首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Background

Huntington''s disease (HD) is an inherited progressive neurodegenerative disorder caused by a CAG repeat expansion in the ubiquitously expressed HD gene resulting in an abnormally long polyglutamine repeat in the huntingtin protein. Polyglutamine inclusions are a hallmark of the neuropathology of HD. We have previously shown that inclusion pathology is also present in the peripheral tissues of the R6/2 mouse model of HD which expresses a small N-terminal fragment of mutant huntingtin. To determine whether this peripheral pathology is a consequence of the aberrant expression of this N-terminal fragment, we extend this analysis to the genetically precise knock-in mouse model of HD, HdhQ150, which expresses mutant mouse huntingtin.

Methodology/Principal Findings

We have previously standardized the CAG repeat size and strain background of the R6/2 and HdhQ150 knock-in mouse models and found that they develop a comparable and widespread neuropathology. To determine whether HdhQ150 knock-in mice also develop peripheral inclusion pathology, homozygous Hdh Q150/Q150 mice were perfusion fixed at 22 months of age, and tissues were processed for histology and immunohistochemistry with the anti-huntingtin antibody S830. The peripheral inclusion pathology was almost identical to that found in R6/2 mice at 12 weeks of age with minor differences in inclusion abundance.

Conclusions/Significance

The highly comparable peripheral inclusion pathology that is present in both the R6/2 and HdhQ150 knock-in models of HD indicates that the presence of peripheral inclusions in R6/2 mice is not a consequence of the aberrant expression of an N-terminal huntingtin protein. It remains to be determined whether peripheral inclusions are a pathological feature of the human disease. Both mouse models carry CAG repeats that cause childhood disease in humans, and therefore, inclusion pathology may be a feature of the childhood rather than the adult forms of HD. It is important to establish the extent to which peripheral pathology causes the peripheral symptoms of HD from the perspective of a mechanistic understanding and future treatment options.  相似文献   

2.
Hyperphenylalaninemia (HPA) refers to all clinical conditions characterized by increased amounts of phenylalanine (PHE) in blood and other tissues. According to their blood PHE concentrations under a free diet, hyperphenylalaninemic patients are commonly classified into phenotypic subtypes: classical phenylketonuria (PKU) (PHE > 1200 µM/L), mild PKU (PHE 600-1200 µM/L) and persistent HPA (PHE 120-600 µM/L) (normal blood PHE < 120 µM/L). The current treatment for hyperphenylalaninemic patients is aimed to keep blood PHE levels within the safe range of 120-360 µM/L through a PHE-restricted diet, difficult to achieve. If untreated, classical PKU presents variable neurological and mental impairment. However, even mildly elevated blood PHE levels, due to a bad compliance to dietary treatment, produce cognitive deficits involving the prefrontal cortical areas, extremely sensible to PHE-induced disturbances. The development of animal models of different degrees of HPA is a useful tool for identifying the metabolic mechanisms underlying cognitive deficits induced by PHE. In this paper we analyzed the behavioral and biochemical phenotypes of different forms of HPA (control, mild-HPA, mild-PKU and classic-PKU), developed on the base of plasma PHE concentrations. Our results demonstrated that mice with different forms of HPA present different phenotypes, characterized by increasing severity of behavioral symptoms and brain aminergic deficits moving from mild HPA to classical PKU forms. In addition, our data identify preFrontal cortex and amygdala as the most affected brain areas and confirm the highest susceptibility of brain serotonin metabolism to mildly elevated blood PHE.  相似文献   

