators of environmental health and biodiversity. Most studies addressing dragonfly ecology have focused on the importance of aquatic habitats, while the value of surrounding terrestrial habitats has often been overlooked. However, species associated with temporary aquatic habitats must persist in terrestrial environments for long periods. Little is known about the importance of terrestrial habitat patches for dragonflies, or about other factors that initiate or influence dispersal behaviour. The aim of this study was to reveal the relationship between population dynamics of the threatened dragonfly species Sympetrum depressiusculum at its natal site and its dispersal behaviour or routine movements within its terrestrial home range. We used a mark–release–recapture method (marking 2,881 adults) and exuviae collection with the Jolly–Seber model and generalized linear models to analyse seasonal and spatial patterns of routine movement in a heterogeneous Central European landscape. Our results show that utilisation of terrestrial habitat patches by adult dragonflies is not random and may be relatively long term (approximately 3 mo). Adult dragonflies were present only in areas with dense vegetation that provided sufficient resources; the insects were absent from active agricultural patches (p = 0.019). These findings demonstrate that even a species tightly linked to its natal site utilises an area that is several orders of magnitude larger than the natal site. Therefore, negative trends in the occurrence of various dragonfly species may be associated not only with disturbances to their aquatic habitats, but also with changes in the surrounding terrestrial landscape.  相似文献   

10.
Stable isotope analysis (SIA) is an important tool for investigation of animal dietary habits for determination of feeding niche. Ideally, fresh samples should be used for isotopic analysis, but logistics frequently demands preservation of organisms for analysis at a later time. The goal of this study was to establish the best methodology for preserving forest litter-dwelling crickets for later SIA analysis without altering results. We collected two cricket species, Phoremia sp. and Mellopsis doucasae, from which we prepared 70 samples per species, divided among seven treatments: (i) freshly processed (control); preserved in fuel ethanol for (ii) 15 and (iii) 60 days; preserved in commercial ethanol for (iv) 15 and (v) 60 days; fresh material frozen for (vi) 15 and (vii) 60 days. After oven drying, samples were analyzed for δ 15N, δ 13C values, N(%), C(%) and C/N atomic values using continuous flow isotope ratio mass spectrometry. All preservation methods tested, significantly impacted δ 13C and δ 15N and C/N atomic values. Chemical preservatives caused δ 13C enrichment as great as 1.5‰, and δ 15N enrichment as great as 0.9‰; the one exception was M. doucasae stored in ethanol for 15 days, which had δ 15N depletion up to 1.8‰. Freezing depleted δ 13C and δ 15N by up to 0.7 and 2.2‰, respectively. C/N atomic values decreased when stored in ethanol, and increased when frozen for 60 days for both cricket species. Our results indicate that all preservation methods tested in this study altered at least one of the tested isotope values when compared to fresh material (controls). We conclude that only freshly processed material provides adequate SIA results for litter-dwelling crickets.  相似文献   

11.
Acetogenic bacteria are able to grow autotrophically on hydrogen and carbon dioxide by using the acetyl coenzyme A (acetyl-CoA) pathway. Acetate is the end product of this reaction. In contrast to the fermentative route of acetate production, which shows almost no fractionation of carbon isotopes, the acetyl-CoA pathway has been reported to exhibit a preference for light carbon. In Acetobacterium woodii the isotope fractionation factor (ε) for 13C and 12C has previously been reported to be ε = −58.6‰. To investigate whether such a strong fractionation is a general feature of acetogenic bacteria, we measured the stable carbon isotope fractionation factor of 10 acetogenic strains grown on H2 and CO2. The average fractionation factor was εTIC = −57.2‰ for utilization of total inorganic carbon and εacetate = −54.6‰ for the production of acetate. The strongest fractionation was found for Sporomusa sphaeroidesTIC = −68.3‰), the lowest fractionation for Morella thermoaceticaTIC = −38.2‰). To investigate the reproducibility of our measurements, we determined the fractionation factor of 21 biological replicates of Thermoanaerobacter kivui. In general, our study confirmed the strong fractionation of stable carbon during chemolithotrophic acetate formation in acetogenic bacteria. However, the specific characteristics of the bacterial strain, as well as the cultural conditions, may have a moderate influence on the overall fractionation.  相似文献   

12.

Background

Fish fin is a widely used, non-lethal sample material in studies using stable isotopes to assess the ecology of fishes. However, fish fin is composed of two distinct tissues (ray and membrane) which may have different stable isotope values and are not homogeneously distributed within a fin. As such, estimates of the stable isotope values of a fish may vary according to the section of fin sampled.

Methods

To assess the magnitude of this variation, we analysed carbon (δ 13C), nitrogen (δ 15N), hydrogen (δ 2H) and oxygen (δ 18O) stable isotopes of caudal fin from juvenile, riverine stages of Atlantic salmon (Salmo salar) and brown trout (Salmo trutta). Individual fins were sub-sectioned into tip, mid and base, of which a further subset were divided into ray and membrane.

