首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Elevation of serum homocysteine (Hcy) levels is a risk factor for cardiovascular diseases. Previous studies suggested that Hcy interferes with copper (Cu) metabolism in vascular endothelial cells. The present study was undertaken to test the hypothesis that Hcy-induced disturbance of Cu homeostasis leads to endothelial cell injury. Exposure of human umbilical vein endothelial cells (HUVECs) to concentrations of Hcy at 0.01, 0.1 or 1 mM resulted in a concentration-dependent decrease in cell viability and an increase in necrotic cell death. Pretreatment of the cells with a final concentration of 5 µM Cu in cultures prevented the effects of Hcy. Hcy decreased intracellular Cu concentrations. HPLC-ICP-MS analysis revealed that Hcy caused alterations in the distribution of intracellular Cu; more Cu was redistributed to low molecular weight fractions. ESI-Q-TOF detected the formation of Cu-Hcy complexes. Hcy also decreased the protein levels of Cu chaperone COX17, which was accompanied by a decrease in the activity of cytochrome c oxidase (CCO) and a collapse of mitochondrial membrane potential. These effects of Hcy were all preventable by Cu pretreatment. The study thus demonstrated that Hcy disturbs Cu homeostasis and limits the availability of Cu to critical molecules such as COX17 and CCO, leading to mitochondrial dysfunction and endothelial cell injury.  相似文献   

2.
The endothelial cells that form capillaries in the brain are highly specialized, with tight junctions that minimize paracellular transport and an array of broad-spectrum efflux pumps that make drug delivery to the brain extremely challenging. One of the major limitations in blood-brain barrier research and the development of drugs to treat central nervous system diseases is the lack of appropriate cell lines. Recent reports indicate that the derivation of human brain microvascular endothelial cells (hBMECs) from human induced pluripotent stem cells (iPSCs) may provide a solution to this problem. Here we demonstrate the derivation of hBMECs extended to two new human iPSC lines: BC1 and GFP-labeled BC1. These hBMECs highly express adherens and tight junction proteins VE-cadherin, ZO-1, occludin, and claudin-5. The addition of retinoic acid upregulates VE-cadherin expression, and results in a significant increase in transendothelial electrical resistance to physiological values. The permeabilities of tacrine, rhodamine 123, and Lucifer yellow are similar to values obtained for MDCK cells. The efflux ratio for rhodamine 123 across hBMECs is in the range 2–4 indicating polarization of efflux transporters. Using the rod assay to assess cell organization in small vessels and capillaries, we show that hBMECs resist elongation with decreasing diameter but show progressive axial alignment. The derivation of hBMECs with a blood-brain barrier phenotype from the BC1 cell line highlights that the protocol is robust. The expression of GFP in hBMECs derived from the BC1-GFP cell line provides an important new resource for BBB research.  相似文献   

3.
王燕  刘军  何晓乐  王捷频 《生物磁学》2013,(27):5271-5274,5278
目的:研究褪黑素(melatonin,MLT)对人脐静脉内皮细胞(HUVECs)损伤的保护作用及其机制探讨。方法:不同浓度的褪黑素作用于体外培养的内皮细胞脂质过氧化损伤模型,实验分为5组,即正常对照组(Ctrl),脂多糖(LPS)氧化损伤组:在培养基中加入2mmol/L的LPS诱导损伤4h;LPS加MLT低剂量(200t~mol/L)组、中剂量(400ixmol/L)组、高剂量(600txmol/L)gai。采用MTT法观察MET对HUVECs活性的影响;用双波长荧光分光光度法测定HUVECs细胞内游离钙离子浓度;检测各组内皮细胞匀浆中丙二醛(MDA)含量及超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GSH·Px)活性;用ELISA法测定培养的细胞上清液中白细胞介素6(IL.6)表达的变化;并测定细胞凋亡率。结果:①LPS作用后血管内皮细胞损伤明显,细胞增殖减少,细胞培养上清液和细胞匀浆中MDA含量、细胞内钙离子浓度和IL.6均升高,SOD、GSH-Px活性下降,凋亡率可达38.9±1.1%,均与正常对照组有统计学差异(P〈0.01);②加入MET可明显减轻LPS对抗氧化酶SOD、GSH—Px的影响,同时MDA含量、细胞内钙离子浓度和几一6均明显下降,并显著减少凋亡细胞数量,各指标差异有统计学意义(P〈0.01)。结论:褪黑素可保护和修复LPS引起的血管内皮细胞损伤,其作用途径可能与保护细胞的线粒体,提高了该细胞的抗氧化酶活性,降低细胞内钙离子浓度作用有关。  相似文献   

