首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Light and temperature cycles are the most important synchronizers of biological rhythms in nature. However, the relative importance of each, especially when they are not in phase, has been poorly studied. The aim of this study was to analyze the entrainment of daily locomotor activity to light and/or temperature cycles in zebrafish. Under two constant temperatures (20°C and 26°C) and 12:12 light-dark (LD) cycles, zebrafish were most active during the day (light) time and showed higher total activity at the warmer temperature, while diurnalism was higher at 20°C than at 26°C (87% and 77%, respectively). Under thermocycles (12:12 LD, 26:20°C thermophase:chryophase or TC), zebrafish daily activity synchronized to the light phase, both when the thermophase and light phase were in phase (LD/TC) or in antiphase (LD/CT). Under constant dim light (3 lux), nearly all zebrafish synchronized to thermocycles (τ=24 h), although activity rhythms (60% to 67% of activity occurred during the thermophase) were not as marked as those observed under the LD cycle. Under constant dim light of 3 lux and constant temperature (22.5°C), 4 of 6 groups of zebrafish previously entrained to thermocycles displayed free-running rhythms (τ=22.9 to 23.6 h). These results indicate that temperature cycles alone can also entrain zebrafish locomotor activity.  相似文献   

2.
The effect of water temperature on biochemical composition, growth and reproduction of the ornamental shrimp, Neocaridina heteropoda heteropoda, was investigated to determine the optimum temperature for its culture. The effect of embryo incubation temperature on the subsequent performance of juveniles was also evaluated. Ovigerous females and recently hatched juveniles (JI) were maintained during egg incubation and for a 90-day period, respectively, at three temperatures (24, 28 and 32°C). Incubation period increased with decreasing water temperature, but the number and size of JI were similar among treatments. At day 30 of the 90-day period, body weight and growth increment (GI) at 24°C were lower than those at 28 and 32°C. On subsequent days, GI at 24°C exceeded that at 28 and 32°C, leading to a similar body weight among treatments. These results suggest growth was delayed at 24°C, but only for 30 days after hatching. The lipid concentration tended to be lowest, intermediate and highest at 28, 32 and 24°C, respectively, possibly as a consequence of the metabolic processes involved in growth and ovarian maturation. Protein and glycogen concentrations were similar among treatments. Both the growth trajectory and biochemical composition of shrimps were affected by the temperature experienced during the 90-day growth period independently of the embryo incubation temperature. During the growth period, shrimps reached sexual maturity and mated, with the highest proportion of ovigerous females occurring at 28°C. All the females that matured and mated at 32°C lost their eggs, indicating a potentially stressful effect of high temperature on ovarian maturation. Based on high survival and good growth performance of shrimps at the three temperatures tested over the 90-day period it is concluded that N. heteropoda heteropoda is tolerant to a wide range of water temperatures, with 28°C being the optimum temperature for its culture.  相似文献   

3.
Reproduction and development of Pratylenchus penetrans were studied on genetically transformed ladino clover roots. Solitary females developing on transformed roots in nutrient gellan gum medium (pH 5.5) deposited 1.2, 1.5, 1.6, 1.8, and 2.0 eggs per day at the respective temperatures of 17, 20, 25, 27, and 30 °C. The number of eggs deposited was highly correlated with temperature. A reduction in egg-laying rates at the start of hatching was observed at all temperatures. Juvenile mortality was higher at 17 °C (50.4%), 20 °C (50.3%), and 30 °C (58.4%) than at 25 °C (34.6%) and 27 °C (37.6%). Life-cycle (egg deposition to egg deposition) duration was 46, 38, 28, 26, and 22 days at the respective temperatures. The developmental zero degrees (°C) and the effective accumulative temperatures (degree-days) required for hatching, female emergence, and onset of oviposition (completion of one generation) of P. penetrans were estimated to be 2.7 and 200, 4.2 and 548, and 5.1 and 564, respectively. Pratylenchus penetrans reproduces over a wide range of temperatures.  相似文献   