3.
Dominant mutations in the valosin containing protein (VCP) gene cause inclusion body myopathy associated with Paget''s disease of bone and frontotemporal dementia (IBMPFD). We have generated a knock-in mouse model with the common R155H mutation. Mice demonstrate progressive muscle weakness starting approximately at the age of 6 months. Histology of mutant muscle showed progressive vacuolization of myofibrils and centrally located nuclei, and immunostaining shows progressive cytoplasmic accumulation of TDP-43 and ubiquitin-positive inclusion bodies in quadriceps myofibrils and brain. Increased LC3-II staining of muscle sections representing increased number of autophagosomes suggested impaired autophagy. Increased apoptosis was demonstrated by elevated caspase-3 activity and increased TUNEL-positive nuclei. X-ray microtomography (uCT) images show radiolucency of distal femurs and proximal tibiae in knock-in mice and uCT morphometrics shows decreased trabecular pattern and increased cortical wall thickness. Bone histology and bone marrow derived macrophage cultures in these mice revealed increased osteoclastogenesis observed by TRAP staining suggestive of Paget bone disease. The VCPR155H/+ knock-in mice replicate the muscle, bone and brain pathology of inclusion body myopathy, thus representing a useful model for preclinical studies.  相似文献   

4.
Brain Purines in a Genetic Mouse Model of Lesch-Nyhan Disease   总被引:2,自引:1,他引:2  
Abstract: Mice carrying a mutation in the gene encoding the purine salvage enzyme hypoxanthine-guanine phosphoribosyltransferase (HPRT) have recently been produced to provide an animal model for Lesch-Nyhan disease. The current-studies were conducted to characterize the consequences of the mutation on the expression of HPRT and to characterize potential changes in brain purine content in these mutants. Our results indicate that the mutant animals have no detectable HPRT-immunoreactive material on western blots and no detectable HPRT enzyme activity in brain tissue homogenates, confirming that they are completely HPRT deficient (HPRT-). Despite the absence of HPRT-mediated purine salvage, the animals have apparently normal brain purine content. However, de novo purine synthesis, as measured by [14C]formate incorporation into brain purines, is accelerated four- to fivefold in the mutant animals. This increase in the synthesis of purines may protect the HPRT- mice from potential depletion of brain purines despite complete impairment of HPRT-mediated purine salvage.  相似文献   

5.
SUMMARY 1. In vivo 1H and 31P magnetic resonance spectroscopy techniques were applied to reveal biochemical changes in the rat brain caused by prolonged ethanol consumption.2. Three models of ethanol intoxication were used.3. 1H MRS showed a significant decrease in the concentration of myo-inositol in the brain of rats fed with 20% ethanol for 8 weeks. This change is consistent with perturbances in astrocytes. On the other hand, N-acetyl aspartate and choline content did not differ from controls.4. 31P MRS did not reveal any significant changes in the high-energy phosphates or intracellular free Mg2+ content in the brain of rats after 14 weeks of 20% ethanol drinking. The intracellular pH was diminished.5. By means of a 31P saturation transfer technique, a significant decrease was observed for the pseudo first-order rate constant k for of the creatine kinase reaction in the brain of rats administered 30% ethanol for 3 weeks using a gastric tube.6. The 1H MRS results may indicate that myo-inositol loss, reflecting a disorder in astrocytes, might be one of the first changes associated with alcoholism, which could be detected in the brain by means of in vivo 1H MRS.7. The results from 31P MRS experiments suggest that alcoholism is associated with decreased brain energy metabolism.8. 31P saturation transfer, which provides insight into the turnover of high-energy phosphates, could be a more suitable technique for studying the brain energetics in chronic pathological states than conventional 31P MRS.  相似文献   

6.
7.
Previous studies of the effects of coenzyme Q10 and minocycline on mouse models of Huntington''s disease have produced conflicting results regarding their efficacy in behavioral tests. Using our recently published best practices for husbandry and testing for mouse models of Huntington''s disease, we report that neither coenzyme Q10 nor minocycline had significant beneficial effects on measures of motor function, general health (open field, rotarod, grip strength, rearing-climbing, body weight and survival) in the R6/2 mouse model. The higher doses of minocycline, on the contrary, reduced survival. We were thus unable to confirm the previously reported benefits for these two drugs, and we discuss potential reasons for these discrepancies, such as the effects of husbandry and nutrition.  相似文献   