4.
Peptides with cell attachment activity are beneficial component of biomaterials for tissue engineering. Conformational structure is one of the important factors for the biological activities. The EF1 peptide (DYATLQLQEGRLHFMFDLG) derived from laminin promotes cell spreading and cell attachment activity mediated by α2β1 integrin. Although the sequence of the EF2 peptide (DFATVQLRNGFPYFSYDLG) is homologous sequence to that of EF1, EF2 does not promote cell attachment activity. To determine whether there are structural differences between EF1 and EF2, we performed replica exchange molecular dynamics (REMD) simulations and conventional molecular dynamics (MD) simulations. We found that EF1 and EF2 had β-sheet structure as a secondary structure around the global minimum. However, EF2 had variety of structures around the global minimum compared with EF1 and has easily escaped from the bottom of free energy. The structural fluctuation of the EF1 is smaller than that of the EF2. The structural variation of EF2 is related to these differences in the structural fluctuation and the number of the hydrogen bonds (H-bonds). From the analysis of H-bonds in the β-sheet, the number of H-bonds in EF1 is larger than that in EF2 in the time scale of the conventional MD simulation, suggesting that the formation of H-bonds is related to the differences in the structural fluctuation between EF1 and EF2. From the analysis of other non-covalent interactions in the amino acid sequences of EF1 and EF2, EF1 has three pairs of residues with hydrophobic interaction, and EF2 has two pairs. These results indicate that several non-covalent interactions are important for structural stabilization. Consequently, the structure of EF1 is stabilized by H-bonds and pairs of hydrophobic amino acids in the terminals. Hence, we propose that non-covalent interactions around N-terminal and C-terminal of the peptides are crucial for maintaining the β-sheet structure of the peptides.  相似文献   

5.
Abstract: The ε4 allele of apolipoprotein E (apoE, protein; APOE, gene) is a major risk factor for Alzheimer's disease (AD). Genetically, the frequency of the ε4 allele is enriched in early-onset sporadic, late-onset familial, and common late-onset sporadic AD. ApoE is found in the extracellular amyloid-β (Aβ) deposits that are characteristic features of AD. In this study, we examined the interaction between Aβ and apoE isoforms. The apoE isoforms used in this study were either produced by stably transfected Chinese hamster ovary cells (CHO) or were from human plasma. We report that when similar concentrations of the apoE isoforms were used, native nonpurified apoE3 from recombinant CHO-derived sources bound Aβ, but apoE4 did not. In fact, in our system, binding of recombinant apoE4 to Aβ was never detectable, even after incubation for 4 days. Furthermore, using the same assay conditions, native apoE2, like apoE3, binds Aβ avidly. Furthermore, when human plasma apoE isoforms are tested in Aβ binding experiments, apoE3 bound Aβ more avidly than apoE4, and a major apoE/Aβ complex (the 40-kDa form) was observed with plasma apoE3 but not apoE4. These data extend our understanding of apoE isoform-dependent binding of Aβ by associating apoE2 with efficient apoE/Aβ complex formation and demonstrate that native apoE3 (whether recombinant or derived from human plasma) forms sodium dodecyl sulfate-stable apoE/Aβ complexes more readily than native apoE4. The different Aβ-binding properties of native apoE4 versus native apoE3 provide insight into the molecular mechanisms by which the APOE ε4 allele exerts its risk factor effects in AD.  相似文献   