4.
Light and temperature cycles are the most important synchronizers of biological rhythms in nature. However, the relative importance of each, especially when they are not in phase, has been poorly studied. The aim of this study was to analyze the entrainment of daily locomotor activity to light and/or temperature cycles in zebrafish. Under two constant temperatures (20°C and 26°C) and 12:12 light-dark (LD) cycles, zebrafish were most active during the day (light) time and showed higher total activity at the warmer temperature, while diurnalism was higher at 20°C than at 26°C (87% and 77%, respectively). Under thermocycles (12:12 LD, 26:20°C thermophase:chryophase or TC), zebrafish daily activity synchronized to the light phase, both when the thermophase and light phase were in phase (LD/TC) or in antiphase (LD/CT). Under constant dim light (3 lux), nearly all zebrafish synchronized to thermocycles (τ=24 h), although activity rhythms (60% to 67% of activity occurred during the thermophase) were not as marked as those observed under the LD cycle. Under constant dim light of 3 lux and constant temperature (22.5°C), 4 of 6 groups of zebrafish previously entrained to thermocycles displayed free‐running rhythms (τ=22.9 to 23.6 h). These results indicate that temperature cycles alone can also entrain zebrafish locomotor activity.  相似文献   

5.
Phaseolus vulgaris lines with heat-stable resistance to Meloidogyne spp. may be needed to manage root-knot nematodes in tropical regions. Resistance expression before and during the process of nematode penetration and development in resistant genotypes were studied at pre- and postinoculation temperatures of 24 °C and 24 °C, 24 °C and 28 °C, 28 °C and 24 °C, and 28 °C and 28 °C. Resistance was effective at all temperature regimes examined, with fewer nematodes in roots of a resistant line compared with a susceptible line. Preinoculation temperature did not modify resistance expression to later infections by root-knot nematodes. However, postinoculation temperatures affected development of Meloidogyne spp. in both the resistant and susceptible bean lines tested. The more rapid development of nematodes to adults at the higher postinoculation temperature of 28 °C in both bean lines suggests direct temperature effects on nematode development instead of on resistance expression of either of two gene systems. Also, resistance was stable at 30 °C and 32 °C.  相似文献   

6.
1. Mackerel egg development was followed to hatching at constant temperatures of 10°, 11°, 12°, 13°, 14°, 15°, 16°, 17°, 18°, 19°, 20°, 21°, 22°, and 24°C. Experiment showed that typical development could be realized only between 11° and 21°. 2. The length of the developmental period increases from 49.5 hours to 207 hours when the temperature is lowered from 21° to 10°C. 3. The calculated µ for the development of the mackerel egg is about 19,000 at temperatures above 15° and approximately 24,900 for temperatures below 15°C. 15° is, apparently, a critical temperature for this process. 4. The calculated values of µ for eight stages of development preceding hatching, i.e. 6 somites, 12 somites, 18 somites, 24 somites, three-quarters circles, four-fifths circles, five-sixths circles, and full circles, are essentially the same as the µ''s for hatching, indicating that the rate of differentiation up to hatching is governed by one process throughout. Critical temperatures for these stages approximate 15°. 5. The total mortality during the incubation period was least at 16°C. where it amounted to 43 per cent. At temperatures above and below this there was a steady increase in the percentage of mortality which reached 100 per cent at 10° and 21°.  相似文献   

7.
Stimulation of hatching of a tobacco cyst nematode (Globodera tabacum solanacearum) by root exudates from resistant NC 567 and susceptible K 326 cultivars of flue-cured tobacco, Nicotiana tabacum, was investigated. Root exudates were collected by soaking seedlings in deionized water for 2 hours at 22 °C in the dark. Fifteen mature and uniformly sized cysts were exposed at 15, 20, or 25 °C to undiluted root exudate, root exudate diluted 1:1 or 1:3 with deionized water, or deionized water alone. Hatched juveniles were counted and removed at weekly intervals during 42 and 53 days of exposure in experiments conducted in 1994 and 1995, respectively. Root exudates from both susceptible cultivar K 326 and resistant cultivar NC 567 stimulated more hatching than deionized water at 25 °C in 1994, and at all three tested temperatures in 1995. In 1994, dilution of root exudates 1:3 reduced stimulation of hatching at 25 °C compared to undiluted exudate. Hatching at 25 °C was similarly stimulated by exposure to undiluted root exudate and exudate diluted 1:1. In 1995, both dilutions reduced stimulation of hatching by root exudates at all the temperatures.  相似文献   