8.
Huntington’s disease (HD) is caused by the expansion of a CAG repeat in the huntingtin (HTT) gene. The R6/2 mouse model of HD expresses a mutant version of exon 1 HTT and develops motor and cognitive impairments, a widespread huntingtin (HTT) aggregate pathology and brain atrophy. Despite the vast number of studies that have been performed on this model, the association between the molecular and cellular neuropathology with brain atrophy, and with the development of behavioral phenotypes remains poorly understood. In an attempt to link these factors, we have performed longitudinal assessments of behavior (rotarod, open field, passive avoidance) and of regional brain abnormalities determined through magnetic resonance imaging (MRI) (whole brain, striatum, cortex, hippocampus, corpus callosum), as well as an end-stage histological assessment. Detailed correlative analyses of these three measures were then performed. We found a gender-dependent emergence of motor impairments that was associated with an age-related loss of regional brain volumes. MRI measurements further indicated that there was no striatal atrophy, but rather a lack of striatal growth beyond 8 weeks of age. T2 relaxivity further indicated tissue-level changes within brain regions. Despite these dramatic motor and neuroanatomical abnormalities, R6/2 mice did not exhibit neuronal loss in the striatum or motor cortex, although there was a significant increase in neuronal density due to tissue atrophy. The deposition of the mutant HTT (mHTT) protein, the hallmark of HD molecular pathology, was widely distributed throughout the brain. End-stage histopathological assessments were not found to be as robustly correlated with the longitudinal measures of brain atrophy or motor impairments. In conclusion, modeling pre-manifest and early progression of the disease in more slowly progressing animal models will be key to establishing which changes are causally related.  相似文献   

9.
Abstract— Levels of the cell-specific brain isoenzymes of enolase were determined in basal ganglia and cerebral cortical tissue of Huntington's disease and age- and sex-matched control brain. Neuron-specific enolase (NSE) levels are decreased an average of 45% in basal ganglia from patients with Huntington's disease whereas the glial-specific form of enolase, nonneuronal enolase (NNE), is not significantly altered. In contrast, levels of NSE in cerebral cortical tissue from Huntington's disease patients remains unchanged in comparison with controls whereas NNE levels are significantly increased. NNE and NSE levels appear to be specific biochemical indicators of glial and neuronal cell number and viability. Levels of these cell-specific isoenzymes may therefore prove useful in quantitating neuropathological changes in various neurological disorders.  相似文献   

10.
Neurochemical Research - Thiamine deficiency (TD) produces severe neurodegenerative lesions. Studies have suggested that primary neurodegenerative events are associated with both oxidative stress...  相似文献   

11.
The purpose of this study is to clarify the effects of chronic powder diet feeding on sleep patterns and other physiological/anatomical changes in mice. C57BL/6 male mice were divided into two groups from weaning: a group fed with solid food (SD) and a group fed with powder food (PD), and sleep and physiological and anatomical changes were compared between the groups. PD exhibited less cranial bone structure development and a significant weight gain. Furthermore, these PD mice showed reduced number of neurogenesis in the hippocampus. Sleep analysis showed that PD induced attenuated diurnal sleep/wake rhythm, characterized by increased sleep during active period and decreased sleep during rest period. With food deprivation (FD), PD showed less enhancement of wake/locomotor activity compared to SD, indicating reduced food-seeking behavior during FD. These results suggest that powder feeding in mice results in a cluster of detrimental symptoms caused by abnormal energy metabolism and anatomical/neurological changes.  相似文献   