6.
Hyperglycemia causes oxidative stress that could damage vascular endothelial cells, leading to cardiovascular complications. The Vgf gene was identified as a nerve growth factor-responsive gene, and its protein product, VGF, is characterized by the presence of partially cleaved products. One of the VGF-derived peptides is TLQP-21, which is composed of 21 amino acids (residues 556–576). Past studies have reported that TLQP-21 could stimulate insulin secretion in pancreatic cells and protect these cells from apoptosis, which suggests that TLQP-21 has a potential function in diabetes therapy. Here, we explore the protective role of TLQP-21 against the high glucose-mediated injury of vascular endothelial cells. Using human umbilical vascular endothelial cells (HUVECs), we demonstrated that TLQP-21 (10 or 50 nM) dose-dependently prevented apoptosis under high-glucose (30 mmol/L) conditions (the normal glucose concentration is 5.6 mmol/L). TLQP-21 enhanced the expression of NAPDH, resulting in upregulation of glutathione (GSH) and a reduction in the levels of reactive oxygen species (ROS). TLQP-21 also upregulated the expression of glucose-6-phosphate dehydrogenase (G6PD), which is known as the main source of NADPH. Knockdown of G6PD almost completely blocked the increase of NADPH induced by TLQP-21, indicating that TLQP-21 functions mainly through G6PD to promote NADPH generation. In conclusion, TLQP-21 could increase G6PD expression, which in turn may increase the synthesis of NADPH and GSH, thereby partially restoring the redox status of vascular endothelial cells under high glucose injury. We propose that TLQP-21 is a promising drug for diabetes therapy.  相似文献   

7.
Cell-penetrating peptides (CPPs) are short peptides which can carry various types of molecules into cells; however, although most CPPs rapidly penetrate cells in vitro, their in vivo tissue-targeting specificities are low. Herein, we describe cell-binding, internalization, and targeting characteristics of a newly identified 10-residue CPP, denoted ECP32–41, derived from the core heparin-binding motif of human eosinophil cationic protein (ECP). Besides traditional emphasis on positively charged residues, the presence of cysteine and tryptophan residues was demonstrated to be essential for internalization. ECP32–41 entered Beas-2B and wild-type CHO-K1 cells, but not CHO cells lacking of cell-surface glycosaminoglycans (GAGs), indicating that binding of ECP32–41 to cell-surface GAGs was required for internalization. When cells were cultured with GAGs or pre-treated with GAG-digesting enzymes, significant decreases in ECP32–41 internalization were observed, suggesting that cell-surface GAGs, especially heparan sulfate proteoglycans were necessary for ECP32–41 attachment and penetration. Furthermore, treatment with pharmacological agents identified two forms of energy-dependent endocytosis, lipid-raft endocytosis and macropinocytosis, as the major ECP32–41 internalization routes. ECP32–41 was demonstrated to transport various cargoes including fluorescent chemical, fluorescent protein, and peptidomimetic drug into cultured Beas-2B cells in vitro, and targeted broncho-epithelial and intestinal villi tissues in vivo. Hence this CPP has the potential to serve as a novel vehicle for intracellular delivery of biomolecules or medicines, especially for the treatment of pulmonary or gastrointestinal diseases.  相似文献   