8.
During early development, most organisms display rhythmic physiological processes that are shaped by daily changes in their surrounding environment (i.e., light and temperature cycles). In fish, the effects of daily photocycles and their interaction with temperature during early developmental stages remain largely unexplored. We investigated the existence of circadian rhythms in embryonic development and hatching of three teleost species with different daily patterns of behavior: diurnal (zebrafish), nocturnal (Senegalese sole), and blind, not entrained by light (Somalian cavefish). To this end, fertilized eggs were exposed to three light regimes: 12 h of light: 12 h of darkness cycle (LD), continuous light (LL), or continuous darkness (DD); and three species-appropriate temperature treatments: 24°C, 28°C, or 32°C for zebrafish and cavefish and 18°C, 21°C, or 24°C for sole. The results pointed to the existence of daily rhythms of embryonic development and hatching synchronized to the LD cycle, with different acrophases, depending on the species: zebrafish embryos advanced their developmental stage during the light phase, whereas sole did so during the dark phase. In cavefish, embryogenesis occurred within 24 h post fertilization (hpf) at the same pace during day or night. The hatching rhythms appeared to be controlled by a clock mechanism that restricted or “gated” hatching to a particular time of day/night (window), so that embryos that reached a certain developmental state by that time hatch, whereas those that have not wait until the next available window. Under LL and DD conditions, hatching rhythms and the gating phenomenon persisted in cavefish, in zebrafish they split into ultradian bouts of hatching occurring at 12–18-h intervals, whereas in sole DD and LL produced a 24-h delay and advance, respectively. Hatching rates were best under the LD cycle and the reported optimal temperature for each species (95.2?±?2.7% of the zebrafish and 83.3?±?0.1% of the cavefish embryos hatched at 28°C, and 93.1?±?2.9% of the sole embryos hatched at 21°C). In summary, these results revealed that hatching rhythms in fish are endogenously driven by a time-keeping mechanism, so that the day and time of hatching are determined by the interplay between the developmental state (temperature-sensitive) and the circadian clock (temperature-compensated), with the particular phasing being determined by the diurnal/nocturnal behavior of the species. (Author correspondence: javisan@um.es)  相似文献   

9.
This study is the first demonstration of successful post-thawing development to reproduction stage of diploid cryopreserved larvae in an aquatic invertebrate. Survival, growth and reproductive performances were studied in juvenile and adult Pacific oysters grown from cryopreserved embryos. Cryopreservation was performed at three early stages: trochophore (13±2 hours post fertilization: hpf), early D-larvae (24±2 hpf) and late D-larvae (43±2 hpf). From the beginning (88 days) at the end of the ongrowing phase (195 days), no mortality was recorded and mean body weights did not differ between the thawed oysters and the control. At the end of the growing-out phase (982 days), survival of the oysters cryopreserved at 13±2 hpf and at 43±2 hpf was significantly higher (P<0.001) than those of the control (non cryopreserved larvae). Only the batches cryopreserved at 24±2 hpf showed lower survival than the control. Reproductive integrity of the mature oysters, formely cryopreserved at 13±2 hpf and 24±2 hpf, was estimated by the sperm movement and the larval development of their offspring in 13 crosses gamete pools (five males and five females in each pool). In all but two crosses out of 13 tested (P<0.001), development rates of the offspring were not significantly different between frozen and unfrozen parents. In all, the growth and reproductive performances of oysters formerly cryopreserved at larval stages are close to those of controls. Furthermore, these performances did not differ between the three initial larval stages of cryopreservation. The utility of larvae cryopreservation is discussed and compared with the cryopreservation of gametes as a technique for selection programs and shellfish cryobanking.  相似文献   

10.
Longidorus africanus multiplication on tomato was highest at 29 °C. Few nematodes were recovered after 6 weeks at soil temperatures of 35 °C or below 23 °C. The time to egg hatching was shortest and the percentage of eggs hatching was highest at 29 °C. The minimum temperature and the heat sum above this temperature required for egg development were calculated to be 14.3 °C and 94.08 degree-days, respectively. The thermal times required for egg development by L. africanus and L. elongatus were nearly identical. For both species the product of the base temperature and the heat sum was near constant, and at a temperature of 22.3 °C the rates of egg development were equal.  相似文献   