12.
DYT1 dystonia is the most common hereditary form of primary torsion dystonia. This autosomal-dominant disorder is characterized by involuntary muscle contractions that cause sustained twisting and repetitive movements. It is caused by an in-frame deletion in the TOR1A gene, leading to the deletion of a glutamic acid residue in the torsinA protein. Heterozygous knock-in mice, which reproduce the genetic mutation in human patients, have abnormalities in synaptic transmission at the principal GABAergic neurons in the striatum, a brain structure that is involved in the execution and modulation of motor activity. However, whether this mutation affects the excitability of striatal GABAergic neurons has not been investigated in this animal model. Here, we examined the excitability of cultured striatal neurons obtained from heterozygous knock-in mice, using calcium imaging as indirect readout. Immunofluorescence revealed that more than 97% of these neurons are positive for a marker of GABAergic neurons, and that more than 92% are also positive for a marker of medium spiny neurons, indicating that these are mixed cultures of mostly medium spiny neurons and a few (~5%) GABAergic interneurons. When these neurons were depolarized by field stimulation, the calcium concentration in the dendrites increased rapidly and then decayed slowly. The amplitudes of calcium transients were larger in heterozygous neurons than in wild-type neurons, resulting in ~15% increase in cumulative calcium transients during a train of stimuli. However, there was no change in other parameters of calcium dynamics. Given that calcium dynamics reflect neuronal excitability, these results suggest that the mutation only slightly increases the excitability of striatal GABAergic neurons in DYT1 dystonia.  相似文献   

13.

Background

Environmental enrichment (EE) in laboratory animals improves neurological function and motor/cognitive performance, and is proposed as a strategy for treating neurodegenerative diseases. EE has been investigated in the R6/2 mouse model of Huntington''s disease (HD), where increased social interaction, sensory stimulation, exploration, and physical activity improved survival. We have also shown previously that HD patients and R6/2 mice have disrupted circadian rhythms, treatment of which may improve cognition, general health, and survival.

Methodology/Principal Findings

We examined the effects of EE on the behavioral phenotype and circadian activity of R6/2 mice. Our mice are typically housed in an “enriched” environment, so the EE that the mice received was in addition to these enhanced housing conditions. Mice were either kept in their home cages or exposed daily to the EE (a large playground box containing running wheels and other toys). The “home cage” and “playground” groups were subdivided into “handling” (stimulated throughout the experimental period) and “no-handling” groups. All mice were assessed for survival, body weight, and cognitive performance in the Morris water maze (MWM). Mice in the playground groups were more active throughout the enrichment period than home cage mice. Furthermore, R6/2 mice in the EE/no-handling groups had better survival than those in the home cage/no-handling groups. Sex differences were seen in response to EE. Handling was detrimental to R6/2 female mice, but EE increased the body weight of male R6/2 and WT mice in the handling group. EE combined with handling significantly improved MWM performance in female, but not male, R6/2 mice.

Conclusions/Significance

We show that even when mice are living in an enriched home cage, further EE had beneficial effects. However, the improvements in cognition and survival vary with sex and genotype. These results indicate that EE may improve the quality of life of HD patients, but we suggest that EE as a therapy should be tailored to individuals.  相似文献   

14.
In this study, we evaluated the potential beneficial effects of antagonizing prostaglandin E2 (PGE2) EP1 receptor on motor and memory deficits in Huntington's disease (HD). To this aim, we implanted an osmotic mini-pump system to chronically administrate an EP1 receptor antagonist (SC-51089) in the R6/1 mouse model of HD, from 13 to 18 weeks of age, and used different paradigms to assess motor and memory function. SC-51089 administration ameliorated motor coordination and balance dysfunction in R6/1 mice as analyzed by rotarod, balance beam, and vertical pole tasks. Long-term memory deficit was also rescued after EP1 receptor antagonism as assessed by the T-maze spontaneous alternation and the novel object recognition tests. Additionally, treatment with SC-51089 improved the expression of specific synaptic markers and reduced the number of huntingtin nuclear inclusions in the striatum and hippocampus of 18-week-old R6/1 mice. Moreover, electrophysiological studies showed that hippocampal long-term potentiation was significantly recovered in R6/1 mice after EP1 receptor antagonism. Altogether, these results show that the antagonism of PGE2 EP1 receptor has a strong therapeutic effect on R6/1 mice and point out a new therapeutic candidate to treat motor and memory deficits in HD.  相似文献   