8.
Abstract: Patients with diabetes are predisposed to microvascular disease. In the retina and brain, this is characterized by neovascularization and new capillary formation. Because of the potential importance of plasmin generation in these processes, we evaluated the effect of elevated glucose concentrations on expression of plasminogen activator inhibitor-1 (PAI-1), tissue plasminogen activator (tPA), and urokinase (uPA) in cultured bovine brain endothelial cells (BBEC) versus cultured bovine aortic endothelial cells (BAEC). We observed that BBEC PAI-1 mRNA levels were decreased fivefold in cells cultured in media containing 20 m M glucose compared with BBEC cultured in media with 5.5 m M glucose, whereas expression of PAI-1 mRNA in BAEC, bovine mesenteric endothelial cells, and human umbilical vein endothelial cells was not modulated under these conditions. Expression of PAI-1 protein was also inhibited by growth of BBEC in elevated glucose, but the effect was less marked than at the mRNA level. Elevated glucose did not decrease expression of PAI-1 protein by BAEC. Withdrawal of acidic fibroblast growth factor enhanced expression of PAI-1 mRNA and protein in BBEC. Expression of tPA mRNA was not affected by the glucose concentration of the medium, and uPA mRNA was not detected in our BBEC cultures. A decrease in the local tissue activity of PAI-1 by elevated glucose concentrations, with no effect on tPA or uPA expression, would lead to an increase in the plasmin activity and thereby predispose neural tissues, such as the cerebrum and retina, of diabetic patients to neovascularization.  相似文献   

9.
A 21-residue peptide segment, LL7-27 (RKSKEKIGKEFKRIVQRIKDF), corresponding to residues 7-27 of the only human cathelicidin antimicrobial peptide, LL37, is shown to exhibit potent activity against microbes (particularly Gram-positive bacteria) but not against erythrocytes. The structure, membrane orientation, and target membrane selectivity of LL7-27 are characterized by differential scanning calorimetry, fluorescence, circular dichroism, and NMR experiments. An anilinonaphthalene-8-sulfonic acid uptake assay reveals two distinct modes of Escherichia coli outer membrane perturbation elicited by LL37 and LL7-27. The circular dichroism results show that conformational transitions are mediated by lipid-specific interactions in the case of LL7-27, unlike LL37. It folds into an α-helical conformation upon binding to anionic (but not zwitterionic) vesicles, and also does not induce dye leakage from zwitterionic lipid vesicles. Differential scanning calorimetry thermograms show that LL7-27 is completely integrated with DMPC/DMPG (3:1) liposomes, but induces peptide-rich and peptide-poor domains in DMPC liposomes. 15N NMR experiments on mechanically aligned lipid bilayers suggest that, like the full-length peptide LL37, the peptide LL7-27 is oriented close to the bilayer surface, indicating a carpet-type mechanism of action for the peptide. 31P NMR spectra obtained from POPC/POPG (3:1) bilayers containing LL7-27 show substantial disruption of the lipid bilayer structure and agree with the peptide's ability to induce dye leakage from POPC/POPG (3:1) vesicles. Cholesterol is shown to suppress peptide-induced disorder in the lipid bilayer structure. These results explain the susceptibility of bacteria and the resistance of erythrocytes to LL7-27, and may have implications for the design of membrane-selective therapeutic agents.  相似文献   

10.
Abstract : Growing evidence indicates the involvement of apolipoprotein E (apoE) in the development of late-onset and sporadic forms of Alzheimer's disease, although its exact role remains unclear. We previously demonstrated that β-amyloid peptide (Aβ) displays membrane-destabilizing properties and that only apoE2 and E3 isoforms inhibit these properties. In this study, we clearly demonstrate that the carboxy-terminal lipid-binding domain of apoE (e.g., residues 200-299) is responsible for the Aβ-binding activity of apoE and that this interaction involves pairs of apoE amphipathic α-helices. We further demonstrate that Aβ is able to inhibit the association of the C-terminal domain of apoE with lipids due to the formation of Aβ/apoE complexes resistant to sodium dodecyl sulfate-polyacrylamide gel electrophoresis. On the contrary, the amino-terminal receptor-binding domain of apoE (e.g., residues 129-169) is not able to form stable complexes with Aβ. These data extend our understanding of human apoE-dependent binding of Aβ by involving the C-terminal domain of apoE in the efficient formation of apoE/Aβ complex.  相似文献   