11.
12.
Temperature affects both the timing and outcome of animal development, but the detailed effects of temperature on the progress of early development have been poorly characterized. To determine the impact of temperature on the order and timing of events during Drosophila melanogaster embryogenesis, we used time-lapse imaging to track the progress of embryos from shortly after egg laying through hatching at seven precisely maintained temperatures between 17.5°C and 32.5°C. We employed a combination of automated and manual annotation to determine when 36 milestones occurred in each embryo. D. melanogaster embryogenesis takes 33 hours at 17.5°C, and accelerates with increasing temperature to a low of 16 hours at 27.5°C, above which embryogenesis slows slightly. Remarkably, while the total time of embryogenesis varies over two fold, the relative timing of events from cellularization through hatching is constant across temperatures. To further explore the relationship between temperature and embryogenesis, we expanded our analysis to cover ten additional Drosophila species of varying climatic origins. Six of these species, like D. melanogaster, are of tropical origin, and embryogenesis time at different temperatures was similar for them all. D. mojavensis, a sub-tropical fly, develops slower than the tropical species at lower temperatures, while D. virilis, a temperate fly, exhibits slower development at all temperatures. The alpine sister species D. persimilis and D. pseudoobscura develop as rapidly as tropical flies at cooler temperatures, but exhibit diminished acceleration above 22.5°C and have drastically slowed development by 30°C. Despite ranging from 13 hours for D. erecta at 30°C to 46 hours for D. virilis at 17.5°C, the relative timing of events from cellularization through hatching is constant across all species and temperatures examined here, suggesting the existence of a previously unrecognized timer controlling the progress of embryogenesis that has been tuned by natural selection as each species diverges.  相似文献   

13.
1. Whitefish eggs incubated in aerated lake water at controlled tempera tures of 0°, 0.5°, 2°, 4°, 6°, 8°, 10°, and 12°C., failed to hatch at either 0° or 12°C. 0.6 per cent hatched alive at 10°C., 72.67 per cent hatched alive at 0.5°C., and an intermediate proportion hatched at intermediate temperatures. 2. The percentage of abnormal embryos which developed to the hatching stage varied directly with temperature between 4° and 12°, all embryos being abnormal at 12°C.; but none were abnormal at either 0.5°, or 2°C. Normal development predominated from 0.5 to 6°C. The highest proportion of embryos to hatch alive was 72.67 per cent at 0.5°C., which is, hence, the optimum temperature. 3. Total incubation time ranged from 29.6 days at 10°C. to 141 days at 0.5°C. 4. The time (T) required to attain any given stage of development is expressed in equations See PDF for Equation where temperature, t, is a negative exponent of the constant, A, whose value differs above or below 6°C., a critical temperature. Values of A above 6° fluctuate about 1.13; those of A below 6° fluctuate about 1.19 as a mean. 5. Applying Arrhenius'' equation µ values for the total incubation period are 27,500 below 6° and 27,100 above it. 6. The relative magnitude of A values of the exponential equation and µ values of Arrhenius'' equation show corresponding changes from one developmental period to another. 7. When plotted, thermal increments show cyclic variations, with maxima during periods of cleavage and of organogenesis. These may indicate the interaction of two separate sets of embryonic processes, which give a maximal response to temperature differences during these two separate periods. 8. Above 6°, µ values during the hatching process are distinct from those of developmental stages and are regarded as being due to the action of hatching enzymes.  相似文献   