15.
Huntington''s Disease (HD) is a neurodegenerative disorder that is caused by abnormal expansion of a polyglutamine tract in huntingtin (htt) protein. The expansion leads to increased htt aggregation and toxicity. Factors that aid in the clearance of mutant huntingtin proteins should relieve the toxicity. We previously demonstrated that overexpression of ubiqulin-1, which facilitates protein clearance through the proteasome and autophagy pathways, reduces huntingtin aggregates and toxicity in mammalian cell and invertebrate models of HD. Here we tested whether overexpression of ubiquilin-1 delays or prevents neurodegeneration in R6/2 mice, a well-established model of HD. We generated transgenic mice overexpressing human ubiquilin-1 driven by the neuron-specific Thy1.2 promoter. Immunoblotting and immunohistochemistry revealed robust and widespread overexpression of ubiquilin-1 in the brains of the transgenic mice. Similar analysis of R6/2 animals revealed that ubiquilin is localized in huntingtin aggregates and that ubiquilin levels decrease progressively to 30% during the end-stage of disease. We crossed our ubiquilin-1 transgenic line with R6/2 mice to assess whether restoration of ubiquilin levels would delay HD symptoms and pathology. In the double transgenic progeny, ubiquilin levels were fully restored, and this correlated with a 20% increase in lifespan and a reduction in htt inclusions in the hippocampus and cortex. Furthermore, immunoblots indicated that endoplasmic reticulum stress response that is elevated in the hippocampus of R6/2 animals was attenuated by ubiquilin-1 overexpression. However, ubiquilin-1 overexpression neither altered the load of htt aggregates in the striatum nor improved motor impairments in the mice.  相似文献   

16.
17.

Background

Cardiovascular disease (CVD) and premature aging have been hypothesized as new risk factors for HIV associated neurocognitive disorders (HAND) in adults with virally-suppressed HIV infection. Moreover, their significance and relation to more classical HAND biomarkers remain unclear.

Methods

92 HIV− infected (HIV+) adults stable on combined antiretroviral therapy (cART) and 30 age-comparable HIV-negative (HIV−) subjects underwent 1H Magnetic Resonance Spectroscopy (MRS) of the frontal white matter (targeting HIV, normal aging or CVD-related neurochemical injury), caudate nucleus (targeting HIV neurochemical injury), and posterior cingulate cortex (targeting normal/pathological aging, CVD-related neurochemical changes). All also underwent standard neuropsychological (NP) testing. CVD risk scores were calculated. HIV disease biomarkers were collected and cerebrospinal fluid (CSF) neuroinflammation biomarkers were obtained in 38 HIV+ individuals.

Results

Relative to HIV− individuals, HIV+ individuals presented mild MRS alterations: in the frontal white matter: lower N-Acetyl-Aspartate (NAA) (p<.04) and higher myo-inositol (mIo) (p<.04); in the caudate: lower NAA (p = .01); and in the posterior cingulate cortex: higher mIo (p<.008– also significant when Holm-Sidak corrected) and higher Choline/NAA (p<.04). Regression models showed that an HIV*age interaction was associated with lower frontal white matter NAA. CVD risk factors were associated with lower posterior cingulate cortex and caudate NAA in both groups. Past acute CVD events in the HIV+ group were associated with increased mIo in the posterior cingulate cortex. HIV duration was associated with lower caudate NAA; greater CNS cART penetration was associated with lower mIo in the posterior cingulate cortex and the degree of immune recovery on cART was associated with higher NAA in the frontal white matter. CSF neopterin was associated with higher mIo in the posterior cingulate cortex and frontal white matter.