Findings

Isotope variation between fin sections, evident in all four elements, was primarily related to differences between ray and membrane. Base sections were13C depleted relative to tip (~ 1 ‰) with equivalent variation evident between ray and membrane. A similar trend was evident in δ 2H, though the degree of variation was far greater (~ 10 ‰). Base and ray sections were 18O enriched (~ 2 ‰) relative to tip and membrane, respectively. Ray and membrane sections displayed longitudinal variation in 15N mirroring that of composite fin (~ 1 ‰), indicating that variation in15N values was likely related to ontogenetic variation.

Conclusions

To account for the effects of intra-fin variability in stable isotope analyses we suggest that researchers sampling fish fin, in increasing priority, 1) also analyse muscle (or liver) tissue from a subsample of fish to calibrate their data, or 2) standardize sampling by selecting tissue only from the extreme tip of a fin, or 3) homogenize fins prior to analysis.  相似文献   

13.
Stable isotopes derived from the claws of birds could be used to determine the migratory origins of birds if the time periods represented in excised sections of claws were known. We investigated new keratin growth in the claws of adult female Lesser Scaup (Aythya affinis) by estimating the equilibration rates of stable isotopes (δ 13C, δ 15N, and δ 2H) from the breeding grounds into 1 mm claw tips. We sampled birds on their breeding ground through time and found that it took approximately 3–3.5 months for isotope values in most claw tips to equilibrate to isotope values that reflected those present in the environment on their breeding grounds. Results from this study suggest that isotopes equilibrate slowly into claw tips of Lesser Scaup, suggesting isotopes could potentially be used to determine the wintering grounds of birds. We suggest using controlled feeding experiments or longitudinal field investigations to understand claw growth and isotopic equilibration in claw tips. Such information would be valuable in ascertaining whether claw tips can be used in future studies to identify the migratory origins of birds.  相似文献   

14.
Methane gas (CH4) has been identified as an important alternative source of carbon and energy in some freshwater food webs. CH4 is oxidized by methane oxidizing bacteria (MOB), and subsequently utilized by chironomid larvae, which may exhibit low δ13C values. This has been shown for chironomid larvae collected from lakes, streams and backwater pools. However, the relationship between CH4 concentrations and δ13C values of chironomid larvae for in-stream impoundments is unknown. CH4 concentrations were measured in eleven in-stream impoundments located in the Queich River catchment area, South-western Germany. Furthermore, the δ13C values of two subfamilies of chironomid larvae (i.e. Chironomini and Tanypodinae) were determined and correlated with CH4 concentrations. Chironomini larvae had lower mean δ13C values (−29.2 to −25.5 ‰), than Tanypodinae larvae (−26.9 to −25.3 ‰). No significant relationships were established between CH4 concentrations and δ13C values of chironomids (p>0.05). Mean δ13C values of chironomid larvae (mean: −26.8‰, range: −29.2‰ to −25.3‰) were similar to those of sedimentary organic matter (SOM) (mean: −28.4‰, range: −29.3‰ to −27.1‰) and tree leaf litter (mean: −29.8 ‰, range: −30.5‰ to −29.1‰). We suggest that CH4 concentration has limited influence on the benthic food web in stream impoundments.  相似文献   

15.
Spatial d/h heterogeneity of leaf water   总被引:9,自引:0,他引:9       下载免费PDF全文
The mean δD value of petiole water of Pterocarpus indicus Willd (δD = −9.0 ± 2.5‰, n = 3) was not significantly different from the mean value of stem water (−8.3 ± 2.8‰, n = 3). δD values of main vein water ranged from −11.1 to + 12.0‰ (n = 14) and increased along the main vein from petiole to the tip of leaves. Mesophyll water was highly enriched in deuterium (mean δD = +32.0 ± 2.0‰, n = 19) when compared with stem, petiole, and vein water. δD values of mesophyll water for different areas of the lamina, however, were not homogenous and could differ by as much as 20‰.  相似文献   

16.
The δ PDB13C values have been determined for the cellular constituents and metabolic intermediates of autotrophically grown Chromatium vinosum. The isotopic composition of the HCO3- in the medium and the carbon isotopic composition of the bacterial cells change with the growth of the culture. The δ PDB13C value of the HCO3- in the media changes from an initial value of −6.6‰ to +8.1‰ after 10 days of bacterial growth and the δ PDB13C value of the bacterial cells change from −37.5‰ to −29.2‰ in the same period. The amount of carbon isotope fractionation during the synthesis of hexoses by the photoassimilation of CO2 has a range of −15.5‰ at time zero to −22.0‰ after 10 days. This range of fractionation compares to the range of carbon isotope fractionation for the synthesis of sugars from CO2 by ribulose 1,5-diphosphate carboxylase and the Calvin cycle.  相似文献   