11.
The molecular events that contribute to the cellular uptake of cell-penetrating peptides (CPP) are still a matter of intense research. Here, we report on the identification and characterization of a 22-amino acid CPP derived from the human milk protein, lactoferrin. The peptide exhibits a conformation-dependent uptake efficiency that is correlated with efficient binding to heparan sulfate and lipid-induced conformational changes. The peptide contains a disulfide bridge formed by terminal cysteine residues. At concentrations exceeding 10 μm, this peptide undergoes the same rapid entry into the cytoplasm that was described previously for the arginine-rich CPPs nona-arginine and Tat. Cytoplasmic entry strictly depends on the presence of the disulfide bridge. To better understand this conformation dependence, NMR spectroscopy was performed for the free peptide, and CD measurements were performed for free and lipid-bound peptide. In solution, the peptides showed only slight differences in secondary structure, with a predominantly disordered structure both in the presence and absence of the disulfide bridge. In contrast, in complex with large unilamellar vesicles, the conformation of the oxidized and reduced forms of the peptide clearly differed. Moreover, surface plasmon resonance experiments showed that the oxidized form binds to heparan sulfate with a considerably higher affinity than the reduced form. Consistently, membrane binding and cellular uptake of the peptide were reduced when heparan sulfate chains were removed.  相似文献   

12.
(i) We have used a combined patch-clamp and fura-2 fluorescence technique to characterize a nonselective cation channel (NSC) in Ea.hy926 (EA) cells, an endothelial cell line derived from human umbilical vein. (ii) Stimulation with ATP, histamine and bradykinin activated slowly and with a long delay after application of the agonist, a nonselective cation current (I NSC) which is time- and voltage-independent. The permeability sequence for cations was P Na > P Cs >> P NMDG , P Ca . In the absence of external Ca2+ and at rather high concentrations, La3+ and Gd3+ blocked I NSC . (iii) Single channel analysis revealed that ATP activates in the cell-attached configuration a nonselective cation channel with a conductance of approximately 24 pS and a permeation sequence identical to that of the macroscopic current. The channel activity disappeared after membrane excision. (iv) Activation of NSC required physiological intracellular Ca2+ levels (100 nm or higher). All agonists failed to activate NSC if cytosolic Ca2+ ([Ca2+] i ) was lowered by 10 mm BAPTA. Clamping internal Ca2+ at 1 μm sometimes (8 out of 17 cells) spontaneously activated I NSC in the absence of any additional stimulus. (v) Application of 2,5-di-tert-butylhydroquinone and internal perfusion of inositol 1,4,5-trisphosphate also activated I NSC . The phospholipase C inhibitor, U-73122 inhibited I NSC and the sustained Ca2+ plateau during agonist stimulation whereas the inactive analogue, U-73343 had no effect. (vi) These results indicate NSC may act as a Ca2+ entry pathway in endothelium. [Ca2+] i and inositol 1,4,5-trisphosphate play a role in the activation cascade of NSC, and possibly also store depletion. Received: 13 October 1998/Revised: 28 January 1999  相似文献   

13.

Background

Previous data have proven that microvesicles derived from hypoxia-induced mesenchymal stem cells (MSC-MVs) can be internalized into endothelial cells, enhancing their proliferation and vessel structure formation and promoting in vivo angiogenesis. However, there is a paucity of information about how the MSC-MVs are up-taken by endothelial cells.

Methods

MVs were prepared from the supernatants of human bone marrow MSCs that had been exposed to a hypoxic and/or serum-deprivation condition. The incorporation of hypoxia-induced MSC-MVs into human umbilical cord endothelial cells (HUVECs) was observed by flow cytometry and confocal microscopy in the presence or absence of recombinant human Annexin-V (Anx-V) and antibodies against human CD29 and CD44. Further, small interfering RNA (siRNA) targeted at Anx-V and PSR was delivered into HUVECs, or HUVECs were treated with a monoclonal antibody against phosphatidylserine receptor (PSR) and the cellular internalization of MVs was re-assessed.