14.
The zebrafish (Danio rerio) is an important organism as a model for understanding vertebrate cardiovascular development. However, little is known about adult ZF cardiac function and how contractile function changes to cope with fluctuations in ambient temperature. The goals of this study were to: 1) determine if high resolution echocardiography (HRE) in the presence of reduced cardiodepressant anesthetics could be used to accurately investigate the structural and functional properties of the ZF heart and 2) if the effect of ambient temperature changes both acutely and chronically could be determined non-invasively using HRE in vivo. Heart rate (HR) appears to be the critical factor in modifying cardiac output (CO) with ambient temperature fluctuation as it increases from 78 ± 5.9 bpm at 18°C to 162 ± 9.7 bpm at 28°C regardless of acclimation state (cold acclimated CA– 18°C; warm acclimated WA– 28°C). Stroke volume (SV) is highest when the ambient temperature matches the acclimation temperature, though this difference did not constitute a significant effect (CA 1.17 ± 0.15 μL at 18°C vs 1.06 ± 0.14 μl at 28°C; WA 1.10 ± 0.13 μL at 18°C vs 1.12 ± 0.12 μl at 28°C). The isovolumetric contraction time (IVCT) was significantly shorter in CA fish at 18°C. The CA group showed improved systolic function at 18°C in comparison to the WA group with significant increases in both ejection fraction and fractional shortening and decreases in IVCT. The decreased early peak (E) velocity and early peak velocity / atrial peak velocity (E/A) ratio in the CA group are likely associated with increased reliance on atrial contraction for ventricular filling.  相似文献   

15.
16.
Bacterial wilt, caused by members of the heterogenous Ralstonia solanacearum species complex, is an economically important vascular disease affecting many crops. Human activity has widely disseminated R. solanacearum strains, increasing their global agricultural impact. However, tropical highland race 3 biovar 2 (R3bv2) strains do not cause disease in tropical lowlands, even though they are virulent at warm temperatures. We tested the hypothesis that differences in temperature adaptation and competitive fitness explain the uneven geographic distribution of R. solanacearum strains. Using three phylogenetically and ecologically distinct strains, we measured competitive fitness at two temperatures following paired-strain inoculations of their shared host, tomato. Lowland tropical strain GMI1000 was only weakly virulent on tomato under temperate conditions (24°C for day and 19°C for night [24/19°C]), but highland tropical R3bv2 strain UW551 and U.S. warm temperate strain K60 were highly virulent at both 24/19°C and 28°C. Strain K60 was significantly more competitive than both GMI1000 and UW551 in tomato rhizospheres and stems at 28°C, and GMI1000 also outcompeted UW551 at 28°C. The results were reversed at cooler temperatures, at which highland strain UW551 generally outcompeted GMI1000 and K60 in planta. The superior competitive index of UW551 at 24/19°C suggests that adaptation to cool temperatures could explain why only R3bv2 strains threaten highland agriculture. Strains K60 and GMI1000 each produced different bacteriocins that inhibited growth of UW551 in culture. Such interstrain inhibition could explain why R3bv2 strains do not cause disease in tropical lowlands.  相似文献   

17.
Fish monogeneans are lethal parasites in aquaculture. We provide the first experimental evidence that a notorious fish monogenean, Neobenedenia sp., can produce viable eggs in isolation for three consecutive generations. We infected individual, isolated, farmed barramundi, Lates calcarifer (Bloch) with a single oncomiracidium (larva) of the hermaphroditic monogenean Neobenedenia sp. Isolated parasites reached sexual maturity at day 10 post-hatch (24°C, 35‰) and laid ∼3,300 embryonated eggs over 17 days. Egg production rapidly increased following sexually maturity on day 10 (58±15 eggs) and peaked on day 15 (496±68 eggs) before gradually decreasing. Neobenedenia sp. exhibited egg laying and egg hatching rhythms. Parasites laid eggs continuously, but egg production increased in periods of darkness (64.3%), while the majority of oncomiracidia (81%) emerged from eggs in the first three hours of light. Eggs laid by isolated ‘parent’ parasites hatched and individual emerging oncomiracidia were used to infect more individual, isolated fish, with three consecutive, isolated, parasite generations (F1, F2 and F3) raised in the laboratory. Infection success and egg hatching success did not differ between generations. Our data show that one parasite, in the absence of a mate, presents a severe threat to captive fish populations.  相似文献   