Conclusions

In chronically HIV+ adults with long-term viral suppression, current CVD risk, past CVD and age are independent factors for neuronal injury and inflammation. This suggests a tripartite model of HIV, CVD and age likely driven by chronic inflammation.  相似文献   

18.

Background

There are lingering concerns about caffeine consumption during pregnancy or the early postnatal period, partly because there may be long-lasting behavioral changes after caffeine exposure early in life.

Methodology/Principal Findings

We show that pregnant wild type (WT) mice given modest doses of caffeine (0.3 g/l in drinking water) gave birth to offspring that as adults exhibited increased locomotor activity in an open field. The offspring also responded to cocaine challenge with greater locomotor activity than mice not perinatally exposed to caffeine. We performed the same behavioral experiments on mice heterozygous for adenosine A1 receptor gene (A1RHz). In these mice signaling via adenosine A1 receptors is reduced to about the same degree as after modest consumption of caffeine. A1RHz mice had a behavioral profile similar to WT mice perinatally exposed to caffeine. Furthermore, it appeared that the mother''s genotype, not offspring''s, was critical for behavioral changes in adult offspring. Thus, if the mother partially lacked A1 receptors the offspring displayed more hyperactivity and responded more strongly to cocaine stimulation as adults than did mice of a WT mother, regardless of their genotype. This indicates that long-term behavioral alterations in the offspring result from the maternal effect of caffeine, and not a direct effect on fetus. WT offspring from WT mother but having a A1R Hz grandmother preserved higher locomotor response to cocaine.

Conclusions/Significance

We suggest that perinatal caffeine, by acting on adenosine A1 receptors in the mother, causes long-lasting behavioral changes in the offspring that even manifest themselves in the second generation.  相似文献   

19.
We examined the activity of striatal superoxide dismutase (SOD) in two acute pharmacological models of Huntington's disease (HD), and compared it with SOD activity in the striata of mice transgenic for the HD mutation. Total SOD, and Cu/ZnSOD activities increased in young transgenic mice, but decreased in older (35 week) mice. We consider that the increased enzyme activity represents a compensatory mechanism to protect cells from free radical-induced damage, but the system becomes insufficient in older animals. Major decreases in SOD activity were also observed both after quinolinic acid and 3-nitropropionic acid intrastriatal injections. The present results indicate that in both types of HD models striatal oxidative damage occurs, and that it is associated with alterations in the cellular antioxidant system.  相似文献   

20.
The CAG trinucleotide repeat mutation in the Huntington's disease gene (HTT) exhibits age-dependent tissue-specific expansion that correlates with disease onset in patients, implicating somatic expansion as a disease modifier and potential therapeutic target. Somatic HTT CAG expansion is critically dependent on proteins in the mismatch repair (MMR) pathway. To gain further insight into mechanisms of somatic expansion and the relationship of somatic expansion to the disease process in selectively vulnerable MSNs we have crossed HTT CAG knock-in mice (HdhQ111) with mice carrying a conditional (floxed) Msh2 allele and D9-Cre transgenic mice, in which Cre recombinase is expressed specifically in MSNs within the striatum. Deletion of Msh2 in MSNs eliminated Msh2 protein in those neurons. We demonstrate that MSN-specific deletion of Msh2 was sufficient to eliminate the vast majority of striatal HTT CAG expansions in HdhQ111 mice. Furthermore, MSN-specific deletion of Msh2 modified two mutant huntingtin phenotypes: the early nuclear localization of diffusely immunostaining mutant huntingtin was slowed; and the later development of intranuclear huntingtin inclusions was dramatically inhibited. Therefore, Msh2 acts within MSNs as a genetic enhancer both of somatic HTT CAG expansions and of HTT CAG-dependent phenotypes in mice. These data suggest that the selective vulnerability of MSNs may be at least in part contributed by the propensity for somatic expansion in these neurons, and imply that intervening in the expansion process is likely to have therapeutic benefit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号