Results

The addition of exogenous Anx-V could inhibit the uptake of MVs isolated from hypoxia-induced stem cells by HUVECs in a dose- and time-dependent manner, while the anti-CD29 and CD44 antibodies had no effect on the internalization process. The suppression was neither observed in Anx-V siRNA-transfected HUVECs, however, addition of anti-PSR antibody and PSR siRNA-transfected HUVECs greatly blocked the incorporation of MVs isolated from hypoxia-induced stem cells into HUVECs.

Conclusion

PS on the MVs isolated from hypoxia-induced stem cells is the critical molecule in the uptake by HUVECs.  相似文献   

14.
We efficiently produced a small peptide by the host-vector system using Bacillus brevis as a host. DNA encoding the physiologically functional casoxin D, composed of seven amino acids, was ligated in tandem. An expression-secretion vector containing DNA, which codes for a fusion protein of epidermal growth factor-casoxin D pentamer, was constructed. B. brevis transformed with this plasmid produced about 0.5 g/liter of the fusion protein in the culture supernatant. The fusion protein was purified with ammonium sulfate fractionation from the supernatant and digested with two kinds of proteinases. A peptide well separated by high pressure liquid chromatography was identified as biologically active casoxin D.  相似文献   

15.
Malignant and inflammatory tissues sometimes express endogenous retroviruses or their proteins. A highly-conserved sequence from retroviral transmembrane (TM) proteins, termed the “immunosuppressive domain (ID)”, is associated with inhibition of immune and inflammatory functions. An octadecapeptide (MN10021) from the ID of retroviral TM protein p15E inhibits in vitro release of pro-inflammatory cytokines and increases synthesis of anti-inflammatory IL-10. We sought to determine if MN10021 has significant in vivo effects. MN10021, prepared by solid-phase synthesis, was dimerized through a naturally-occurring, carboxy-terminal cysteine. In vivo anti-inflammatory activity was determined using a murine model of sodium periodate (NaIO4)-induced peritonitis. In vivo vasoprotective effects were determined using: (1) a carrageenan-induced model of disseminated intravascular coagulation (DIC) in mice; (2) a reverse passive Arthus model in guinea pigs; and (3) vasoregulatory effects in spontaneously hypertensive rats (SHR). In vitro studies included: (1) binding/uptake of MN10021 using human monocytes, cultured fibroblasts, and vascular endothelial cells (VEC); (2) gene expression by RT-PCR of MN10021-treated VEC; and (3) apoptosis of MN10021-treated VEC exposed to staurosporine or TNF-α. One-tenth nmol MN10021 inhibits 50 percent of the inflammatory response in the mouse peritonitis model. Furthermore, 73 nmol MN10021 completely protects mice in a lethal model of carrageenan-induced DIC and inhibits vascular leak in both the mouse DIC model and a guinea pig reverse passive Arthus reaction. MN10021 binds to and is taken up in a specific manner by both human monocytes and VEC but not by cultured human fibroblasts. Surprisingly, orally-administered MN10021 lowers blood pressure in SHR rats by 10–15% within 1 h suggesting a direct or indirect effect on the vascular endothelium. MN10021 and derived octapeptides induce iNOS (inducible nitric oxide synthase) mRNA in VEC and nitrate in VEC cell culture supernatants and protect VEC from induced apoptosis or necrosis. However, pretreatment of VEC with nitro-L-arginine methyl ester (L-NAME), while inhibiting the release of nitrate, does not block the anti-apoptotic effect of MN10021 and derived octapeptides suggesting that their potent vasoprotective and anti-inflammatory activity is not nitric oxide dependent.  相似文献   