18.
The postinduction period of Oenothera biennis L. seed germination was examined by temperature treatments. For all experiments, seeds received a standard 24 hour/24°C preinduction period and 12 hour/32°C photoinduction period. Germination is inhibited by postinduction temperatures above 32°C. When seeds are briefly incubated at 44°C and then transferred to 28°C, they germinate at a much lower percentage than 28°C controls. When thermally inhibited seeds are placed in the dark at 28°C for 20 hours, they can be promoted to germinate by a single pulse of red light. Seeds incubated at 12°C or below immediately after photoinduction enter a lag period in which they germinate slowly or not at all for a long time and then resume germination. The length of the lag period is exponentially related to the postinduction temperature. When seeds are incubated at a low temperature and then transferred to a warm temperature, they germinate much more rapidly than seeds not incubated at a low temperature. A model is proposed which is consistent with these and additional results. In the model, a germination promoter is irreversibly formed from a precursor and the synthesis of the precursor is favored at low temperatures and its degradation is favored at high temperatures.  相似文献   

19.
Hyadaphis foeniculi (Passerini) (Hemiptera: Aphididae) is a cosmopolitan species and the main pest of fennel in northeastern Brazil. Understanding the relationship between temperature variations and the population growth rates of H. foeniculi is essential to predict the population dynamics of this aphid in the fennel crop. The aim of this study was to measure the effect of constant temperature on the adult prereproductive period and the life table fertility parameters (infinitesimal increase ratio (rm), gross reproduction rate (GRR), net reproduction rate (R0), finite increase ratio (λ), generation time (GT), the time required for the population to double in the number of individuals (DT), and the reproduction value (RVx)) of the fennel pest H. foeniculi. The values of lx (survival of nymphs at age x) increased as the temperature rose from 15 to 28°C and fell at 30°C, whereas mx (number of nymphs produced by each nymph of age x) increased from 15 to 25°C and fell at 28 and 30°C. The net reproduction rates (R0) of populations of H. foeniculi increased with temperature and ranged from 1.9 at 15°C to 12.23 at 28°C for each generation. The highest population increase occurred with the apterous aphids at 28°C. The rate of population increase per unit time (rm) (day) ranged from 0.0033 (15°C) to 0.1995 (28°C). The highest values of rm were recorded at temperatures of 28°C and 30°C. The rm values were a good fit to the models tested, with R2 > 0.91 and R2 adj > 0.88. The models tested (Davidson, Sharpe and DeMichele modified by Schoolfield et al., Logan et al., Lamb, and Briere et al.) were very good fits for the rm values observed, with R2 > 0.91 and R2 adj > 0.88. The only exception was the Davidson model. Of the parameters studied, the reproductive capacity was higher in the apterous aphids, with the unique exception of daily fecundity at 28°C, which was higher in the alate aphids of H. foeniculi. Parameters relating to the age-specific fertility table for H. foeniculi were heavily influenced by temperature, with the highest biotic potential and population growth capacity found at 34°C. Therefore, the results obtained in this study could be of practical significance for predicting outbreaks of fennel aphids and improving the management of this aphid in fennel crops.  相似文献   

20.
Chou M  Chen YM  Lin CY 《Plant physiology》1989,89(2):617-621
Mitochondria isolated from 2-day-old etiolated soybean (Glycine max) seedlings which had been subjected to various heat shock treatments, i.e. (A) 28°C (2 h), (B) 38°C (2 h), (C) 38°C (2 h)-42.5°C (0.5 h), and (D) 38°C (2 h)-42.5°C (0.5 h)-28°C (4 h), were monitored for O2 uptake using an oxygen electrode. Mitochondria isolated after all four heat shock treatments were active in O2 consumption at 28°C in response to succinate and ADP (derived P/O ratios were 1.6, 1.7, 1.3, and 1.3, respectively.) The mitochondria from all four treatments were also active in O2 uptake at 42.5°C. However, only mitochondria isolated after treatment (C) were tightly coupling at 42.5°C (derived ADP/O ratio was about 1.4). Combined with our earlier findings on the subcellular localization of heat shock proteins, our present data demonstrate that association of heat shock proteins with mitochondria by treatment (C) enables them to phosphorylate at 42.5°C (i.e. they become thermotolerant). Isolated mitochondria from treatment (C) and treatment (A) were compared by electron microscopy. They appeared to be very similar and no significant ultrastructural differences were noted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号