17.
Over the past forty years, stable isotope analysis of bone (and tooth) collagen and hydroxyapatite has become a mainstay of archaeological and paleoanthropological reconstructions of paleodiet and paleoenvironment. Despite this method''s frequent use across anthropological subdisciplines (and beyond), the present work represents the first attempt at gauging the effects of inter-laboratory variability engendered by differences in a) sample preparation, and b) analysis (instrumentation, working standards, and data calibration). Replicate analyses of a 14C-dated ancient human bone by twenty-one archaeological and paleoecological stable isotope laboratories revealed significant inter-laboratory isotopic variation for both collagen and carbonate. For bone collagen, we found a sizeable range of 1.8‰ for δ13Ccol and 1.9‰ for δ15Ncol among laboratories, but an interpretatively insignificant average pairwise difference of 0.2‰ and 0.4‰ for δ13Ccol and δ15Ncol respectively. For bone hydroxyapatite the observed range increased to a troublingly large 3.5‰ for δ13Cap and 6.7‰ for δ18Oap, with average pairwise differences of 0.6‰ for δ13Cap and a disquieting 2.0‰ for δ18Oap. In order to assess the effects of preparation versus analysis on isotopic variability among laboratories, a subset of the samples prepared by the participating laboratories were analyzed a second time on the same instrument. Based on this duplicate analysis, it was determined that roughly half of the isotopic variability among laboratories could be attributed to differences in sample preparation, with the other half resulting from differences in analysis (instrumentation, working standards, and data calibration). These findings have serious implications for choices made in the preparation and extraction of target biomolecules, the comparison of results obtained from different laboratories, and the interpretation of small differences in bone collagen and hydroxyapatite isotope values. To address the issues arising from inter-laboratory comparisons, we devise a novel measure we term the Minimum Meaningful Difference (MMD), and demonstrate its application.  相似文献   

18.
Climatic variation alters biochemical and ecological processes, but it is difficult both to quantify the magnitude of such changes, and to differentiate long-term shifts from inter-annual variability. Here, we simultaneously quantify decade-scale isotopic variability at the lowest and highest trophic positions in the offshore California Current System (CCS) by measuring δ15N and δ13C values of amino acids in a top predator, the sperm whale (Physeter macrocephalus). Using a time series of skin tissue samples as a biological archive, isotopic records from individual amino acids (AAs) can reveal the proximate factors driving a temporal decline we observed in bulk isotope values (a decline of ≥1 ‰) by decoupling changes in primary producer isotope values from those linked to the trophic position of this toothed whale. A continuous decline in baseline (i.e., primary producer) δ15N and δ13C values was observed from 1993 to 2005 (a decrease of ∼4‰ for δ15N source-AAs and 3‰ for δ13C essential-AAs), while the trophic position of whales was variable over time and it did not exhibit directional trends. The baseline δ15N and δ13C shifts suggest rapid ongoing changes in the carbon and nitrogen biogeochemical cycling in the offshore CCS, potentially occurring at faster rates than long-term shifts observed elsewhere in the Pacific. While the mechanisms forcing these biogeochemical shifts remain to be determined, our data suggest possible links to natural climate variability, and also corresponding shifts in surface nutrient availability. Our study demonstrates that isotopic analysis of individual amino acids from a top marine mammal predator can be a powerful new approach to reconstructing temporal variation in both biochemical cycling and trophic structure.  相似文献   

19.
Solid-state NMR measurements have been reported for four peptides derived from β-amyloid peptide Aβ(1–42): Aβ(1–40), Aβ(10–35), Aβ(16–22), and Aβ(34–42). Of these, the first two are predicted to be amphiphilic and were reported to form parallel β-sheets, whereas the latter two peptides appear nonamphiphilic and adopt an antiparallel β-sheet organization. These results suggest that amphiphilicity may be significant in determining fibril structure. Here, we demonstrate that acylation of Aβ(16–22) with octanoic acid increases its amphiphilicity and changes the organization of fibrillar β-sheet from antiparallel to parallel. Electron microscopy, Congo Red binding, and one-dimensional 13C NMR measurements demonstrate that octanoyl-Aβ(16–22) forms typical amyloid fibrils. Based on the stability of monolayers at the air-water interface, octanoyl-Aβ(16–22) is more amphiphilic than Aβ(16–22). Measurements of 13C-13C and 15N-13C nuclear magnetic dipole-dipole couplings in isotopically labeled fibril samples, using the constant-time finite-pulse radiofrequency-driven recoupling (fpRFDR-CT) and rotational echo double resonance (REDOR) solid-state NMR techniques, demonstrate that octanoyl-Aβ(16–22) fibrils are composed of parallel β-sheets, whereas Aβ(16–22) fibrils are composed of antiparallel β-sheets. These data demonstrate that amphiphilicity is critical in determining the structural organization of β-sheets in the amyloid fibril. This work also shows that all amyloid fibrils do not share a common supramolecular structure, and suggests a method for controlling the structure of amyloid fibrils.  相似文献   

20.
Two categories of c/c ratios for higher plants   总被引:32,自引:1,他引:32       下载免费PDF全文
13C/12C ratios have been determined for plant tissue from 104 species representing 60 families. Higher plants fall into two categories, those with low δPDBI13C values (—24 to —34‰) and those with high δ 13C values (—6 to —19‰). Algae have δ 13C values of —12 to —23‰. Photosynthetic fractionation leading to such values is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号