16.
17.
18.
通过体细胞核移植技术制作了人胰岛素原转基因牛。在CMV启动子指导下以内部核糖体进入位点序列(IRES)连接的新霉素抗性基因和绿色荧光蛋白基因组成了双重标记基因的筛选系统,用于转基因细胞的富集以及细胞和植入前胚胎的筛选。转基因通过电穿孔的方法(900V/cm,5ms)转入体外培养的牛胎儿成纤维细胞,基因转染细胞在添加G418 (800μg/mL)的培养基中培养10天以富集转基因细胞。选择表达绿色荧光蛋白的转基因细胞作为核供体进行体细胞核移植,重构胚经体外培养至囊胚阶段,选择表达绿色荧光蛋白的囊胚进行胚胎移植。为比较基因转染以及供体细胞所处周期对转基因细胞核移植胚胎发育的影响,用作核移植供体的转基因细胞或非转基因细胞先饥饿培养2—4天(0.5 ?S) ,然后恢复培养(10?S) 10 h使细胞同步化于G1期,以正常培养的细胞作为对照进行核移植。结果表明,转基因细胞作为核供体得到的核移植胚胎的体外囊胚发育率低于以非转基因细胞为核供体的对照组(23.2% VS 35.2 %,P<0.05) ;转基因细胞周期同步化处理与否对其克隆胚囊胚发育率无显著影响(23.2% VS 18.9 %,P>0.05)。胚胎移植后2个月直肠检查发现7头受体牛(每头移植2—4枚胚胎)中有一头妊娠,并最终发育足月产下一头小牛。聚合酶链反应(PCR)检测和DNA测序分析表明其为转人胰岛素原基因的转基因克隆牛。  相似文献   

19.
For secretion of human apolipoprotein E (hApoE) by Saccharomyces cerevisiae, the hApoE gene was fused to truncated human serum albumin (HSA)-encoding sequences and expressed under the control of the GAL7 promoter. When the mature region of the hApoE gene was fused to the HSA-encoding sequence without its pro-region and expressed in galactose-containing medium, the HSA-hApoE fusion protein was efficiently secreted into the medium at a maximum yield of 6.3 mg per liter.  相似文献   

20.
Pituitary adenoma tissues are hypovascular, and have a lower partial oxygen pressure compared with neighboring normal organs. In this study, we investigated whether hypoxia influences the cell invasiveness of the human pituitary adenoma cell line, HP-75. HP-75 cells were exposed to hypoxic (1–10% oxygen) or normoxic (21% oxygen) conditions for 24 hours. Gelatin and reverse zymogram assays were used to determine the enzyme activities of matrix metalloproteinases (MMP) and tissue inhibitor of metalloproteinases (TIMP). Cell adhesion and Matrigel cell invasion were examined with a Boiden chamber. Finally, the mRNA gene expression profiles of cells exposed to hypoxia or normoxia were examined by cDNA microarray and confirmed with real-time RT-PCR and flow cytometry. The gelatin and reverse zymograms revealed that the activities of MMP and TIMP were not significantly altered by hypoxia. Matrigel cell invasion and cell adhesion to Matrigel or collagen type IV were increased by hypoxia (3.8- and 4.8-fold, respectively). The cDNA microarray analysis revealed that laminin β2 chain mRNA was specifically up-regulated under hypoxic conditions (4.96-fold). Finally, real-time RT-PCR and flow cytometry verified the elevated expression of laminin β2 chain at the mRNA and protein levels under hypoxic conditions. RNA interference with siRNA targeting laminin β2 inhibited Matrigel invasion and adhesion to collagen type IV in a dose.dependent manner.Collectively, these results suggested that hypoxia (1% oxygen) enhanced the cell invasion properties of a pituitary adenoma cell line in association with elevated expression of laminin β2 and enhanced binding to collagen type IV.Key Words: cell invasion, hypoxia, laminin β2, pituitary adenoma, siRNA  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号